1
|
Ortiz-Cerda T, Mosso C, Alcudia A, Vázquez-Román V, González-Ortiz M. Pathophysiology of Preeclampsia and L-Arginine/L-Citrulline Supplementation as a Potential Strategy to Improve Birth Outcomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:127-148. [PMID: 37466772 DOI: 10.1007/978-3-031-32554-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Constanza Mosso
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Noronha IL, Santa-Catharina GP, Andrade L, Coelho VA, Jacob-Filho W, Elias RM. Glomerular filtration in the aging population. Front Med (Lausanne) 2022; 9:769329. [PMID: 36186775 PMCID: PMC9519889 DOI: 10.3389/fmed.2022.769329] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 08/24/2022] [Indexed: 12/11/2022] Open
Abstract
In the last decades, improvements in the average life expectancy in the world population have been associated with a significant increase in the proportion of elderly people, in parallel with a higher prevalence of non-communicable diseases, such as hypertension and diabetes. As the kidney is a common target organ of a variety of diseases, an adequate evaluation of renal function in the approach of this population is of special relevance. It is also known that the kidneys undergo aging-related changes expressed by a decline in the glomerular filtration rate (GFR), reflecting the loss of kidney function, either by a natural senescence process associated with healthy aging or by the length of exposure to diseases with potential kidney damage. Accurate assessment of renal function in the older population is of particular importance to evaluate the degree of kidney function loss, enabling tailored therapeutic interventions. The present review addresses a relevant topic, which is the effects of aging on renal function. In order to do that, we analyze and discuss age-related structural and functional changes. The text also examines the different options for evaluating GFR, from the use of direct methods to the implementation of several estimating equations. Finally, this manuscript supports clinicians in the interpretation of GFR changes associated with age and the management of the older patients with decreased kidney function.
Collapse
Affiliation(s)
- Irene L. Noronha
- Renal Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Cellular, Genetic and Molecular Nephrology, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Irene L. Noronha
| | | | - Lucia Andrade
- Renal Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Venceslau A. Coelho
- Geriatric Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Geriatric Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Rosilene M. Elias
- Renal Division, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
3
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
4
|
Baek EJ, Kim S. Current Understanding of Pressure Natriuresis. Electrolyte Blood Press 2021; 19:38-45. [PMID: 35003284 PMCID: PMC8715224 DOI: 10.5049/ebp.2021.19.2.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Pressure natriuresis refers to the concept that increased renal perfusion pressure leads to a decrease in tubular reabsorption of sodium and an increased sodium excretion. The set point of blood pressure is the point at which pressure natriuresis and extracellular fluid volume are in equilibrium. The term "abnormal pressure natriuresis" usually refers to the expected abnormal effect of a certain level of blood pressure on sodium excretion. Factors that cause abnormal pressure natriuresis are known. Sympathetic nerve system, genetic factors, and dietary factors may affect an increase in renal perfusion pressure. An increase in renal perfusion pressure increases renal interstitial hydrostatic pressure (RIHP). Increased RIHP affects tubular reabsorption through alterations in tight junctional permeability to sodium in proximal tubules, redistribution of apical sodium transporters, and/or release of renal autacoids. Renal autocoids such as nitric oxide, prostaglandin E2, kinins, and angiotensin II may also regulate pressure natriuresis by acting directly on renal tubule sodium transport. In addition, inflammation and reactive oxygen species may mediate pressure natriuresis. Recently, the use of new drugs associated with pressure natriuretic mechanisms, such as angiotensin receptor neprilysin inhibitor and sodium glucose co-transporter 2 inhibitors, has been consistently demonstrated to reduce mortality and hypertension-related complications. Therefore, the understanding of pressure natriuresis is gaining attention as an antihypertensive strategy. In this review, we provide a basic overview of pressure natriuresis to the target audience of nephrologists.
Collapse
Affiliation(s)
- Eun Ji Baek
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Morris RC, Pravenec M, Šilhavý J, DiCarlo SE, Kurtz TW. Small Amounts of Inorganic Nitrate or Beetroot Provide Substantial Protection From Salt-Induced Increases in Blood Pressure. Hypertension 2019; 73:1042-1048. [PMID: 30917704 PMCID: PMC6458074 DOI: 10.1161/hypertensionaha.118.12234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/04/2019] [Indexed: 01/17/2023]
Abstract
To reduce the risk of salt-induced hypertension, medical authorities have emphasized dietary guidelines promoting high intakes of potassium and low intakes of salt that provide molar ratios of potassium to salt of ≥1:1. However, during the past several decades, relatively few people have changed their eating habits sufficiently to reach the recommended dietary goals for salt and potassium. Thus, new strategies that reduce the risk of salt-induced hypertension without requiring major changes in dietary habits would be of considerable medical interest. In the current studies in a widely used model of salt-induced hypertension, the Dahl salt-sensitive rat, we found that supplemental dietary sodium nitrate confers substantial protection from initiation of salt-induced hypertension when the molar ratio of added nitrate to added salt is only ≈1:170. Provision of a low molar ratio of added nitrate to added salt of ≈1:110 by supplementing the diet with beetroot also conferred substantial protection against salt-induced increases in blood pressure. The results suggest that on a molar basis and a weight basis, dietary nitrate may be ≈100× more potent than dietary potassium with respect to providing substantial resistance to the pressor effects of increased salt intake. Given that leafy green and root vegetables contain large amounts of inorganic nitrate, these findings raise the possibility that fortification of salty food products with small amounts of a nitrate-rich vegetable concentrate may provide a simple method for reducing risk for salt-induced hypertension.
Collapse
Affiliation(s)
- R. Curtis Morris
- Department of Medicine, University of California, San Francisco, San Francisco, USA, 94143
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic, 14220
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic, 14220
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, USA, 48824
| | - Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, USA, 94107-0134
| |
Collapse
|
6
|
Abstract
INTRODUCTION Hypertension is caused by increased cardiac output and/or increased peripheral resistance. Areas covered: The various mechanisms affecting cardiac output/peripheral resistance involved in the development of essential hypertension are covered. These include genetics; sympathetic nervous system overactivity; renal mechanisms: excess sodium intake and pressure natriuresis; vascular mechanisms: endothelial cell dysfunction and the nitric oxide pathway; hormonal mechanisms: the renin-angiotensin-aldosterone system (RAAS); obesity, obstructive sleep apnea (OSA); insulin resistance and metabolic syndrome; uric acid; vitamin D; gender differences; racial, ethnic, and environmental factors; increased left ventricular ejection force and hypertension and its association with increased basal sympathetic activity - cortical connections. Expert commentary: Maximum association of hypertension is found with sympathetic overactivity which is directly or indirectly involved in different mechanisms of hypertension including RAAS, OSA, obesity, etc.. It is not overt sympathetic activity but disturbed basal sympathetic tone. Basal sympathetic tone arises from hypothalamus; possibly affected by cortical influences. Therefore, hypertension is not merely a disease of circulatory system alone. Its pathogenesis involves alteration in ANS (autonomic nervous system) and likely in cortical-hypothalamic connections. Assessment of ANS and cortical-hypothalamic connections may be required for better understanding of hypertension.
