1
|
Huang JH, Chen YC, Lu YY, Lin YK, Chen SA, Chen YJ. Arginine vasopressin modulates electrical activity and calcium homeostasis in pulmonary vein cardiomyocytes. J Biomed Sci 2019; 26:71. [PMID: 31530276 PMCID: PMC6747756 DOI: 10.1186/s12929-019-0564-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Background Atrial fibrillation (AF) frequently coexists with congestive heart failure (HF) and arginine vasopressin (AVP) V1 receptor antagonists are used to treat hyponatremia in HF. However, the role of AVP in HF-induced AF still remains unclear. Pulmonary veins (PVs) are central in the genesis of AF. The purpose of this study was to determine if AVP is directly involved in the regulation of PV electrophysiological properties and calcium (Ca2+) homeostasis as well as the identification of the underlying mechanisms. Methods Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, Ca2+ homeostasis, and Ca2+ regulatory proteins in isolated rabbit single PV cardiomyocytes incubated with and without AVP (1 μM), OPC 21268 (0.1 μM, AVP V1 antagonist), or OPC 41061 (10 nM, AVP V2 antagonist) for 4–6 h. Results AVP (0.1 and 1 μM)-treated PV cardiomyocytes had a faster beating rate (108 to 152%) than the control cells. AVP (1 μM) treated PV cardiomyocytes had higher late sodium (Na+) and Na+/Ca2+ exchanger (NCX) currents than control PV cardiomyocytes. AVP (1 μM) treated PV cardiomyocytes had smaller Ca2+i transients, and sarcoplasmic reticulum (SR) Ca2+ content as well as higher Ca2+ leak. However, combined AVP (1 μM) and OPC 21268 (0.1 μM) treated PV cardiomyocytes had a slower PV beating rate, larger Ca2+i transients and SR Ca2+ content, smaller late Na+ and NCX currents than AVP (1 μM)-treated PV cardiomyocytes. Western blot experiments showed that AVP (1 μM) treated PV cardiomyocytes had higher expression of NCX and p-CaMKII, and a higher ratio of p-CaMKII/CaMKII. Conclusions AVP increases PV arrhythmogenesis with dysregulated Ca2+ homeostasis through vasopressin V1 signaling.
Collapse
Affiliation(s)
- Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Booth LC, May CN, Yao ST. The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol 2015; 6:270. [PMID: 26483699 PMCID: PMC4589650 DOI: 10.3389/fphys.2015.00270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/14/2015] [Indexed: 01/14/2023] Open
Abstract
Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead to renal vasoconstriction, increased renin release and sodium retention. These changes are thought to contribute to renal dysfunction, which is predictive of poor outcome in patients with HF. In contrast, the role of the renal afferent nerves remains largely unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that have the potential to increase afferent nerve activity, including increased venous pressure and reduced kidney perfusion. Some of the few studies investigating renal afferents in HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted. In experimentally induced HF, renal denervation, both surgical and catheter-based, has been associated with some improvements in renal and cardiac function. It remains unknown whether the effects are due to removal of the efferent renal nerve fibers or afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF on renal efferent and afferent nerve function and critically assess the latest evidence supporting renal denervation as a potential treatment in HF.
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
3
|
Central nervous system circuits modified in heart failure: pathophysiology and therapeutic implications. Heart Fail Rev 2015; 19:759-79. [PMID: 24573960 DOI: 10.1007/s10741-014-9427-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathophysiology of heart failure (HF) is characterized by an abnormal activation of neurohumoral systems, including the sympathetic nervous and the renin-angiotensin-aldosterone systems, which have long-term deleterious effects on the disease progression. Perpetuation of this neurohumoral activation is partially dependent of central nervous system (CNS) pathways, mainly involving the paraventricular nucleus of the hypothalamus and some regions of the brainstem. Modifications in these integrative CNS circuits result in the attenuation of sympathoinhibitory and exacerbation of sympathoexcitatory pathways. In addition to the regulation of sympathetic outflow, these central pathways coordinate a complex network of agents with an established pathophysiological relevance in HF such as angiotensin, aldosterone, and proinflammatory cytokines. Central pathways could be potential targets in HF therapy since the current mainstay of HF pharmacotherapy aims primarily at antagonizing the peripheral mechanisms. Thus, in the present review, we describe the role of CNS pathways in HF pathophysiology and as potential novel therapeutic targets.
