1
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
2
|
Joshi A, Nuntapramote T, Brüggemann D. Self-Assembled Fibrinogen Scaffolds Support Cocultivation of Human Dermal Fibroblasts and HaCaT Keratinocytes. ACS OMEGA 2023; 8:8650-8663. [PMID: 36910955 PMCID: PMC9996769 DOI: 10.1021/acsomega.2c07896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Self-assembled fibrinogen scaffolds are highly attractive biomaterials to mimic native blood clots. To explore their potential for wound healing, we studied the interaction of cocultures of human dermal fibroblasts (HDFs) and HaCaT keratinocytes with nanofibrous, planar, and physisorbed fibrinogen. Cell viability analysis indicated that the growth of HDFs and HaCaTs was supported by all fibrinogen topographies until 14 days, either in mono- or coculture. Using scanning electron microscopy and cytoskeletal staining, we observed that the native morphology of both cell types was preserved on all topographies. Expression of the marker proteins vimentin and cytokeratin-14 showed that the native phenotype of fibroblasts and undifferentiated keratinocytes, respectively, was maintained. HDFs displayed their characteristic wound healing phenotype, characterized by expression of fibronectin. Finally, to mimic the multilayered microenvironment of skin, we established successive cocultures of both cells, for which we found consistently high metabolic activities. SEM analysis revealed that HaCaTs arranged into a confluent top layer after 14 days, while fluorescent labeling confirmed the presence of both cells in the layered structure after 6 days. In conclusion, all fibrinogen topographies successfully supported the cocultivation of fibroblasts and keratinocytes, with fibrinogen nanofibers being particularly attractive for skin regeneration due to their biomimetic porous architecture and the technical possibility to be detached from an underlying substrate.
Collapse
Affiliation(s)
- Arundhati Joshi
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Titinun Nuntapramote
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Dorothea Brüggemann
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, 28359 Bremen, Germany
| |
Collapse
|
3
|
Seltana A, Cloutier G, Reyes Nicolas V, Khalfaoui T, Teller IC, Perreault N, Beaulieu JF. Fibrin(ogen) Is Constitutively Expressed by Differentiated Intestinal Epithelial Cells and Mediates Wound Healing. Front Immunol 2022; 13:916187. [PMID: 35812445 PMCID: PMC9258339 DOI: 10.3389/fimmu.2022.916187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fibrinogen is a large molecule synthesized in the liver and released in the blood. Circulating levels of fibrinogen are upregulated after bleeding or clotting events and support wound healing. In the context of an injury, thrombin activation drives conversion of fibrinogen to fibrin. Fibrin deposition contains tissue damage, stops blood loss, and prevents microbial infection. In most circumstances, fibrin needs to be removed to allow the resolution of inflammation and tissue repair, whereas failure of this may lead to the development of various disorders. However, the contribution of fibrinogen to tissue inflammation and repair is likely to be context-dependent. In this study, the concept that fibrin needs to be removed to allow tissue repair and to reduce inflammation is challenged by our observations that, in the intestine, fibrinogen is constitutively produced by a subset of intestinal epithelial cells and deposited at the basement membrane as fibrin where it serves as a substrate for wound healing under physiological conditions such as epithelial shedding at the tip of the small intestinal villus and surface epithelium of the colon as well as under pathological conditions that require rapid epithelial repair. The functional integrity of the intestine is ensured by the constant renewal of its simple epithelium. Superficial denuding of the epithelial cell layer occurs regularly and is rapidly corrected by a process called restitution that can be influenced by various soluble and insoluble factors. Epithelial cell interaction with the extracellular matrix greatly influences the healing process by acting on cell morphology, adhesion, and migration. The functional contribution of a fibrin(ogen) matrix in the intestine was studied under physiological and pathological contexts. Our results (immunofluorescence, immunoelectron microscopy, and quantitative PCR) show that fibrin(ogen) is a novel component of the basement membrane associated with the differentiated epithelial cell population in both the small intestine and colon. Fibrin(ogen) alone is a weak ligand for epithelial cells and behaves as an anti-adhesive molecule in the presence of type I collagen. Furthermore, the presence of fibrin(ogen) significantly shortens the time required to achieve closure of wounded epithelial cell monolayers and co-cultures in a PI3K-dependent manner. In human specimens with Crohn's disease, we observed a major accumulation of fibrin(ogen) throughout the tissue and at denuded sites. In mice in which fibrin formation was inhibited with dabigatran treatment, dextran sulfate sodium administration provoked a significant increase in the disease activity index and pathological features such as mucosal ulceration and crypt abscess formation. Taken together, these results suggest that fibrin(ogen) contributes to epithelial healing under both normal and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-François Beaulieu
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Lackington WA, Fleyshman L, Schweizer P, Elbs-Glatz Y, Guimond S, Rottmar M. The response of soft tissue cells to Ti implants is modulated by blood-implant interactions. Mater Today Bio 2022; 15:100303. [PMID: 35655805 PMCID: PMC9151735 DOI: 10.1016/j.mtbio.2022.100303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Titanium-based dental implants have been highly optimized to enhance osseointegration, but little attention has been given to the soft tissue-implant interface, despite being a major contributor to long term implant stability. This is strongly linked to a lack of model systems that enable the reliable evaluation of soft tissue-implant interactions. Current in vitro platforms to assess these interactions are very simplistic, thus suffering from limited biological relevance and sensitivity to varying implant surface properties. The aim of this study was to investigate how blood-implant interactions affect downstream responses of different soft tissue cells to implants in vitro, thus taking into account not only the early events of blood coagulation upon implantation, but also the multicellular nature of soft tissue. For this, three surfaces (smooth and hydrophobic; rough and hydrophobic; rough and hydrophilic with nanostructures), which reflect a wide range of implant surface properties, were used to study blood-material interactions as well as cell-material interactions in the presence and absence of blood. Rough surfaces stimulated denser fibrin network formation compared to smooth surfaces and hydrophilicity accelerated the rate of blood coagulation compared to hydrophobic surfaces. In the absence of blood, smooth surfaces supported enhanced attachment of human gingival fibroblasts and keratinocytes, but limited changes in gene expression and cytokine production were observed between surfaces. In the presence of blood, rough surfaces supported enhanced fibroblast attachment and stimulated a stronger anti-inflammatory response from macrophage-like cells than smooth surfaces, but only smooth surfaces were capable of supporting long-term keratinocyte attachment and formation of a layer of epithelial cells. These findings indicate that surface properties not only govern blood-implant interactions, but that this can in turn also significantly modulate subsequent soft tissue cell-implant interactions.