Collapse
Affiliation(s)
- Tarun Saxena
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Azeema Ozefa Ali
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Manjari Saxena
- b Department Yoga and Physical education , Mittal Hospital and Research Centre , Ajmer , India
| |
Collapse
|
7
|
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315:R945-R962. [DOI: 10.1152/ajpregu.00363.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical concepts of human sodium balance include 1) a total pool of Na+ of ≈4,200 mmol (total body sodium, TBS) distributed primarily in the extracellular fluid (ECV) and bone, 2) intake variations of 0.03 to ≈6 mmol·kg body mass−1·day−1, 3) asymptotic transitions between steady states with a halftime (T½) of 21 h, 4) changes in TBS driven by sodium intake measuring ≈1.3 day [ΔTBS/Δ(Na+ intake/day)], 5) adjustment of Na+ excretion to match any diet thus providing metabolic steady state, and 6) regulation of TBS via controlled excretion (90–95% renal) mediated by surrogate variables. The present focus areas include 1) uneven, nonosmotic distribution of increments in TBS primarily in “skin,” 2) long-term instability of TBS during constant Na+ intake, and 3) physiological regulation of renal Na+ excretion primarily by neurohumoral mechanisms dependent on ECV rather than arterial pressure. Under physiological conditions 1) the nonosmotic distribution of Na+ seems conceptually important, but quantitatively ill defined; 2) long-term variations in TBS represent significant deviations from steady state, but the importance is undetermined; and 3) the neurohumoral mechanisms of sodium homeostasis competing with pressure natriuresis are essential for systematic analysis of short-term and long-term regulation of TBS. Sodium homeostasis and blood pressure regulation are intimately related. Real progress is slow and will accelerate only through recognition of the present level of ignorance. Nonosmotic distribution of sodium, pressure natriuresis, and volume-mediated regulation of renal sodium excretion are essential intertwined concepts in need of clear definitions, conscious models, and future attention.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Aydin M, Gungor B, Akdur AS, Aksulu HE, Silan C, Susam I, Cabuk AK, Cabuk G. Resveratrol did not alter blood pressure in rats with nitric oxide synthase-inhibited hypertension. Cardiovasc J Afr 2017; 28:141-146. [PMID: 28759085 PMCID: PMC5602129 DOI: 10.5830/cvja-2016-069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/10/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Inhibition of nitric oxide synthase (NOS) is a well-known experimental model of hypertension (HT). It was shown that oxidative stress contributes to the pathogenesis of HT. Resveratrol is a potent anti-oxidant that is found in red grapes, peanuts and red wine. It improves the NO response and increases endothelial NOS expression, which causes endothelium-dependent vasorelaxation as well as renal vasodilation. We aimed to explore the effects of resveratrol on blood pressure, the water–salt balance and sodium excretion as a reflection of renal function in NOS-inhibited rat models. Methods: Thirty-five male Sprague-Dawley rats (200–250g) were used in this study. In order to obtain hypertension models, an NOS inhibitor, N-nitro-L-arginin (L-NNA) was used. The rats were randomly divided into five groups: controls (given water and 0.8% salty diet) and four groups [given L-NNA, resveratrol (RSV) eluent, RSV, and L-NNA + RSV]. Blood pressures were measured indirectly by the tailcuff method on the first, seventh and 10th days. At the end of the study protocol (10th day), fluid balance, glomerular filtration rate, fractional sodium excretion, and blood and urinesodium and creatinine levels were measured. Results: At the end of the study protocol, blood pressures were higher in only the L-NNA group (117.8 ± 3.5 vs 149.5 ± 2.1 mmHg; p < 0.05), as expected. Additional applications of RSV with L-NNA could not prevent the increase in blood pressure (122.8 ± 7.3 vs 155.4 ± 4.4 mmHg; p < 0.05). There were no remarkable changes in water–salt balance and renal function with the application of resveratrol. Conclusion: Resveratrol was unable to prevent or reverse blood pressure increase in NOS-inhibited rats.
Collapse
Affiliation(s)
- Mehmet Aydin
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Buket Gungor
- Department of Clinical Trials, Turkish Medicines and Medical Devices Agency, Turkish Ministry of Health, Ankara, Turkey
| | - A Secil Akdur
- Department of Clinical Pharmacology, Canakkale State Hospital, Turkish Ministry of Health, Canakkale, Turkey
| | - Hakki Engin Aksulu
- Department of Pharmacology, School of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey
| | - Coskun Silan
- Department of Pharmacology, School of Medicine, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey; Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale, Turkey
| | - Ibrahim Susam
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ali Kemal Cabuk
- Department of Cardiology, Tepecik Training and Research Hospital, Izmir, Turkey.