Collapse
|
4
|
Booth LC, Schlaich MP, Nishi EE, Yao ST, Xu J, Ramchandra R, Lambert GW, May CN. Short-term effects of catheter-based renal denervation on cardiac sympathetic drive and cardiac baroreflex function in heart failure. Int J Cardiol 2015; 190:220-6. [PMID: 25920032 DOI: 10.1016/j.ijcard.2015.03.440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Sympathetic drive, especially to the heart, is elevated in heart failure and is strongly associated with poor outcome. The mechanisms causing the increased sympathetic drive to the heart remain poorly understood. Catheter-based renal denervation (RDN), which reduces blood pressure (BP) and sympathetic drive in hypertensive patients, is a potential treatment in heart failure. The aim of this study was to investigate the short-term effects of catheter-based RDN on BP, heart rate (HR) and cardiac sympathetic nerve activity (CSNA) and on baroreflex function in a conscious, large animal model of heart failure. METHODS Adult Merino ewes were paced into heart failure (ejection fraction<40%) and then instrumented to directly record CSNA. The resting levels and baroreflex control of CSNA and HR were measured before and 24h after bilateral renal (n=6) or sham (n=6) denervation. RDN was performed using the Symplicity Flex Catheter System® (Medtronic) using the same algorithm as in patients. RESULTS Catheter-based RDN significantly reduced resting diastolic BP (P<0.01) and mean arterial blood pressure (P<0.05), but did not change resting HR or CSNA compared with sham denervation. Renal denervation reduced the BP at which CSNA was at 50% of maximum (BP50; P<0.005) compared with sham denervation. CONCLUSIONS In an ovine model of heart failure, catheter-based RDN did not reduce resting CSNA in the short-term. There was, however, a lack of a reflex increase in CSNA in response to the fall in arterial pressure due to a leftward shift in the baroreflex control of CSNA, which may be due to denervation of renal efferent and/or afferent nerves.
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
| | | | - Erika E Nishi
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Physiology, Cardiovascular Division, Federal University of São Paulo, São Paulo, Brazil
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Jianzhong Xu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai, China
| | - Rohit Ramchandra
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gavin W Lambert
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
5
|
Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 2013; 11:218-30. [PMID: 23997756 PMCID: PMC3637675 DOI: 10.2174/1570159x11311020008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/01/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are mainly synthesized in the magnocellular neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the hypothalamus. Axons from the magnocellular part of the PVN and SON project to neurohypophysis where VP and OT are released in blood to act like hormones. Axons from the parvocellular part of PVN project to extra-hypothalamic brain areas (median eminence, limbic system, brainstem and spinal cord) where VP and OT act like neurotransmitters/modulators. VP and OT act in complementary manner in cardiovascular control, both as hormones and neurotransmitters. While VP conserves water and increases circulating blood volume, OT eliminates sodium. Hyperactivity of VP neurons and quiescence of OT neurons in PVN underlie osmotic adjustment to pregnancy. In most vascular beds VP is a potent vasoconstrictor, more potent than OT, except in the umbilical artery at term. The vasoconstriction by VP and OT is mediated via V1aR. In some vascular beds, i.e. the lungs and the brain, VP and OT produce NO dependent vasodilatation. Peripherally, VP has been found to enhance the sensitivity of the baro-receptor while centrally, VP and OT increase sympathetic outflow, suppresse baro-receptor reflex and enhance respiration. Whilst VP is an important mediator of stress that triggers ACTH release, OT exhibits anti-stress properties. Moreover, VP has been found to contribute considerably to progression of hypertension and heart failure while OT has been found to decrease blood pressure and promote cardiac healing.
Collapse
Affiliation(s)
- Nina Japundžić-Žigon
- Professor of Basic and Clinical Pharmacology and Toxicology, University of Belgrade School of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, Belgrade, Republic of Serbia
| |
Collapse
|
6
|
Cassaglia PA, Hermes SM, Aicher SA, Brooks VL. Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol 2011; 589:1643-62. [PMID: 21300750 DOI: 10.1113/jphysiol.2011.205575] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the central effects of insulin to activate the sympathetic nervous system and enhance baroreflex gain are well known, the specific brain site(s) at which insulin acts has not been identified. We tested the hypotheses that (1) the paraventricular nucleus of the hypothalamus (PVN) and the arcuate nucleus (ArcN) are necessary brain sites and (2) insulin initiates its effects directly in the PVN and/or the ArcN. In α-chloralose anaesthetised female Sprague–Dawley rats, mean arterial pressure (MAP), heart rate (HR) and lumbar sympathetic nerve activity (LSNA) were recorded continuously, and baroreflex gain of HR and LSNA were measured before and during a hyperinsulinaemic–euglycaemic clamp. After 60 min, intravenous infusion of insulin (15 mU kg−1 min−1), but not saline, significantly increased (P < 0.05) basal LSNA (to 228 ± 28% control) and gain of baroreflex control of LSNA (from 3.8 ± 1.1 to 7.4 ± 2.4% control mmHg−1). These effects were reversed (P < 0.05) by local inhibition (bilateral microinjection of musimol) of the PVN (LSNA to 124 ± 8.8% control; LSNA gain to 3.9 ± 1.7% control mmHg−1) or of the ArcN (LSNA in % control: from 100 ± 0 to 198 ± 24 (insulin), then 133 ± 23 (muscimol) LSNA gain in % control mmHg−1: from 3.9 ± 0.3 to 8.9 ± 0.9 (insulin), then 5.1 ± 0.5 (muscimol)). While insulin receptor immunoreactivity was identified in neurons in pre-autonomic PVN subnuclei, microinjection of insulin (0.6, 6 and 60 nU) into the PVN failed to alter LSNA or LSNA gain. However, ArcN insulin increased (P < 0.05) basal LSNA (in % control to 162 ± 19, 0.6 nU; 193 ± 19, 6 nU; and 205 ± 28, 60 nU) and LSNA baroreflex gain (in % control mmHg−1 from 4.3 ± 1.2 to 6.9 ± 1.0, 0.6 nU; 7.7 ± 1.2, 6 nU; and 7.8 ± 1.3, 60 nU). None of the treatments altered MAP, HR, or baroreflex control of HR. Our findings identify the ArcN as the site at which insulin acts to activate the sympathetic nervous system and increase baroreflex gain, via a neural pathway that includes the PVN.