Collapse
Affiliation(s)
- William A. Lackington
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Lada Fleyshman
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Schweizer
- Mechanics of Materials & Nanostructures Lab, Empa, Swiss Federal Laboratories for Materials Science and Technology, Thun, Switzerland
| | - Yvonne Elbs-Glatz
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Stefanie Guimond
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Markus Rottmar
- Biointerfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
5
|
Savitri C, Kwon JW, Drobyshava V, Ha SS, Park K. M2 Macrophage-Derived Concentrated Conditioned Media Significantly Improves Skin Wound Healing. Tissue Eng Regen Med 2021; 19:617-628. [PMID: 34962626 PMCID: PMC9130431 DOI: 10.1007/s13770-021-00414-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Macrophages, with many different phenotypes play a major role during wound healing process, secreting the cytokines crucial to angiogenesis, cell recruitment and ECM remodeling. Therefore, macrophage-derived cytokines may be attractive therapeutic resource for wound healing. METHODS To obtain a conditioned media (CM) from macrophages, human monocyte THP-1 cells were seeded on TCP or human fibroblast-derived matrix (hFDM) and they were differentiated into M1 or M2 phenotype using distinct protocols. A combination of different substrates and macrophage phenotypes produced M1- and M2-CM or M1-hFDM- and M2-hFDM-CM, respectively. Proteome microarray determines the cytokine contents in those CMs. CMs-treated human dermal fibroblast (hDFB) was analyzed using collagen synthesis and wound scratch assay. Concentrated form of the CM (CCM), obtained by high-speed centrifugation, was administered to a murine full-thickness wound model using alginate patch, where alginate patch was incubated in the M2-CCM overnight at 4 °C before transplantation. On 14 day post-treatment, examination was carried out through H&E and Herovici staining. Keratinocyte and M2 macrophages were also evaluated via immunofluorescence staining. RESULTS Cytokine analysis of CMs found CCL1, CCL5, and G-CSF, where CCL5 is more dominant. We found increased collagen synthesis and faster wound closure in hDFB treated with M2-CM. Full-thickness wounds treated by M2-hFDM-CCM containing alginate patch showed early wound closure, larger blood vessels, increased mature collagen deposition, enhanced keratinocyte maturation and more M2-macrophage population. CONCLUSION Our study demonstrated therapeutic potential of the CM derived from M2 macrophages, where the cytokines in the CM may have played an active role for enhanced wound healing.
Collapse
Affiliation(s)
- Cininta Savitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea ,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
| | - Jae Won Kwon
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea ,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
| | - Valeryia Drobyshava
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea ,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea ,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 Republic of Korea
| |
Collapse
|
6
|
Wichaiyo S, Svasti S, Supharattanasitthi W, Morales NP. Dasatinib induces loss of vascular integrity and promotes cutaneous wound repair in mice. J Thromb Haemost 2021; 19:3154-3167. [PMID: 34402195 DOI: 10.1111/jth.15499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammatory bleeding due to depletion of platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) has been proposed as a potential novel mechanism to promote skin wound healing. Dasatinib inhibits a broad range of tyrosine kinases, including Src and Syk, the signaling molecules downstream of GPVI and CLEC-2. OBJECTIVES To investigate whether dasatinib affects skin wound healing. METHODS A single (4-mm diameter) full-thickness excisional skin wound was generated in mice. Dasatinib (5 or 10 mg/kg) or dimethyl sulfoxide (DMSO) vehicle was intraperitoneally injected daily during the first 4 days. The wound was monitored over 9 days post injury. RESULTS Dasatinib induced loss of vascular integrity during the inflammatory phase of wound repair (day 1 to day 3 post injury), which was associated with the inhibition of platelet function stimulated by collagen and rhodocytin, the ligands for GPVI and CLEC-2, respectively. Dasatinib-treated mice, particularly at 5 mg/kg, exhibited accelerated wound closure compared to DMSO-treated controls. Transient bleeding into the wound during the inflammatory phase in dasatinib-treated mice allowed for extravasation of fibrinogen. The increased deposition of fibrinogen and fibrin in the wound on day 3 post injury was associated with the augmented progression of re-epithelialization and angiogenesis, attenuated infiltration of neutrophils and macrophages, and decreased levels of tumor necrosis factor-α (TNF-α). CONCLUSIONS Our data show that dasatinib promotes skin wound healing, and the mechanisms include blocking GPVI- and CLEC-2-mediated platelet activation, leading to self-limited inflammatory bleeding and fibrinogen/fibrin deposition, in association with reduced inflammation, increased re-epithelialization, and enhanced angiogenesis.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wasu Supharattanasitthi
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Miyayama S, Yamashiro M, Ikeda R, Matsumoto J, Ogawa N, Sakuagawa N. Fibrin Glue in Interventional Radiology: How to Use It. INTERVENTIONAL RADIOLOGY 2021; 6:122-129. [PMID: 35912275 PMCID: PMC9327355 DOI: 10.22575/interventionalradiology.2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022]
Abstract
A fibrin glue kit consists of separate solutions of fibrinogen and thrombin that instantly coagulate when mixed together and can be used as an embolic agent and tissue adhesive in several interventional procedures, such as the closure of enterocutaneous, postoperative pancreatic, and bronchopulmonary fistulas, embosclerosis of biloma, and portal vein embolization. Separate and simultaneous injections of fibrinogen and thrombin solutions at the target site are necessary; therefore, insertion of two catheters or a balloon catheter with multiple lumen is required. The combined use of metallic coils is also effective for a large fistula as the coils can provide a matrix for retaining the fibrin glue, in addition to partially occluding the fistulous tract. Mixing contrast medium or iodized oil with a thrombin solution is also key to achieving radiopacity.
Collapse
Affiliation(s)
- Shiro Miyayama
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital
| | | | - Rie Ikeda
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital
| | | | - Nobuhiko Ogawa
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital
| | - Naoko Sakuagawa
- Department of Diagnostic Radiology, Fukui-ken Saiseikai Hospital
| |
Collapse
|
8
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Wang X, Lei X, Yu Y, Miao S, Tang J, Fu Y, Ye K, Shen Y, Shi J, Wu H, Zhu Y, Yu L, Pei G, Bi L, Ding J. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci 2021; 9:5192-5208. [PMID: 34159966 DOI: 10.1039/d1bm00762a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues. Human epidermal keratinocytes (HaCaT), human foreskin fibroblasts (HFF) and preosteoblasts (MC3T3-E1), which are closely related to percutaneous implants, exhibited better adhesion and spreading on all the three modified sheets compared with the unmodified alloy. After three-week subcutaneous implantation in Sprague-Dawley (SD) rats, the Ti-PDA-Fg sheets could significantly attenuate the soft tissue response and promote angiogenesis compared with other groups. Furthermore, in the model of percutaneous tibial implantation in SD rats, the Ti-PDA-Fg screws dramatically inhibited epithelial downgrowth and promoted new bone formation. Hence, the covalent immobilization of fibrinogen through the precoating of PDA is promising for enhanced biological sealing and osseointegration of metal implants with soft and hard tissues, which is critical for an orthopedic percutaneous medical device.