| | - Gizem Cabuk
- Department of Cardiology, Buca Seyfi Demirsoy State Hospital, Izmir, Turkey
| |
Collapse
|
9
|
Ramseyer VD, Gonzalez-Vicente A, Carretero OA, Garvin JL. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation. Am J Physiol Renal Physiol 2014; 308:F149-56. [PMID: 25377910 DOI: 10.1152/ajprenal.00279.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% (P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II -0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar A Carretero
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
10
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
11
|
Li XC, Gu V, Miguel-Qin E, Zhuo JL. Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney. Am J Physiol Renal Physiol 2014; 307:F949-61. [PMID: 25164083 DOI: 10.1152/ajprenal.00199.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin 1 (CAV-1) functions not only as a constitutive scaffolding protein of caveolae but also as a vesicular transporter and signaling regulator. In the present study, we tested the hypothesis that CAV-1 knockout (CAV-1 KO) inhibits ANG II type 1 [AT1 (AT1a)] receptor-mediated uptake of ANG II in the proximal tubule and attenuates blood pressure responses in ANG II-induced hypertension. To determine the role of CAV-1 in mediating the uptake of FITC-labeled ANG II, wild-type (WT) mouse proximal convoluted tubule cells were transfected with CAV-1 small interfering (si)RNA for 48 h before AT1 receptor-mediated uptake of FITC-labeled ANG II was studied. CAV-1 siRNA knocked down CAV-1 expression by >90% (P < 0.01) and inhibited FITC-labeled ANG II uptake by >50% (P < 0.01). Moreover, CAV-1 siRNA attenuated ANG II-induced activation of MAPK ERK1/2 and Na(+)/H(+) exchanger 3 expression, respectively (P < 0.01). To determine whether CAV-1 regulates ANG II uptake in the proximal tubule, Alexa 488-labeled ANG II was infused into anesthetized WT and CAV-1 KO mice for 60 min (20 ng/min iv). Imaging analysis revealed that Alexa 488-labeled ANG II uptake was decreased by >50% in CAV-1 KO mice (P < 0.01). Furthermore, Val(5)-ANG II was infused into WT and CAV-1 KO mice for 2 wk (1.5 mg·kg(-1)·day(-1) ip). Basal systolic pressure was higher, whereas blood pressure and renal excretory and signaling responses to ANG II were attenuated, in CAV-1 KO mice (P < 0.01). We concluded that CAV-1 plays an important role in AT1 receptor-mediated uptake of ANG II in the proximal tubule and modulates blood pressure and renal responses to ANG II.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Victor Gu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Elise Miguel-Qin
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
12
|
Evaluation of hypertension and proteinuria as markers of efficacy in antiangiogenic therapy for metastatic colorectal cancer. J Clin Gastroenterol 2014; 48:430-4. [PMID: 24153157 DOI: 10.1097/mcg.0b013e3182a8804c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The vascular endothelial growth factor pathway is strongly implicated in cancer-related angiogenesis. Antiangiogenic agents such as bevacizumab commonly cause hypertension (HTN) and proteinuria (PTN), which may be biomarkers of response and clinical outcome. STUDY We conducted a retrospective analysis of patients with histologically proven metastatic colorectal cancer (mCRC) treated with either bevacizumab or a tyrosine kinase inhibitor in combination with chemotherapy at The Christie Hospital from January 2006 to September 2009. RESULTS Of 90 patients evaluated, 50 were eligible. Seventeen (34%), 4 (8%), and 3 (6%) patients developed Common Toxicity Criteria (v 3.0) grades 1, 2, and 3 HTN, respectively. Response rates were 42% for patients with grades 0 to 1 HTN compared with 86% for patients with ≥grade 2 HTN (P=0.043). Median overall survival was 21.6 months for patients with grades 0 to 1 HTN and 25.2 months for patients with ≥grade 2 HTN (P=0.270). Twelve patients (24%) developed grade 1 PTN and 4 patients (8%) developed ≥grade 2 PTN. Median overall survival was 23.9 months for patients with grades 0 to 1 PTN and 4.2 months for those with ≥grade 2 PTN (P=0.028). CONCLUSIONS To our knowledge, this is the first study to demonstrate the utility of PTN as a surrogate marker of outcome in antiangiogenic therapy for metastatic colorectal cancer. Although HTN is predictive of a significantly higher response rate, the development of PTN during treatment with bevacizumab or tyrosine kinase inhibitor portends poorer survival and should be evaluated prospectively.
Collapse
|
13
|
The aging kidney revisited: a systematic review. Ageing Res Rev 2014; 14:65-80. [PMID: 24548926 DOI: 10.1016/j.arr.2014.02.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
As for the whole human body, the kidney undergoes age-related changes which translate in an inexorable and progressive decline in renal function. Renal aging is a multifactorial process where gender, race and genetic background and several key-mediators such as chronic inflammation, oxidative stress, the renin-angiotensin-aldosterone (RAAS) system, impairment in kidney repair capacities and background cardiovascular disease play a significant role. Features of the aging kidney include macroscopic and microscopic changes and important functional adaptations, none of which is pathognomonic of aging. The assessment of renal function in the framework of aging is problematic and the question whether renal aging should be considered as a physiological or pathological process remains a much debated issue. Although promising dietary and pharmacological approaches have been tested to retard aging processes or renal function decline in the elderly, proper lifestyle modifications, as those applicable to the general population, currently represent the most plausible approach to maintain kidney health.
Collapse
|
14
|
Abstract
There is growing recognition that obesity is reaching epidemic proportions throughout the world. In adults, obesity is associated with increased cardiovascular morbidity and mortality. A series of endocrine, metabolic and hemodynamic mechanisms have been responsible for the development of obesity-hypertension. These mechanisms include: a suppressed biologic activity and availability of natriuretic peptide, increased sympathetic adrenergic activity, release of angiotensin ll from adipocytes and activation of the renin-angiotensin-aldosterone system, leptin resistance, chronic hyperleptinemia and hyperinsulinemia. The systemic hemodynamic profile of obesity includes high intravascular volume, increased cardiac output and inappropriately normal peripheral resistance. The cardiovascular adaptations to these changes include changes in vascular responsiveness and concentric-eccentric left ventricular hypertrophy, and may be responsible for increased risk of congestive heart failure, arrhythmia and sudden death.
Collapse
Affiliation(s)
- Stephen A Morse
- Louisiana State University Health Sciences Center, Section of Nephrology, Department of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
15
|
Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol 2013; 2:2393-442. [PMID: 23720252 DOI: 10.1002/cphy.c110058] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in understanding the pathophysiology of hypertension and availability of effective and safe antihypertensive drugs, suboptimal blood pressure (BP) control is still the most important risk factor for cardiovascular mortality and is globally responsible for more than 7 million deaths annually. Short-term and long-term BP regulation involve the integrated actions of multiple cardiovascular, renal, neural, endocrine, and local tissue control systems. Clinical and experimental observations strongly support a central role for the kidneys in the long-term regulation of BP, and abnormal renal-pressure natriuresis is present in all forms of chronic hypertension. Impaired renal-pressure natriuresis and chronic hypertension can be caused by intrarenal or extrarenal factors that reduce glomerular filtration rate or increase renal tubular reabsorption of salt and water; these factors include excessive activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, increased formation of reactive oxygen species, endothelin, and inflammatory cytokines, or decreased synthesis of nitric oxide and various natriuretic factors. In human primary (essential) hypertension, the precise causes of impaired renal function are not completely understood, although excessive weight gain and dietary factors appear to play a major role since hypertension is rare in nonobese hunter-gathers living in nonindustrialized societies. Recent advances in genetics offer opportunities to discover gene-environment interactions that may also contribute to hypertension, although success thus far has been limited mainly to identification of rare monogenic forms of hypertension.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Impaired pressure natriuresis is associated with interstitial inflammation in salt-sensitive hypertension. Curr Opin Nephrol Hypertens 2013; 22:37-44. [PMID: 23165109 DOI: 10.1097/mnh.0b013e32835b3d54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Impairment of the pressure natriuresis relationship is a central event in the pathogenesis of hypertension. Renal tubulointerstitial inflammation results in salt-sensitive hypertension and, until recently, the changes in pressure natriuresis induced by renal inflammation received little attention. RECENT FINDINGS Oxidative stress and increased intrarenal angiotensin II activity, in association with rarefaction and loss of peritubular vascular network, may be involved in the inflammation-induced blunting of the natriuresis resulting from increments in renal perfusion pressure. SUMMARY Here, we review the mechanisms for the impairment in pressure natriuresis resulting from renal tubulointerstitial inflammation in reference to the normal physiologic mechanisms involved in this response.