Collapse
Affiliation(s)
- Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Yue Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Yang Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jiayue Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China. and Southern University of Science and Technology Hospital, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Liliac IM, Popescu EL, Văduva IA, Pirici D, Mogoşanu GD, Streba CT, Busuioc CJ, Bejenaru LE, Bejenaru C, Crăciunoiu N, Dumitru I, Elayan H, Mogoantă L. Nanoparticle-functionalized dressings for the treatment of third-degree skin burns - histopathological and immunohistochemical study. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:159-168. [PMID: 34609418 PMCID: PMC8597381 DOI: 10.47162/rjme.62.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Skin burns are one of the most common injuries associated with increased morbidity and mortality, especially in the children and the elderlies. Severe burns, especially, result in a systemic immune and inflammatory response, which may reflect in multiple organ insufficiency, and a fast and effective local restorative process is essential for functionality recovering, as well as for interrupting the generalized systemic response. We have aimed here to assess the effect of different wound dressings in what it regards the morphology and clinical restoration after a skin burn. On a rat animal model, we have evaluated the macroscopic and histopathological features of controlled third degree skin burns in control animals versus treatments with local dressings of silver sulfadiazine (SDA) cream, simple gel (G), gel + silver nanoparticles (AgNPs) (G+NPS), gel + exosomes (G+EXO) and gel + AgNPs + exosomes (Gel+NPS+EXO), at 14 days and, respectively, 21 days after the lesion. Tissue fragments were harvested and processed for histopathology and immunohistochemistry. Immunofluorescence was utilized to evaluate the maturity of underlaying granulation tissue based on double stainings for smooth muscle actin (SMA) and cluster of differentiation 31 (CD31). Our study showed variability in what it regards the vessel density and immunoexpression of SMA between the treatments, and image analysis revealed that most SMA reduction and blood vessel density reduction in the maturing granulation tissue occurred for the G+NPS and G+NPS+EXO treatments. A complete re-epithelization was also observed for the G+NPS+EXO treatment. Overall, our results show that improved topic treatments promote faster re-epithelization and reparation of the dermis after skin burn lesions, providing thus an avenue for new treatments that aim both local recuperation and systemic infection prevention.
Collapse
|
11
|
Pandya UM, Manzanares MA, Tellechea A, Egbuta C, Daubriac J, Jimenez-Jaramillo C, Samra F, Fredston-Hermann A, Saadipour K, Gold LI. Calreticulin exploits TGF-β for extracellular matrix induction engineering a tissue regenerative process. FASEB J 2020; 34:15849-15874. [PMID: 33015849 DOI: 10.1096/fj.202001161r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-β canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and β1 integrins was not mediated by TGF-β signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-β3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-β receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-β1 and ECM proteins. In addition, TGF-β1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-β-mediated fibrosis/scarring to achieve tissue regeneration.
Collapse
Affiliation(s)
- Unnati M Pandya
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Miguel A Manzanares
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Ana Tellechea
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Chinaza Egbuta
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Couger Jimenez-Jaramillo
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Fares Samra
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Alexa Fredston-Hermann
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Khalil Saadipour
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA.,Pathology Department, New York University School of Medicine-Langone Health, New York, NY, USA
| |
Collapse
|
12
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Zhang J, Yun S, Karami A, Jing B, Zannettino A, Du Y, Zhang H. 3D printing of a thermosensitive hydrogel for skin tissue engineering: A proof of concept study. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Bastidas JG, Maurmann N, da Silveira MR, Ferreira CA, Pranke P. Development of fibrous PLGA/fibrin scaffolds as a potential skin substitute. Biomed Mater 2020; 15:055014. [DOI: 10.1088/1748-605x/aba086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Perera E, Rodriguez-Viera L, Montero-Alejo V, Perdomo-Morales R. Crustacean Proteases and Their Application in Debridement. Trop Life Sci Res 2020; 31:187-209. [PMID: 32922675 PMCID: PMC7470474 DOI: 10.21315/tlsr2020.31.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Digestive proteases from marine organisms have been poorly applied to biomedicine. Exceptions are trypsin and other digestive proteases from a few cold-adapted or temperate fish and crustacean species. These enzymes are more efficient than enzymes from microorganism and higher vertebrates that have been used traditionally. However, the biomedical potential of digestive proteases from warm environment species has received less research attention. This review aims to provide an overview of this unrealised biomedical potential, using the debridement application as a paradigm. Debridement is intended to remove nonviable, necrotic and contaminated tissue, as well as fibrin clots, and is a key step in wound treatment. We discuss the physiological role of enzymes in wound healing, the use of exogenous enzymes in debridement, and the limitations of cold-adapted enzymes such as their poor thermal stability. We show that digestive proteases from tropical crustaceans may have advantages over their cold-adapted counterparts for this and similar uses. Differences in thermal stability, auto-proteolytic stability, and susceptibility to proteinase inhibitors are discussed. Furthermore, it is proposed that the feeding behaviour of the source organism may direct the evaluation of enzymes for particular applications, as digestive proteases have evolved to fill a wide variety of feeding habitats, natural substrates, and environmental conditions. We encourage more research on the biomedical application of digestive enzymes from tropical marine crustaceans.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Valencia, Spain
| | | | - Vivian Montero-Alejo
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| | - Rolando Perdomo-Morales
- Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
| |
Collapse
|
16
|
do Amaral RJFC, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F, Simpson CR, Murphy CM, Sridharan R, González-Vázquez A, O'Sullivan B, O'Brien FJ, Kearney CJ. Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front Bioeng Biotechnol 2019; 7:371. [PMID: 31921799 PMCID: PMC6915093 DOI: 10.3389/fbioe.2019.00371] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Porous collagen-glycosaminoglycan (collagen-GAG) scaffolds have shown promising clinical results for wound healing; however, these scaffolds do not replace the dermal and epidermal layer simultaneously and rely on local endogenous signaling to direct healing. Functionalizing collagen-GAG scaffolds with signaling factors, and/or additional matrix molecules, could help overcome these challenges. An ideal candidate for this is platelet-rich plasma (PRP) as it is a natural reservoir of growth factors, can be activated to form a fibrin gel, and is available intraoperatively. We tested the factors released from PRP (PRPr) and found that at specific concentrations, PRPr enhanced cell proliferation and migration and induced angiogenesis to a greater extent than fetal bovine serum (FBS) controls. This motivated us to develop a strategy to successfully incorporate PRP homogeneously within the pores of the collagen-GAG scaffolds. The composite scaffold released key growth factors for wound healing (FGF, TGFβ) and vascularization (VEGF, PDGF) for up to 14 days. In addition, the composite scaffold had enhanced mechanical properties (when compared to PRP gel alone), while providing a continuous upper surface of extracellular matrix (ECM) for keratinocyte seeding. The levels of the factors released from the composite scaffold were sufficient to sustain proliferation of key cells involved in wound healing, including human endothelial cells, mesenchymal stromal cells, fibroblasts, and keratinocytes; even in the absence of FBS supplementation. In functional in vitro and in vivo vascularization assays, our composite scaffold demonstrated increased angiogenic and vascularization potential, which is known to lead to enhanced wound healing. Upon pro-inflammatory induction, macrophages released lower levels of the pro-inflammatory marker MIP-1α when treated with PRPr; and released higher levels of the anti-inflammatory marker IL1-ra upon both pro- and anti-inflammatory induction when treated with the composite scaffold. Finally, our composite scaffold supported a co-culture system of human fibroblasts and keratinocytes that resulted in an epidermal-like layer, with keratinocytes constrained to the surface of the scaffold; by contrast, keratinocytes were observed infiltrating the PRP-free scaffold. This novel composite scaffold has the potential for rapid translation to the clinic by isolating PRP from a patient intraoperatively and combining it with regulatory approved scaffolds to enhance wound repair.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Noora M. A. Zayed