Collapse
|
17
|
Zhu Q, Xia M, Wang Z, Li PL, Li N. A novel lipid natriuretic factor in the renal medulla: sphingosine-1-phosphate. Am J Physiol Renal Physiol 2011; 301:F35-41. [PMID: 21478479 DOI: 10.1152/ajprenal.00014.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite formed by phosphorylation of sphingosine. S1P has been indicated to play a significant role in the cardiovascular system. It has been shown that the enzymes for S1P metabolism are expressed in the kidneys. The present study characterized the expression of S1P receptors in the kidneys and determined the role of S1P in the control of renal hemodynamics and sodium excretion. Real-time RT-PCR analyses showed that S1P receptors S1P1, S1P2, and S1P3 were most abundantly expressed in the renal medulla. Immunohistochemistry revealed that all three types of S1P receptors were mainly located in collecting ducts. Intramedullary infusion of FTY720, an S1P agonist, produced a dramatic increase in sodium excretion by twofold and a small but significant increase in medullary blood flow (16%). Administration of W146, an S1P1 antagonist, into the renal medulla blocked the effect of FTY720 and decreased the sodium excretion by 37% when infused alone. The antagonists of S1P2 and S1P3 had no effect. FTY720 produced additive natriuretic effects in combination with different sodium transporter inhibitors except amiloride, an epithelial sodium channel blocker. In the presence of nitric oxide synthase inhibitor l-NAME, FTY720 still increased sodium excretion. These data suggest that S1P produces natriuretic effects via activation of S1P1 in the renal medulla and this natriuretic effect may be through inhibition of epithelial sodium channel, which is nitric oxide independent. It is concluded that S1P is a novel diuretic factor in the renal medulla and may be an important regulator of sodium homeostasis.
Collapse
Affiliation(s)
- Qing Zhu
- Dept. of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
18
|
Reck M. Examining the safety profile of angiogenesis inhibitors: implications for clinical practice. Target Oncol 2010; 5:257-67. [DOI: 10.1007/s11523-010-0159-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 07/02/2010] [Indexed: 12/15/2022]
|
19
|
Chandler DL, Llinas MT, Reckelhoff JF, LaMarca B, Speed J, Granger JP. Effects of hyperhomocysteinemia on arterial pressure and nitric oxide production in pregnant rats. Am J Hypertens 2009; 22:1115-9. [PMID: 19629051 DOI: 10.1038/ajh.2009.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND An elevated plasma level of homocysteine (hyperhomocysteinemia) is thought to be an important risk factor for a variety of cardiovascular diseases including preeclampsia. Although clinical studies have reported a two- to threefold elevation in plasma levels of homocysteine in women who developed preeclampsia, the importance of hyperhomocysteinemia in causing endothelial dysfunction and increases in arterial pressure during pregnancy is unknown. METHODS Therefore, the purpose of this study was to determine the effects of a two- to threefold elevation in plasma homocysteine levels on arterial pressure, chronic pressure-natriuresis relationship, and endothelial factors during pregnancy in the rat. Homocysteine treatment for 4 weeks increased plasma homocysteine levels in pregnant rats from 7.1 +/- 1.9 to 16.7 +/- 2.3 micromol/l. RESULTS Homocysteine treatment decreased urinary nitrate/nitrite levels from 53 +/- 7 vs. 39 +/- 5 (micromol/24 h/kg body weight) in pregnant rats whereas having no effect on urinary excretion of endothelin. Homocysteine treatment had no effect on mean arterial pressure (MAP) in pregnant rats (104 +/- 2 vs. 107 +/- 3 mm Hg) nor on the chronic pressure-natriuresis relationship. CONCLUSIONS These results suggest that although hyperhomocysteinemia decreases nitric oxide (NO) production in pregnant rats, hyperhomocysteinemia does not affect MAP, the chronic pressure-natriuresis relationship, or urinary excretion of endothelin in pregnant rats. Moreover, the reported two- to threefold elevation in plasma level of homocysteine in women with preeclampsia is unlikely to contribute to the hypertension of preeclampsia.
Collapse
|
20
|
Mohammed A, Shergill I, Little B. Management of metastatic renal cell carcinoma: current trends. Expert Rev Mol Diagn 2009; 9:75-83. [PMID: 19099350 DOI: 10.1586/14737159.9.1.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Renal cell carcinoma is one of the common malignancies of the genitourinary tract. In approximately one third of patients, distant metastases are present at the time of initial diagnosis and in another third, the tumor will recur even after nephrectomy with a curative intent. Renal cell carcinoma is resistant to all conventional treatment modalities of cancer, including radiotherapy and chemotherapy. We review the management of patients with metastatic renal cell carcinoma in the era of the new targeted therapeutic agents.