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Elena I. Pascu
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Chris Hobbs
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), Dublin, Ireland
| | - Francesco Santarella
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Christopher R. Simpson
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Rukmani Sridharan
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Barry O'Sullivan
- Beaumont Hospital, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Cathal J. Kearney
- Kearney Lab, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Nauroy P, Nyström A. Kallikreins: Essential epidermal messengers for regulation of the skin microenvironment during homeostasis, repair and disease. Matrix Biol Plus 2019; 6-7:100019. [PMID: 33543017 PMCID: PMC7852331 DOI: 10.1016/j.mbplus.2019.100019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
As the outermost layer of the skin, the epidermis is playing a major role in organism homeostasis providing the first barrier against external aggressions. Although considered as an extracellular matrix (ECM)-poor subtissue, the epidermal microenvironment is a key regulator of skin homeostasis and functionality. Among the proteins essential for upholding the epidermal microenvironment are the members of the kallikrein (KLK) family composed of 15 secreted serine proteases. Most of the members of these epithelial-specific proteins are present in skin and regulate skin desquamation and inflammation. However, although epidermal products, the consequences of KLK activities are not confined to the epidermis but widespread in the skin. In this review starting with the location and proteolytic activation cascade of KLKs, we present KLKs involvement in skin homeostasis, regeneration and pathology. KLKs have a large variety of substrates including ECM proteins, and evidence suggests that they are involved in the different steps of skin wound healing as discussed here. KLKs are also used as prognosis/diagnosis markers for many cancer types and we are focusing later on KLKs in cutaneous cancers, although their pathogenicity remains to be fully elucidated. Dysregulation of the KLK cascade is directly responsible for skin diseases with heavy inflammatory aspects, highlighting their involvement in skin immune homeostasis. Future studies will be needed to support the therapeutic potential of adjusting KLK activities for treatment of inflammatory skin diseases and wound healing pathologies. Regulation of the microenvironment even in an extracellular matrix-poor tissue can heavily impact organ function. Extracellular activities of kallikreins maintain skin homeostasis by regulating desquamation and inflammation. The activation of skin epidermal-specific kallikrein family of proteases is regulated by an intricate proteolytic cascade. Kallikreins are emerging as players during skin wound healing. Dysregulated kallikrein expression and activity occur in cancers and inflammatory skin diseases.
Collapse
Key Words
- AD, atopic dermatitis
- CDSN, corneodesmosin
- DSC1, desmocollin 1
- DSG1, desmoglein 1
- Diseases
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- Epidermal microenvironment
- Epidermis
- Inflammation
- KLKs, kallikreins
- Kallikrein
- LEKTI, lympho-epithelial Kazal-type inhibitor
- NS, Netherton syndrome
- PAR1/2, protease activated-receptor 1/2
- SCC, squamous cell carcinoma
- Wound healing
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Pauline Nauroy
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Wichaiyo S, Lax S, Montague SJ, Li Z, Grygielska B, Pike JA, Haining EJ, Brill A, Watson SP, Rayes J. Platelet glycoprotein VI and C-type lectin-like receptor 2 deficiency accelerates wound healing by impairing vascular integrity in mice. Haematologica 2019; 104:1648-1660. [PMID: 30733265 PMCID: PMC6669159 DOI: 10.3324/haematol.2018.208363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/28/2019] [Indexed: 01/28/2023] Open
Abstract
Platelets promote wound healing by forming a vascular plug and by secreting growth factors and cytokines. Glycoprotein (GP)VI and C-type lectin-like receptor (CLEC)-2 signal through a (hem)-immunoreceptor tyrosine-based activation motif, which induces platelet activation. GPVI and CLEC-2 support vascular integrity during inflammation in the skin through regulation of leukocyte migration and function, and by sealing sites of vascular damage. In this study, we investigated the role of impaired vascular integrity due to GPVI and/or CLEC-2 deficiency in wound repair using a full-thickness excisional skin wound model in mice. Transgenic mice deficient in both GPVI and CLEC-2 exhibited accelerated skin wound healing, despite a marked impairment in vascular integrity. The local and temporal bleeding in the skin led to greater plasma protein entry, including fibrinogen and clotting factors, was associated with increased fibrin generation, reduction in wound neutrophils and M1 macrophages, decreased level of tumor necrosis factor (TNF)-α, and enhanced angiogenesis at day 3 after injury. Accelerated wound healing was not due to developmental defects in CLEC-2 and GPVI double-deficient mice as similar results were observed in GPVI-deficient mice treated with a podoplanin-blocking antibody. The rate of wound healing was not altered in mice deficient in either GPVI or CLEC-2. Our results show that, contrary to defects in coagulation, bleeding following a loss of vascular integrity caused by platelet CLEC-2 and GPVI deficiency facilitates wound repair by increasing fibrin(ogen) deposition, reducing inflammation, and promoting angiogenesis.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samantha J Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi Li
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK .,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
19
|
Zuidema A, Wang W, Kreft M, Te Molder L, Hoekman L, Bleijerveld OB, Nahidiazar L, Janssen H, Sonnenberg A. Mechanisms of integrin αVβ5 clustering in flat clathrin lattices. J Cell Sci 2018; 131:jcs221317. [PMID: 30301780 DOI: 10.1242/jcs.221317] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2023] Open
Abstract
The family of integrin transmembrane receptors is essential for the normal function of multicellular organisms by facilitating cell-extracellular matrix adhesion. The vitronectin-binding integrin αVβ5 localizes to focal adhesions (FAs) as well as poorly characterized flat clathrin lattices (FCLs). Here, we show that, in human keratinocytes, αVβ5 is predominantly found in FCLs, and formation of the αVβ5-containing FCLs requires the presence of vitronectin as ligand, Ca2+, and the clathrin adaptor proteins ARH (also known as LDLRAP1), Numb and EPS15/EPS15L1. Integrin chimeras, containing the extracellular and transmembrane domains of β5 and the cytoplasmic domains of β1 or β3, almost exclusively localize in FAs. Interestingly, lowering actomyosin-mediated contractility promotes integrin redistribution to FLCs in an integrin tail-dependent manner, while increasing cellular tension favors αVβ5 clustering in FAs. Our findings strongly indicate that clustering of integrin αVβ5 in FCLs is dictated by the β5 subunit cytoplasmic domain, cellular tension and recruitment of specific adaptor proteins to the β5 subunit cytoplasmic domains.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lisa Te Molder
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Onno B Bleijerveld
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Leila Nahidiazar
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Hans Janssen
- Electron Microscopy Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
20
|
Iyer K, Chen Z, Ganapa T, Wu BM, Tawil B, Linsley CS. Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts. Tissue Eng Regen Med 2018; 15:721-733. [PMID: 30603591 DOI: 10.1007/s13770-018-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
Background Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. Methods Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the alamarBlue® assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. Results Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. Conclusion This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.