Collapse
Affiliation(s)
- Aza Mohammed
- The Ayr Hospital, 19 Hilston Close, Ingleby Barwick, Stockton on Tees, TS17 5AG, UK
| | | | | |
Collapse
|
21
|
Ramseyer VD, Garvin JL. Angiotensin II decreases nitric oxide synthase 3 expression via nitric oxide and superoxide in the thick ascending limb. Hypertension 2008; 53:313-8. [PMID: 19075094 DOI: 10.1161/hypertensionaha.108.124107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NO produced by NO synthase type 3 (NOS3) in medullary thick ascending limbs (mTHALs) inhibits Cl(-) reabsorption. Acutely, angiotensin II stimulates thick ascending limb NO production. In endothelial cells, NO inhibits NOS3 expression. Therefore, we hypothesized that angiotensin II decreases NOS3 expression via NO in mTHALs. After 24 hours, 10 and 100 nmol/L of angiotensin II decreased NOS3 expression by 23+/-9% (n=6; P<0.05) and 50+/-5% (n=7; P<0.001), respectively, in primary cultures of rat mTHALs. NO synthase inhibition by 4 mmol/L of N(G)-nitro-L-arginine methyl ester hydrochloride prevented angiotensin II from decreasing NOS3 expression (Delta=-5+/-8%; n=5). In the presence of N(G)-nitro-L-arginine methyl ester hydrochloride, the addition of exogenous NO (1 micromol/L spermine NONOate) restored the angiotensin II-induced decreases in NOS3 expression (-22+/-6%; n=7; P<0.013). In addition, NO scavenging with 10 micromol/L of carboxy-PTIO abolished the effect of angiotensin II in NOS3 expression (Delta=-1+/-8% versus carboxy-PTIO alone; n=6). Angiotensin II increases superoxide, and superoxide scavenges NO. Thus, we tested whether scavenging superoxide enhances the angiotensin II-induced reduction in NOS3 expression. Surprisingly, treatment with 100 micromol/L of Tempol, a superoxide dismutase mimetic, blocked the angiotensin II-induced decrease in NOS3 expression (Delta=-3+/-7%; n=6). This effect was not because of increased hydrogen peroxide. We concluded that angiotensin II-induced decreases in NOS3 expression in mTHALs require both NO and superoxide. Decreased NOS3 expression by angiotensin II in mTHALs could contribute to increased salt retention observed in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | |
Collapse
|
22
|
|
23
|
Koçyildiz ZC, Birman H, Olgaç V, Akgün-Dar K, Melikoğlu G, Meriçli AH. Crataegus tanacetifolia leaf extract prevents L-NAME-induced hypertension in rats: a morphological study. Phytother Res 2006; 20:66-70. [PMID: 16397846 DOI: 10.1002/ptr.1808] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crataegus (hawthorn) has long been used as a folk medicine all around the world. Most of the studies with Crataegus species focus on effects on heart failure and cardiovascular disease. The pharmacological effects of Crataegus have been attributed mainly to the content of flavonoids, procyanidin, aromatic acid and cardiotonic amines. The present study investigated the blood pressure and the structure of the coronary arterial wall of L-NAME-induced hypertensive rats given an aqueous leaf extract of C. tanacetifolia (100 mg/kg), for 4 weeks via gavage. It was observed that C. tanacetifolia, especially the hyperoside fraction, prevented L-NAME-induced hypertension in rats and had beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
- Z Celebi Koçyildiz
- Istanbul University, Faculty of Medicine, Department of Physiology, Capa, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
NO plays a role in the regulation of blood pressure through its effects on renal, cardiovascular, and central nervous system function. It is generally thought to freely diffuse through cell membranes without need for a specific transporter. The water channel aquaporin-1 transports low molecular weight gases in addition to water and is expressed in cells that produce or are the targets of NO. Consequently, we tested the hypothesis that aquaporin-1 transports NO. In cells expressing aquaporin-1, NO permeability correlated with water permeability. NO transport was reduced by 71% by HgCl2, an inhibitor of aquaporin-1. Transport of NO by aquaporin-1 saturated at 3 micromol/L NO and displayed a K(1/2) (the concentration of NO that produces half of the maximum transport rate) of 0.54 micromol/L. Reconstitution of purified aquaporin-1 into lipid vesicles increased NO influx by 316%. In endothelial cells, lowering aquaporin-1 expression with a small interfering RNA (siRNA) blunted aquaporin-1 expression by 54% and NO release by 44%. We conclude that NO transport by aquaporin-1 may allow cells to control intracellular NO levels and effects. NO transport by aquaporin-1 may play a role in central nervous system, vascular and renal function, and consequently blood pressure. Disruption of NO transport by aquaporin-1 offers an alternate cause for diseases currently explained by inadequate NO bioavailability.
Collapse
Affiliation(s)
- Marcela Herrera
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Mich 48202, USA
| | | | | |
Collapse
|
25
|
Abstract
Promising results have been obtained with bevacizumab (Avestin; Genentech, Inc.; South San Francisco, CA) in clinical trials in patients with a range of solid tumors; however, to maximize the potential of this agent, further research is needed to clarify a number of important issues. These include the optimization of bevacizumab dosage and schedule of administration, the potential value of this agent in combination with other treatment modalities like chemotherapy and radiation, the management of toxicities, and the selection of patients most likely to benefit from treatment. Intriguing results from two recent phase III trials highlight the need for a better understanding of the best ways to incorporate bevacizumab into clinical practice. Ultimately, maximizing the potential value of this agent may require a more thorough understanding of bevacizumab's mechanism of action and the pathways mediating resistance.
Collapse
Affiliation(s)
- Emily Bergsland
- Department of Medicine, University of California, San Francisco, California 94115, USA.
| | | |
Collapse
|
26
|
|
27
|
|
28
|
Henry CS, Biedermann SA, Campbell MF, Guntupalli JS. Spectrum of hypertensive emergencies in pregnancy. Crit Care Clin 2004; 20:697-712, ix. [PMID: 15388197 DOI: 10.1016/j.ccc.2004.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hypertension in pregnancy represents a spectrum of clinical entities, including pregnancy-induced hypertension (PIH), preeclampsia, eclampsia, and hemolysis, elevated liver enzyme levels, low platelet count syndrome. Although hypertension is a common denominator in this group of disorders, the pathogenesis, clinical features, and clinical course of these disorders is variable and somewhat distinct. Therapy must be tailored to the clinical entity and the patient. The incidence and prevalence of preeclampsia and eclampsia is decreasing worldwide. This decrease partly may be caused by the improved treatment of PIH and improved obstetrical services.
Collapse
Affiliation(s)
- Charles S Henry
- Division of Renal Diseases and Hypertension, Department of Internal Medicine, University of Texas Medical School, 6431 Fannin, MSB 4.126, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The hypertensive disorders of pregnancy, including gestational hypertension, pre-eclampsia and eclampsia, continue to be an important cause of maternal morbidity and mortality. Abnormal placentation is considered to be the main instigating factor, which then leads to widespread maternal endothelial activation and dysfunction. This endothelial perturbation leads to the release of many substances into the circulation, many of which result in platelet activation. For example, there is an imbalance between the levels of prostacyclin (a vasodilator and platelet inhibitor) and thromboxane (a platelet activator and vasoconstrictor), which then results in the maintenance of high blood pressure and complications. It is also likely that platelets play an important part in the pathogenesis of hypertension in pregnancy. The use of antiplatelet drugs has been shown to be effective in reducing the incidence of gestational hypertension in women at high risk and in preventing the complications associated with it. In addition, some antihypertensive agents are effective in reversing platelet activation in essential hypertension and, therefore, their use in pregnancy-induced hypertension may be beneficial in more ways than simply blood pressure reduction.
Collapse
Affiliation(s)
- Sunil Nadar
- Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham B18 7QH, UK
| | | |
Collapse
|
30
|
Kielstein JT, Simmel S, Bode-Böger SM, Roth HJ, Schmidt-Gayk H, Haller H, Fliser D. Subpressor dose asymmetric dimethylarginine modulates renal function in humans through nitric oxide synthase inhibition. Kidney Blood Press Res 2004; 27:143-7. [PMID: 15192321 DOI: 10.1159/000078838] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2004] [Indexed: 01/12/2023] Open
Abstract
Increased blood concentrations of the endogenous nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) have been linked to high blood pressure and to cardiovascular mortality. We evaluated the effects of a subpressor ADMA dose on NO production, renal hemodynamics, sodium handling and active renin and noradrenalin plasma concentrations in 12 healthy subjects (age 26 +/- 1 year) using a double-blind placebo-controlled study design. Infusion of ADMA caused a significant decrease in plasma cyclic guanosine monophosphate (cGMP) levels, i.e. the second messenger of NO (from 6.1 +/- 0.4 to 4.3 +/- 0.3 pmol/l; p < 0.05). In parallel, effective renal plasma flow (ERPF) decreased while renovascular resistance (RVR) increased significantly (ERPF from 667 +/- 9 to 603 +/- 10 ml/min/1.73 m2; RVR from 79 +/- 2 to 91 +/- 2 ml/min/mm Hg; both p < 0.05 vs. baseline). Infusion of placebo did not cause significant changes in plasma cGMP levels, ERPF and RVR (cGMP from 5.7 +/- 0.5 to 5.9 +/- 0.6 pmol/l; ERPF from 665 +/- 12 to 662 +/- 11 ml/min/1.73 m2; RVR from 79 +/- 2 to 78 +/- 2 ml/min/mm Hg; all non-significant). Moreover, urinary sodium excretion was significantly lower with infusion of ADMA as compared with placebo infusion (128 +/- 8 vs. 152 +/- 7 micromol/min; p < 0.05). In contrast, blood pressure, active renin and noradrenalin plasma concentrations did not change significantly with either infusion protocol. Acute infusion of a subpressor ADMA dose modulates several aspects of renal function in humans without affecting the activity of the renin-angiotensin and sympathetic system. Whether chronic (intrarenal) NO synthase inhibition in individuals with increased ADMA blood levels may cause persistent renal vasoconstriction and sodium retention must be evaluated.
Collapse
Affiliation(s)
- J T Kielstein
- Department of Internal Medicine, Medical School Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pang ZJ, Xing FQ. Comparative study on the expression of cytokine--receptor genes in normal and preeclamptic human placentas using DNA microarrays. J Perinat Med 2003; 31:153-62. [PMID: 12747232 DOI: 10.1515/jpm.2003.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIMS To study the relationship between the expression levels of cytokine/receptor genes in placenta and the pathogenesis of pre-eclampsia. METHODS The study was performed to compare the mRNA contents of cytokine (receptor) superfamily genes in placentas from 5 patients with pre-eclampsia and 5 strictly matched normal pregnancies. A complementary DNA microarray representing over 220 cytokine-associated genes was employed to complete the detection. RESULTS It was shown that, among the 221 kinds of cytokine-associated genes, 162 of those including 22 interleukin/interleukin receptor genes presented with a difference of over two times in pre-eclamptic placentas compared to normal placentas. Most of the 22 interleukin/interleukin receptor genes were shown to be highly expressed in preeclamptic placenta, while the expression of IL-2 receptor (IL-2 R alpha, GenBank: X01057) gene in preeclamptic placenta was comparatively lower than that in normal placenta. Furthermore, some tumor necrosis factor (TNF)/receptor superfamily genes, including TNF (GenBank: X02910), TNF ligands (GenBank: U03398, U37518, AF053712, AF055872) and TNF receptors (GenBank: X60592, X63717, M83554, AF016266, AF016267, U81232) were also shown to be highly expressed in pre-eclamptic placenta. Besides interleukin and tumor necrosis factor (receptor) gene superfamily, the mRNA levels of another 39 cytokine and 15 cytokine receptor genes showed a two-fold difference between pre-eclamptic and normal placental tissues. Additionally, most of the genes were up-regulated in pre-eclamptic placenta. CONCLUSIONS The up-regulation of cytokine-associated genes including interleukin and TNF (receptor) superfamily expression in placenta might be intensively related to the pathogenesis of pre-eclampsia.
Collapse
Affiliation(s)
- Zhan-Jun Pang
- Department of Obstetrics and Gynecology, Nanfang Hospital, First Military Medical University, Guangzhou, China.
| | | |
Collapse
|
32
|
Forde P, Scribner AW, Dial R, Loscalzo J, Trolliet MR. Prevention of hypertension and renal dysfunction in Dahl rats by alpha-tocopherol. J Cardiovasc Pharmacol 2003; 42:82-8. [PMID: 12827031 DOI: 10.1097/00005344-200307000-00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although hypertension is a risk factor for the development of end-stage renal disease, not all hypertensive patients progress to develop renal dysfunction. The mechanisms underlying hypertensive nephropathy are poorly understood. The authors have recently shown that the development of hypertension and renal dysfunction is accompanied by an accumulation of partially reduced oxygen and its derivatives, known collectively as reactive oxygen species. In the present study, the effect of a lipid-soluble antioxidant on the development of salt-dependent hypertensive nephropathy was evaluated in the Dahl rat. It was found that a high-salt diet (8% NaCl) led to the development of hypertension, increased renal oxidative stress (superoxide production and 8-epi-prostaglandin F2alpha), and decreased glomerular filtration rate and renal plasma flow in the Dahl salt-sensitive (DSS) rat, and that these adverse effects of salt were prevented by supplementing the high-salt diet with 1000 U/kg chow of alpha-tocopherol. It is well known that urinary cyclic guanosine monophosphate (cGMP) levels are lower in hypertensive DSS rats than in Dahl salt-resistant (DSR) rats on a high-salt diet. Most surprisingly, when supplemented with alpha-tocopherol, DSS rats on an 8% NaCl diet were able to excrete as much cGMP as DSR rats. Taken together, these findings suggest that, in the DSS rat, salt-dependent hypertensive nephropathy and decreased nitric oxide bioavailability are associated with increased oxidative stress, and that antioxidants can preclude these adverse effects of salt feeding, and consequently, prevent salt-dependent hypertension and nephropathy.