Collapse
Affiliation(s)
- Kritika Iyer
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Zhuo Chen
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Teja Ganapa
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Benjamin M Wu
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA.,2Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Bill Tawil
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Chase S Linsley
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| |
Collapse
|
21
|
Piaggesi A, Låuchli S, Bassetto F, Biedermann T, Marques A, Najafi B, Palla I, Scarpa C, Seimetz D, Triulzi I, Turchetti G, Vaggelas A. Advanced therapies in wound management: cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J Wound Care 2018; 27:S1-S137. [DOI: 10.12968/jowc.2018.27.sup6a.s1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alberto Piaggesi
- Prof, Director, EWMA Scientific Recorder (Editor), Diabetic Foot Section of the Pisa University Hospital, Department of Endocrinology and Metabolism, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Severin Låuchli
- Chief of Dermatosurgery and Woundcare, EWMA Immediate Past President (Co-editor), Department of Dermatology, University Hospital, Zurich, Råmistrasse 100, 8091 Zärich, Schwitzerland
| | - Franco Bassetto
- Prof, Head of Department, Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, August Forel-Strasse 7, 8008 Zürich, Switzerland
| | - Alexandra Marques
- University of Minho, 3B's Research Group in Biomaterials, Biodegradables and Biomimetics, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
| | - Bijan Najafi
- Professor of Surgery, Director of Clinical Research, Division of Vascular Surgery and Endovascular Therapy, Director of Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, MS: BCM390, Houston, TX 77030-3411, US
| | - Ilaria Palla
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Carlotta Scarpa
- Clinic of Plastic and Reconstructive Surgery, University of Padova, Via Giustiniani, 35100 Padova
| | - Diane Seimetz
- Founding Partner, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| | - Isotta Triulzi
- Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Giuseppe Turchetti
- Fulbright Scholar, Institute of Management, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Annegret Vaggelas
- Consultant, Biopharma Excellence, c/o Munich Technology Center, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| |
Collapse
|
22
|
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 2018; 75-76:12-26. [PMID: 29330022 DOI: 10.1016/j.matbio.2018.01.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| |
Collapse
|
23
|
Zhang L, Casey B, Galanakis DK, Marmorat C, Skoog S, Vorvolakos K, Simon M, Rafailovich MH. The influence of surface chemistry on adsorbed fibrinogen conformation, orientation, fiber formation and platelet adhesion. Acta Biomater 2017; 54:164-174. [PMID: 28263863 DOI: 10.1016/j.actbio.2017.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
Thrombosis is a clear risk when any foreign material is in contact with the bloodstream. Here we propose an immunohistological stain-based model for non-enzymatic clot formation that enables a facile screen for the thrombogenicity of blood-contacting materials. We exposed polymers with different surface chemistries to protease-free human fibrinogen. We observed that on hydrophilic surfaces, fibrinogen is adsorbed via αC regions, while the γ400-411 platelet-binding dodecapeptide on the D region becomes exposed, and fibrinogen fibers do not form. In contrast, fibrinogen is adsorbed on hydrophobic surfaces via the relatively hydrophobic D and E regions, exposing the αC regions while rendering the γ400-411 inaccessible. Fibrinogen adsorbed on hydrophobic surfaces is thus able to recruit other fibrinogen molecules through αC regions and polymerize into large fibrinogen fibers, similar to those formed in vivo in the presence of thrombin. Moreover, the γ400-411 is available only on the large fibers not elsewhere throughout the hydrophobic surface after fibrinogen fiber formation. When these surfaces were exposed to gel-sieved platelets or platelet rich plasma, a uniform monolayer of platelets, which appeared to be activated, was observed on the hydrophilic surfaces. In contrast, large agglomerates of platelets were clustered on fibers on the hydrophobic surfaces, resembling small nucleating thrombi. Endothelial cells were also able to adhere to the monomeric coating of fibrinogen on hydrophobic surfaces. These observations reveal that the extent and type of fibrinogen adsorption, as well as the propensity of adsorbed fibrinogen to bind platelets, may be modulated by careful selection of surface chemistry. STATEMENTS OF SIGNIFICANCE Thrombosis is a well-known side effect of the introduction of foreign materials into the bloodstream, as might exist in medical devices including but not limited to stents, valves, and intravascular catheters. Despite many reported studies, the body's response to foreign materials in contact with the blood remains poorly understood. Current preventive methods consist of drug eluting coatings on the devices or the systemic administration of standard anticoagulants. Here we present a potential mechanism by which surface chemistry can affects fibrinogen conformation and thus affects platelet adhesion and consequently thrombus formation. Our findings suggest a possible coating which enables endothelial cell adhesion while preventing platelet adhesion.
Collapse
|
24
|
Bacakova M, Pajorova J, Stranska D, Hadraba D, Lopot F, Riedel T, Brynda E, Zaloudkova M, Bacakova L. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells. Int J Nanomedicine 2017; 12:1143-1160. [PMID: 28223803 PMCID: PMC5310638 DOI: 10.2147/ijn.s121299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.
Collapse
Affiliation(s)
- Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague
| | | | - Daniel Hadraba
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University
| | - Frantisek Lopot
- Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University
| | - Tomas Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry
| | - Eduard Brynda
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences
| |
Collapse
|
25
|
Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol 2016; 42:29-37. [PMID: 27085790 DOI: 10.1016/j.ceb.2016.04.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
A skin wound requires several cell lineages to exhibit considerable plasticity as they migrate towards and over the site of damage to contribute to repair. The keratinocytes that re-epithelialize the tissue, the dermal fibroblasts and potentially other mesenchymal stem cell populations that repopulate damaged connective tissue, the immune cells that counter infections, and endothelial cells that re-establish blood supply and facilitate the immune response - all of these cells are 'dynamic' in that they are activated by immediate wound cues, they reprogram to adopt cell behaviours essential for repair including migration, and finally they must resolve. In adult tissues, repair is unique in its requirement for dramatic cell changes and movements otherwise associated only with development and disease.
Collapse
|
26
|
de Campos Peseto D, Carmona EV, Silva KCD, Guedes FRV, Hummel Filho F, Martinez NP, Pereira JA, Rocha T, Priolli DG. Effects of tretinoin on wound healing in aged skin. Wound Repair Regen 2016; 24:411-7. [DOI: 10.1111/wrr.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | | | | | | | - José Aires Pereira
- Sao Francisco University Medical School; Bragança Paulista Sao Paulo Brazil
| | - Thalita Rocha
- Sao Francisco University Medical School; Bragança Paulista Sao Paulo Brazil
| | | |
Collapse
|
27
|
Matrix remodeling by MMPs during wound repair. Matrix Biol 2015; 44-46:113-21. [PMID: 25770908 DOI: 10.1016/j.matbio.2015.03.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Repair following injury involves a range of processes - such as re-epithelialization, scar formation, angiogenesis, inflammation, and more - that function, often together, to restore tissue architecture. MMPs carry out diverse roles in all of these activities. In this article, we discuss how specific MMPs act on ECM during two critical repair processes: re-epithelialization and resolution of scar tissue. For wound closure, we discuss how two MMPs - MMP1 in human epidermis and MMP7 in mucosal epithelia - facilitate re-epithelialization by cleaving different ECM or ECM-associated proteins to affect similar integrin:matrix adhesion. In scars and fibrotic tissues, we discuss that a variety of MMPs carry out a diverse range of activities that can either promote or limit ECM deposition. However, few of these MMP-driven activities have been demonstrated to be due a direct action on ECM.
Collapse
|
28
|
Reinertsen E, Skinner M, Wu B, Tawil B. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs. Tissue Eng Part A 2014; 20:2860-9. [PMID: 24738616 PMCID: PMC4229906 DOI: 10.1089/ten.tea.2013.0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.
Collapse
Affiliation(s)
- Erik Reinertsen
- Department of Bioengineering, UCLA School of Engineering , Los Angeles, California
| | | | | | | |
Collapse
|
29
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
30
|
Brown AC, Barker TH. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater 2014; 10:1502-14. [PMID: 24056097 DOI: 10.1016/j.actbio.2013.09.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
Abstract
Fibrinogen is one of the primary components of the coagulation cascade and rapidly forms an insoluble matrix following tissue injury. In addition to its important role in hemostasis, fibrin acts as a scaffold for tissue repair and provides important cues for directing cell phenotype following injury. Because of these properties and the ease of polymerization of the material, fibrin has been widely utilized as a biomaterial for over a century. Modifying the macroscopic properties of fibrin, such as elasticity and porosity, has been somewhat elusive until recently, yet with a molecular-level rational design approach it can now be somewhat easily modified through alterations of molecular interactions key to the protein's polymerization process. This review outlines the biochemistry of fibrin and discusses methods for modification of molecular interactions and their application to fibrin based biomaterials.
Collapse
|
31
|
Kelly J, McGrath A, Wildman S. UrgoClean: a new dressing for desloughing exuding wounds. Br J Community Nurs 2013; Suppl:S42, S44-9. [PMID: 24156171 DOI: 10.12968/bjcn.2013.18.sup6.s42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wound debridement plays a key role in wound bed preparation and the healing of chronic wounds. A variety of techniques can be used to achieve debridement and autolytic debridement is frequently the clinician's first choice. This is aided by dressings including hydrogels and hydrocolloids, which provide the moist environment required for white blood cells to function. This product focus uses 12 case studies to examine the effectiveness of UrgoClean in wound debridement.
Collapse
Affiliation(s)
- Jennifer Kelly
- Queen Elizabeth Hospital, King's Lynn NHS Foundation Trust.
| | | | | |
Collapse
|
32
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
33
|
Koo J, Galanakis D, Liu Y, Ramek A, Fields A, Ba X, Simon M, Rafailovich MH. Control of Anti-Thrombogenic Properties: Surface-Induced Self-Assembly of Fibrinogen Fibers. Biomacromolecules 2012; 13:1259-68. [DOI: 10.1021/bm2015976] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Alexander Ramek
- Department
of Chemistry, Harvard University, Cambridge,
Massachusetts 02138,
United States
| | - Adam Fields
- Department
of Biomedical Engineering, Yale University, New Haven, Connecticut 06520−8267,
United States
| | | | | | | |
Collapse
|
34
|
McCarty SM, Cochrane CA, Clegg PD, Percival SL. The role of endogenous and exogenous enzymes in chronic wounds: A focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen 2012; 20:125-36. [DOI: 10.1111/j.1524-475x.2012.00763.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara M. McCarty
- Institute of Ageing and Chronic Disease; University of Liverpool; Liverpool; United Kingdom
| | - Christine A. Cochrane
- Institute of Ageing and Chronic Disease; University of Liverpool; Liverpool; United Kingdom
| | - Peter D. Clegg
- Institute of Ageing and Chronic Disease; University of Liverpool; Liverpool; United Kingdom
| | | |
Collapse
|
35
|
Extensive Fibrin Accumulation and Accompanying Epithelial Changes in the Pathogenesis of Ligneous Mucosal Disease (Ligneous Periodontitis). Am J Dermatopathol 2012; 34:35-40. [DOI: 10.1097/dad.0b013e3182169507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. MICROBIOLOGY-SGM 2012; 158:781-790. [PMID: 22294681 DOI: 10.1099/mic.0.053959-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is always of clinical significance in wounds where it can initiate infection, destroy skin grafts and persist as a biofilm. Manuka honey has broad spectrum antimicrobial activity and its use in the clinical setting is beginning to gain acceptance with the continuing emergence of antibiotic resistance and the inadequacy of established systemic therapies; novel inhibitors may affect clinical practice. In this study, the effect of manuka honey on S. pyogenes (M28) was investigated in vitro with planktonic and biofilm cultures using MIC, MBC, microscopy and aggregation efficiency. Bactericidal effects were found in both planktonic cultures and biofilms, although higher concentrations of manuka honey were needed to inhibit biofilms. Abrogation of adherence and intercellular aggregation was observed. Manuka honey permeated 24 h established biofilms of S. pyogenes, resulting in significant cell death and dissociation of cells from the biofilm. Sublethal concentrations of manuka honey effectively prevented the binding of S. pyogenes to the human tissue protein fibronectin, but did not inhibit binding to fibrinogen. The observed inhibition of fibronectin binding was confirmed by a reduction in the expression of genes encoding two major fibronectin-binding streptococcal surface proteins, Sof and SfbI. These findings indicate that manuka honey has potential in the topical treatment of wounds containing S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | | | | | - Rose A Cooper
- Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| |
Collapse
|
37
|
α2 Integrin-Dependent Suppression of Pancreatic Adenocarcinoma Cell Invasion Involves Ectodomain Regulation of Kallikrein-Related Peptidase-5. JOURNAL OF ONCOLOGY 2011; 2011:365651. [PMID: 22203845 PMCID: PMC3245846 DOI: 10.1155/2011/365651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/27/2011] [Indexed: 12/18/2022]
Abstract
Previous reports demonstrate that the α2-integrin (α2) mediates pancreatic ductal adenocarcinoma (PDAC) cell interactions with collagens. We found that while well-differentiated cells use α2 exclusively to adhere and migrate on collagenI, poorly differentiated PDAC cells demonstrate reduced reliance on, or complete loss of, α2. Since well-differentiated PDAC lines exhibit reduced in vitro invasion and α2-blockade suppressed invasion of well-differentiated lines exclusively, we hypothesized that α2 may suppress the malignant phenotype in PDAC. Accordingly, ectopic expression of α2 retarded in vitro invasion and maintenance on collagenI exacerbated this effect. Affymetrix profiling revealed that kallikrein-related peptidase-5 (KLK5) was specifically upregulated by α2, and reduced α2 and KLK5 expression was observed in poorly differentiated PDAC cells in situ. Accordingly, well-differentiated PDAC lines express KLK5, and KLK5 blockade increased the invasion of KLK5-positive lines. The α2-cytoplasmic domain was dispensable for these effects, demonstrating that the α2-ectodomain and KLK5 coordinately regulate a less invasive phenotype in PDAC.