Collapse
Affiliation(s)
- Patrick Forde
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
Preeclampsia-eclampsia is still one of the leading causes of maternal and fetal morbidity and mortality. Despite active research for many years, the etiology of this disorder exclusive to human pregnancy is an enigma. Recent evidence suggests there may be several underlying causes or predispositions leading to the signs of hypertension, proteinuria, and edema, findings that allow us to make the diagnosis of the "syndrome" of preeclampsia. Despite improved prenatal care, severe preeclampsia and eclampsia still occur. Although understanding of the pathophysiology of these disorders has improved, treatment has not changed significantly in over 50 years. Although postponement of delivery in selected women with severe preeclampsia improves fetal outcome to a degree, this is not done without risk to the mother. In the United States, magnesium sulfate and hydralazine are the most commonly used medications for seizure prophylaxis and hypertension in the intrapartum period. The search for the underlying cause of this disorder and for a clinical marker to predict those women who will develop preeclampsia-eclampsia is ongoing, with its prevention the ultimate goal. This review began with the clinical and pathophysiologic aspects of preeclampsia-eclampsia (Part 1). Now, in Part 2, the experimental observations, the search for predictive factors, and the genetics of this disorder are reviewed.
Collapse
Affiliation(s)
- Gabriella Pridjian
- Department of Obstetrics & Gynecology, Tulane University Medical School, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
35
|
Abstract
A central component of the feedback system for long-term control of arterial pressure is the pressure-natriuresis mechanism, whereby increases in renal perfusion pressure lead to decreases in sodium reabsorption and increases in sodium excretion. The specific intrarenal mechanism for the decrease in tubular reabsorption in response to increases in renal perfusion pressure appears to be related to increases in hemodynamic factors such as medullary blood flow and renal interstitial hydrostatic pressure (RIHP), and renal autocoids such as nitric oxide, prostaglandins, kinins, and angiotensin II. Increases in renal perfusion pressure are associated with significant increases in RIHP, nitric oxide, prostaglandin E2, and kinins, and decreases in angiotensin II. The mechanism whereby RIHP increases in the absence of discernible changes in whole kidney renal blood flow and peritubular capillary hydrostatic and/or oncotic pressures may be related to increases in renal medullary flow as a result of nitric oxide-induced reductions in renal medullary vascular resistance. Several lines of investigation support an important quantitative role for RIHP in mediating pressure natriuresis. Preventing RIHP from increasing in response to increases in renal perfusion pressure markedly attenuates pressure natriuresis. Furthermore, direct increases in RIHP, comparable to increases measured in response to increases in renal perfusion pressure, have been shown to significantly decrease tubular reabsorption of sodium in the proximal tubule and increase sodium excretion. The exact mechanism whereby RIHP influences tubular reabsorption is unknown, but may be related to alterations in tight junctional permeability to sodium in proximal tubules, redistribution of apical sodium transporters, and/or release of renal autacoids such as prostaglandin E2.
Collapse
Affiliation(s)
- Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
36
|
Balaszczuk AM, Tomat A, Bellucci S, Fellet A, Arranz C. Nitric oxide synthase blockade and body fluid volumes. Braz J Med Biol Res 2002; 35:131-4. [PMID: 11743626 DOI: 10.1590/s0100-879x2002000100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influence of chronic nitric oxide synthase inhibition with N G-nitro-L-arginine methyl ester (L-NAME) on body fluid distribution was studied in male Wistar rats weighing 260-340 g. Extracellular, interstitial and intracellular spaces, as well as plasma volume were measured after a three-week treatment with L-NAME (approximately 70 mg/kg per 24 h in drinking water). An increase in extracellular space (16.1 +/- 1.1 vs 13.7 +/- 0.6 ml/100 g in control group, N = 12, P<0.01), interstitial space (14.0 +/- 0.9 vs 9.7 +/- 0.6 ml/100 g in control group, P<0.001) and total water (68.7 +/- 3.9 vs 59.0 +/- 2.9 ml/100 g, P<0.001) was observed in the L-NAME group (N = 8). Plasma volume was lower in L-NAME-treated rats (2.8 +/- 0.2 ml/100 g) than in the control group (3.6 +/- 0.1 ml/100 g, P<0.001). Blood volume was also lower in L-NAME-treated rats (5.2 +/- 0.3 ml/100 g) than in the control group (7.2 +/- 0.3 ml/100 g, P<0.001). The increase in total ratio of kidney wet weight to body weight in the L-NAME group (903 +/- 31 vs 773 +/- 45 mg/100 g in control group, P<0.01) but not in total kidney water suggests that this experimental hypertension occurs with an increase in renal mass. The fact that the heart weight to body weight ratio and the total heart water remained constant indicates that, despite the presence of high blood pressure, no modification in cardiac mass occurred. These data show that L-NAME-induced hypertension causes alterations in body fluid distribution and in renal mass.
Collapse
Affiliation(s)
- A M Balaszczuk
- Departamento de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
37
|
Cain AE, Khalil RA. Pathophysiology of essential hypertension: Role of the pump, the vessel, and the kidney. Semin Nephrol 2002. [DOI: 10.1053/snep.2002.28639] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension 2001; 38:718-22. [PMID: 11566964 DOI: 10.1161/01.hyp.38.3.718] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies over the past decade have provided a better understanding of the potential mechanisms responsible for the pathogenesis of preeclampsia. The initiating event in preeclampsia has been postulated to be reduced uteroplacental perfusion as a result of abnormal cytotrophoblast invasion of spiral arterioles. Placental ischemia is thought to lead to widespread activation/dysfunction of the maternal vascular endothelium that results in enhanced formation of endothelin and thromboxane, increased vascular sensitivity to angiotensin II, and decreased formation of vasodilators such as NO and prostacyclin. These endothelial abnormalities, in turn, cause hypertension by impairing renal-pressure natriuresis and increasing total peripheral resistance. The quantitative importance of the various endothelial and humoral factors in mediating the reduction in renal hemodynamic and excretory function and elevation in arterial pressure during preeclampsia are still unclear. Results from ongoing basic and clinical studies, however, should provide new and important information regarding the physiological mechanisms responsible for the elevation in arterial pressure in women with preeclampsia.