Collapse
|
38
|
Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 2011; 19:134-48. [PMID: 21362080 DOI: 10.1111/j.1524-475x.2011.00673.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.
Collapse
Affiliation(s)
- Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
39
|
Lugo LM, Lei P, Andreadis ST. Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 2010; 17:665-75. [PMID: 20929281 DOI: 10.1089/ten.tea.2010.0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant advances in management of severe wounds such as burns and chronic ulcers, autologous split-thickness skin grafts are still the gold standard of care. The main problems with this approach include pain and discomfort associated with harvesting autologous tissue, limited availability of donor sites, and the need for multiple surgeries. Although tissue engineering has great potential to provide alternative approaches for tissue regeneration, several problems have hampered progress in translating technological advances to clinical reality. Specifically, engineering of skin substitutes requires long culture times and delayed vascularization after implantation compromises graft survival. To address these issues we developed a novel two-prong strategy for tissue regeneration in vivo: (1) vascularization of acellular dermal scaffolds by infiltration of angiogenic factors; and (2) generation of stratified epidermis by in situ delivery of epidermal keratinocytes onto the prevascularized dermal support. Using athymic mouse as a model system, we found that incorporation of angiogenic factors within acellular human dermis enhanced the density and diameter of infiltrating host blood vessels. Increased vascularization correlated with enhanced proliferation and stratification of the neoepidermis originating from the fibrin-keratinocyte cell suspension. This strategy promoted tissue regeneration in vivo with no need for engineering skin substitutes; therefore, it may be useful for treatment of major wounds when skin donor sites are scarce and rapid wound coverage is required.
Collapse
Affiliation(s)
- Liana M Lugo
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | | | |
Collapse
|
40
|
Breen A, O'Brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs and biomolecules. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:201-14. [PMID: 19249942 DOI: 10.1089/ten.teb.2008.0527] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibrin is a natural biopolymer involved in the coagulation cascade. It acts as a reservoir for growth factors, cells, and enzymes during wound healing and provides a scaffold for the synthesis of extracellular matrix. Thus, the use of fibrin has expanded in recent years from traditional use as a sealant for surgical applications, to a tissue engineering scaffold capable of providing nature's cues for tissue regeneration. This paper reviews the advantageous biological aspects of fibrin, the history of the scaffold material, and its present role in the delivery of drugs, growth factors, cells, and gene vectors. Examples are given of studies where the structure and form of the scaffold have been manipulated for optimal release of the therapeutic agent, optimal cellular activity, and investigation into stem cell differentiation. It is evident from the body of literature presented that the benefits of fibrin are being exploited for a vast range of tissue engineering applications and that fibrin remains a key scaffold material for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ailish Breen
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
41
|
Takahashi M, Horiuchi Y, Tezuka T. Hematoxylin-stainability of keratohyalin granules is due to the novel component, fibrinogen γ-chain protein. Arch Dermatol Res 2010; 302:679-84. [PMID: 20821224 DOI: 10.1007/s00403-010-1077-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/13/2010] [Accepted: 08/24/2010] [Indexed: 11/28/2022]
Abstract
Hematoxylin-stainability of keratohyalin granules (KHG) using biochemical and immunohistochemical techniques is due to the presence of a fibrinogen γ-chain protein. A protein with a molecular weight of 100 kDa was stained with anti-Ted-H-1 monoclonal antibody and hematoxylin solution (hematoxylin-stainable protein). Since the amino acid sequence of the hematoxylin-stainable protein was to that of fibrinogen γ-chain protein, a peptide was synthesized and an antibody against the peptide was produced. This antibody reacted with the hematoxylin-stainable protein and fibrinogen γ-chain protein on immunoblot analysis and with KHG on immunohistochemical examination. Furthermore, a commercial anti-fibrinogen γ-chain protein antibody (Ab) also reacted with the hematoxylin-stainable protein as well as fibrinogen. In contrast, anti-fibrinogen β-chain protein Ab did not react with the hematoxylin-stainable protein. The fibrinogen γ-chain protein also stained with hematoxylin. These findings suggested that fibrinogen γ-chain protein may be a novel component protein of KHG and may induce the hematoxylin-stainability of KHG.
Collapse
Affiliation(s)
- Masae Takahashi
- Institute for Health Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Tokushima, Japan.
| | | | | |
Collapse
|
42
|
Macasev D, Diorio JP, Gugerell A, Goppelt A, Gulle H, Bittner M. Cell Compatibility of Fibrin Sealants: In Vitro Study with Cells Involved in Soft Tissue Repair. J Biomater Appl 2010; 26:129-49. [DOI: 10.1177/0885328210369574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibrin sealants can be used to support tissue regeneration or as vehicles for delivery of cells in tissue engineering. Differences in the composition of fibrin sealants, however, could determine the success of such applications. The results presented in this article show clear differences between Fibrin sealant A (FS A) clots and Fibrin sealant B (FS B) clots with respect to their compatibility with primary human cells involved in soft tissue repair. FS A clots, which are characterized by a physiological coarse fibrin structure, promoted attachment, spreading, and proliferation of keratinocytes, fibroblasts, and endothelial cells. In contrast, FS B clots displaying a fine to medium clot structure failed to support spreading of all three cell types. Adhesion of keratinocytes was decreased on FS B clots compared to FS A clots after 3 h incubation, whereas number of attached fibroblasts and endothelial cells was initially comparable between the two fibrin sealants. However, all three cell types proliferated on FS A clots but no sustained proliferation was detected on FS B clots. We further demonstrate that the observed differences between FS A and B clots are partly based upon 1 M sodium chloride extractable constituents, like thrombin, and partly on nonextractable constituents or the fibrin structure. In conclusion, our in vitro results demonstrate that FS A clots serve as a provisional matrix that encourages adhesion and growth of keratinocytes, fibroblasts, and endothelial cells. Therefore, FS A seems to be well suited for applications in tissue engineering.
Collapse
Affiliation(s)
- Diana Macasev
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - James P. Diorio
- Baxter Healthcare Corporation Inc. Technology Resources Round Lake, Illinois, USA
| | - Alfred Gugerell
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Andreas Goppelt
- Baxter Innovations GmbH, Biosurgery Division, Wagramerstrasse 17-19, A-1221 Vienna, Austria
| | - Heinz Gulle
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Michaela Bittner
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria,
| |
Collapse
|
43
|
Abstract
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell-matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | |
Collapse
|
44
|
Fibrin-mediated lentivirus gene transfer: implications for lentivirus microarrays. J Control Release 2010; 144:213-20. [PMID: 20153386 DOI: 10.1016/j.jconrel.2010.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 01/08/2023]
Abstract
We employed fibrin hydrogel as a bioactive matrix for lentivirus mediated gene transfer. Fibrin-mediated gene transfer was highly efficient and exhibited strong dependence on fibrinogen concentration. Efficient gene transfer was achieved with fibrinogen concentration between 3.75 and 7.5mg/ml. Lower fibrinogen concentrations resulted in diffusion of virus out of the gel while higher concentrations led to ineffective fibrin degradation by target cells. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner suggesting that fibrin degradation by target cells may be necessary for successful gene delivery. Under these conditions transduction may be limited only to cells interacting with the matrix thereby providing a method for spatially-localized gene delivery. Indeed, when lentivirus-containing fibrin microgels were spotted in an array format gene transfer was confined to virus-containing fibrin spots with minimal cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may provide an effective matrix for spatially-localized gene delivery with potential applications in high-throughput lentiviral microarrays and in regenerative medicine.