Collapse
Affiliation(s)
- J P Granger
- Department of Physiology, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, USA.
| | | | | | | | | |
Collapse
|
39
|
Lohmeier TE, Lohmeier JR, Reckelhoff JF, Hildebrandt DA. Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension. Am J Physiol Regul Integr Comp Physiol 2001; 281:R434-43. [PMID: 11448845 DOI: 10.1152/ajpregu.2001.281.2.r434] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that baroreflex suppression of renal sympathetic nerve activity is sustained for up to 5 days of ANG II infusion; however, steady-state conditions are not associated with ANG II hypertension of this short duration. Thus the major goal of this study was to determine whether neurally induced increments in renal excretory function during chronic intravenous infusion of ANG II are sustained under more chronic conditions when hypertension is stable and sodium balance is achieved. Experiments were conducted in five conscious dogs subjected to unilateral renal denervation and surgical division of the urinary bladder into hemibladders to allow separate 24-h urine collection from denervated (Den) and innervated (Inn) kidneys. ANG II was infused after control measurements for 10 days at a rate of 5 ng. kg(-1). min(-1). Twenty-four-hour control values for mean arterial pressure (MAP) and the ratio for urinary sodium excretion from Den and Inn kidneys (Den/Inn) were 92 +/- 4 mmHg and 0.99 +/- 0.05, respectively. On days 8-10 of ANG II infusion, MAP was stable (+30 +/- 3 mmHg) and sodium balance was achieved. Whereas equal amounts of sodium were excreted from the kidneys during the control period, throughout ANG II infusion there was a greater rate of sodium excretion from Inn vs. Den kidneys (day 10 Den/Inn sodium = 0.56 +/- 0.05), indicating chronic suppression of renal sympathetic nerve activity. The greater rate of sodium excretion in Inn vs. Den kidneys during renal sympathoinhibition also revealed a latent impairment in sodium excretion from Den kidneys. Although the Den/Inn for sodium and the major metabolites of nitric oxide (NO) decreased in parallel during ANG II hypertension, the Den/Inn for cGMP, a second messenger of NO, remained at control levels throughout this study. This disparity fails to support the notion that a deficiency in NO production and action in Den kidneys accounts for the impaired sodium excretion. Most importantly, these results support the contention that baroreflex suppression of renal sympathetic nerve activity is sustained during chronic ANG II hypertension, a response that may play an important role in attenuating the rise in arterial pressure.
Collapse
Affiliation(s)
- T E Lohmeier
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216, USA.
| | | | | | | |
Collapse
|
40
|
Palmer BF. Impaired renal autoregulation: implications for the genesis of hypertension and hypertension-induced renal injury. Am J Med Sci 2001; 321:388-400. [PMID: 11417753 DOI: 10.1097/00000441-200106000-00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In summary, autoregulation of the renal vasculature provides a mechanism by which renal function is maintained relatively constant despite variations in systemic blood pressure. This system also provides a means for changes in blood pressure to occur without causing inappropriate alterations in urinary NaCl excretion. Alterations in the autoregulatory response can have clinical consequences. Increased activity of the TGF mechanism may be causally related to the development of some forms of hypertension. Decreased activity of TGF or an impaired myogenic response may help explain the increased susceptibility that certain patient groups exhibit toward hypertension-induced renal injury. The aggressive treatment of hypertension in patients with impaired renal autoregulation may be associated with an increase in the serum creatinine concentration. As long as this increase is neither excessive nor progressive, physicians should not be dissuaded from trying to achieve newly established blood pressure goals.
Collapse
Affiliation(s)
- B F Palmer
- Department of Internal Medicine, University of Texas Southern Medical School, Dallas 75390, USA.
| |
Collapse
|
41
|
Seeliger E, Persson PB, Boemke W, Mollenhauer G, Nafz B, Reinhardt HW. Low-Dose Nitric Oxide Inhibition Produces a Negative Sodium Balance in Conscious Dogs. J Am Soc Nephrol 2001; 12:1128-1136. [PMID: 11373336 DOI: 10.1681/asn.v1261128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract. Nitric oxide modulates renal hemodynamics and salt and water handling. Studies on the latter have provided conflicting results, however. Electrolyte and water balances were therefore studied in 28 beagles for 4 d, to determine the various effects of nitric oxide synthase (NOS) inhibition on renal function. The dogs were chronically equipped with aortic occluders to reduce renal perfusion pressure (RPP), bladder catheters, and catheters for measurements of RPP and mean arterial BP. A swivel system allowed free movement within the kennels. In a first set of experiments, a nonpressor dose of L-Nω-nitroarginine (LN) (3 μg/min per kg body wt) was administered, to prevent increases in mean arterial BP and thus pressure effects on renin release and natriuresis. Remarkably, the nonpressor dose of LN caused a negative sodium balance. The natriuretic effect may involve reduced plasma renin activity, reduced aldosterone concentrations, and increased atrial natriuretic peptide concentrations. Changes in aldosterone levels, however, were the only parameters to parallel the time course of sodium excretion. In a second set of experiments, a sodium-retaining challenge was elicited by reduction of RPP. Dogs without NOS inhibition escaped sodium retention during RPP reduction after 2 d (“pressure escape”). LN neither ameliorated nor aggravated the sodium-retaining effect of reduced RPP, nor did it compromise the accomplishment of pressure escape. In conclusion, inhibition of NOS with a low dose of LN results in a reduction of total-body sodium. This effect mainly relies on reduced aldosterone concentrations. Furthermore, LN does not change the regulatory response to long-term RPP reduction.
Collapse
Affiliation(s)
- Erdmann Seeliger
- Johannes Müller Institute for Physiology, Campus Charité Mitte, Humboldt University of Berlin, Berlin, Germany
| | - Pontus B Persson
- Johannes Müller Institute for Physiology, Campus Charité Mitte, Humboldt University of Berlin, Berlin, Germany
| | - Willehad Boemke
- Experimentelle Anaesthesie, Campus Virchow Klinikum, Humboldt University of Berlin, Berlin, Germany
| | - Götz Mollenhauer
- Johannes Müller Institute for Physiology, Campus Charité Mitte, Humboldt University of Berlin, Berlin, Germany
| | - Benno Nafz
- Johannes Müller Institute for Physiology, Campus Charité Mitte, Humboldt University of Berlin, Berlin, Germany
| | - H Wolfgang Reinhardt
- Johannes Müller Institute for Physiology, Campus Charité Mitte, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|