Collapse
|
45
|
Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A Plasma-Based Biomatrix Mixed with Endothelial Progenitor Cells and Keratinocytes Promotes Matrix Formation, Angiogenesis, and Reepithelialization in Full-Thickness Wounds. Tissue Eng Part A 2009; 15:1533-42. [DOI: 10.1089/ten.tea.2008.0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pieter Vermeulen
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karlien Degezelle
- Department of Intensive Care—Perfusion Sciences, KU Leuven University Hospital, Leuven, Belgium
| | - Stefaan Van den Berge
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benoit Hendrickx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Gorodetsky R. The use of fibrin based matrices and fibrin microbeads (FMB) for cell based tissue regeneration. Expert Opin Biol Ther 2009; 8:1831-46. [PMID: 18990071 DOI: 10.1517/14712590802494576] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Due to its good cell attachment capabilities and promotion of cell migration, fibrin serves as an interim cell-binding matrix in wounded tissues. Due to their fast degradation, unprocessed fibrin matrices have limited use in tissue engineering. OBJECTIVE To describe stable fibrin-based matrices for isolation, growth and delivery of stem cells for implantation to enhance tissue regeneration. METHODS Fibrin microbeads (FMB) were produced by moderate-heat condensation of fibrin particles in oil without compromising the cell binding capability of the fibrin. RESULTS Mesenchymal stem cells (MSC) were separated from different sources at much higher yields with FMB. They were further expanded on them in suspension without trypsinization and passages. Cells on FMB could be induced to differentiate into different phenotypes, such as bone and cartilage. This enabled implantation of the cells on FMB for cell-based tissue regeneration. CONCLUSIONS FMB technology provides a simple and effective method for cell separation, expansion in suspension and delivery for tissue regeneration.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Laboratory of Radiobiology and Biotechnology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12,000, Jerusalem, 91120, Israel.
| |
Collapse
|
47
|
Pollins AC, Friedman DB, Nanney LB. Proteomic investigation of human burn wounds by 2D-difference gel electrophoresis and mass spectrometry. J Surg Res 2007; 142:143-52. [PMID: 17604053 PMCID: PMC2696121 DOI: 10.1016/j.jss.2007.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/29/2006] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND In humans, thermal cutaneous injury represents a serious traumatic event that induces a host of dynamic alterations. Unfortunately the molecular mechanisms that underlie these serious perturbations remain poorly understood. We applied a global analysis method to identify dynamically changing proteins within the burn environment, which could eventually become biomarkers or targets for treatment. MATERIALS AND METHODS Protein extracts of normal/unwounded skin and burn wounds were assayed by 2D-difference gel electrophoresis (DIGE), a proteomic technology by which abundance levels of intact proteins (including isoforms) were simultaneously quantified from multiple samples with statistical confidence. Through unsupervised multivariate principal component analysis, protein expression patterns from individual samples were appropriately clustered into their correct temporal healing periods grouped into postburn periods of 1-3 days, 4-6 days, or 7-10 days after injury. Forty-six proteins were subsequently selected for identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS Proteins identified with differential temporal patterns of expression included predictable cytoskeletal proteins such as vimentin, and keratins 1, 5, 6, 16, and 17. Other candidate proteins with potential involvement in healing included heat shock protein 90, members of the serpin family (Serpin B1, SCCA1 and -2), haptoglobin, gelsolin, eIF4A1, IQGAP1, and translationally controlled tumor protein. CONCLUSIONS We have used the combined technique, DIGE/mass spectrometry, to capture new insights into cutaneous responses to burn trauma and subsequent processes of early wound healing in humans. This pilot study provides a proteomic snapshot of temporal events that can be used to weave together the interconnected processes that define the response to serious cutaneous injury.
Collapse
Affiliation(s)
- Alonda C. Pollins
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
| | - David B. Friedman
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN USA
| | - Lillian B. Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, TN USA
- Department of Cell & Developmental Biology, Vanderbilt School of Medicine, Nashville, TN USA
| |
Collapse
|
48
|
Abstract
Skin, the largest organ in the body, protects against toxins and microorganisms in the environment and serves to prevent dehydration of all non-aquatic animals. Immune surveillance, sensory detection, and self-healing are other critical functions of the skin. Loss of skin integrity because of injury or illness may result acutely in substantial physiologic imbalance and ultimately in significant disability or even death. It is estimated that, in 1992, there were 35.2 million cases of significant skin loss (US data) that required major therapeutic intervention. Of these, approximately 7 million wounds become chronic. Regardless of the specific advanced wound care product, the ideal goal would be to regenerate tissues such that both the structural and functional properties of the wounded tissue are restored to the levels before injury. The advent of tissue-engineered skin replacements revolutionized the therapeutic potential for recalcitrant wounds and for wounds that are not amenable to primary closure. This article will introduce the reader to the field of tissue engineering, briefly review tissue-engineered skin replacement from a historical perspective and then review current state-of-the-art concepts from our vantage point.
Collapse
Affiliation(s)
- Richard A F Clark
- Department of Biomedical Engineering, State University of New York, Stony Brook, New York 11794-8165, USA.
| | | | | |
Collapse
|
49
|
Kubo M, Clark RAF, Katz AB, Taichman LB, Jin Z, Zhao Y, Moriguchi T. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin. Arch Dermatol Res 2006; 299:13-24. [PMID: 17146626 DOI: 10.1007/s00403-006-0718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Collapse
Affiliation(s)
- Miyoko Kubo
- Department of Plastic and Reconstructive Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
During wound healing, cells recreate functional structures to regenerate the injured tissue. Understanding the healing process is essential for the development of new concepts and the design of novel biomimetic approaches for delivery of cells, genes and growth factors to accelerate tissue regeneration. To this end, realistic experimental models and high-throughput diagnostics are necessary to understand the molecular mechanisms of healing and reveal the genetic networks that determine tissue repair versus regeneration. Following a brief overview of the biology of wound healing, this review covers the in vitro and in vivo models that are employed at present to study the healing process. Discussion then covers the application of high-throughput genomic and proteomic technologies in epithelial development, living skin substitutes and wound healing. Finally, this review provides a perspective on novel technologies that should be developed to facilitate the understanding of wound healing complications and the design of therapeutics that target the underlying deficiencies.
Collapse
Affiliation(s)
- Stelios T Andreadis
- University at Buffalo, The State University of New York (SUNY), Bioengineering Laboratory, Department of Chemical & Biological Engineering, 908 Furnas Hall, Amherst, NY 14260-4200, USA.
| |
Collapse
|