Collapse
Affiliation(s)
- Priscila A Cassaglia
- Oregon Health and Science University, 1381 SW Sam Jackson Park Road - L334, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
7
|
Infanger DW, Cao X, Butler SD, Burmeister MA, Zhou Y, Stupinski JA, Sharma RV, Davisson RL. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis. Circ Res 2010; 106:1763-74. [PMID: 20413786 DOI: 10.1161/circresaha.109.213025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI)-induced heart failure is characterized by central nervous system-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in heart failure. Redox signaling in the PVN and other central nervous system sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Noxs) is implicated in some neuro-cardiovascular diseases. OBJECTIVE We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. METHODS AND RESULTS Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homolog compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the periinfarct region of the heart. CONCLUSIONS These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced heart failure.
Collapse
Affiliation(s)
- David W Infanger
- Professor of Molecular Physiology, Biomedical Sciences and Cell and Developmental Biology, Cornell University, T9-014 Veterinary Research Tower, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci 2009; 148:5-15. [PMID: 19268634 DOI: 10.1016/j.autneu.2009.02.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 12/20/2022]
Abstract
There is growing evidence to suggest that many disease states are accompanied by chronic elevations in sympathetic nerve activity. The present review will specifically focus on central sympathetic overactivity and highlight three main areas of interest: 1) the pathological consequences of excessive sympathetic nerve activity; 2) the potential role of centrally derived nitric oxide in the genesis of neural dysregulation in disease; and 3) the promise of several novel therapeutic strategies targeting central sympathetic overactivity. The findings from both animal and human studies will be discussed and integrated in an attempt to provide a concise update on current work and ideas in these important areas.
Collapse
|
9
|
Flanagan ET, Buckley MM, Aherne CM, Lainis F, Sattar M, Johns EJ. Impact of cardiac hypertrophy on arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity in anaesthetized rats. Exp Physiol 2008; 93:1058-64. [DOI: 10.1113/expphysiol.2008.043216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Abstract
In this Paton Lecture I have tried to trace the key experiments that have developed ideas on how the brain regulates the cardiovascular system. It is a personal view and inevitably, owing to constraints on space and time, I have not been able to cover areas such as the nucleus tractus solitarius and cardiac vagal neurones, although I acknowledge that some may consider the story is incomplete without them. Starting with the crucial discovery of vasomotor nerves and 'vasomotor tone', the patterns of activity in sympathetic nerves which led to the important idea of central oscillating networks of neurones are described. I discuss how this knowledge has informed current controversies on the origin of vasomotor activity in presympathetic neurones in the ventral medulla, which identify intrinsic pacemaker activity or synaptic input from multiple oscillators as prime mechanisms. I present an emerging view that the role of other regions of the brain, in particular supramedullary sites, has been underplayed. These regions are pivotal for the non-uniform distribution of cardiac output that is unique to each reflex and behavioural state. I discuss the most recent evidence for 'central command' neurones that offers a plausible explanation for how these patterns of sympathetic activity are achieved. Finally, I stress the importance of these current ideas to the understanding of pathological changes in sympathetic activity in cardiovascular diseases such as hypertension or congestive heart failure.
Collapse
Affiliation(s)
- John H Coote
- Division of Neuroscience, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
Mueller PJ, Foley CM, Heesch CM, Cunningham JT, Zheng H, Patel KP, Hasser EM. Increased nitric oxide synthase activity and expression in the hypothalamus of hindlimb unloaded rats. Brain Res 2006; 1115:65-74. [PMID: 16938283 DOI: 10.1016/j.brainres.2006.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 07/05/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
Upon return from spaceflight or resumption of normal posture after bed rest, individuals often exhibit cardiovascular deconditioning. Although the mechanisms responsible for cardiovascular deconditioning have yet to be fully elucidated, alterations within the central nervous system have been postulated to be involved. The paraventricular nucleus (PVN) and supraoptic nucleus (SON) of the hypothalamus are important brain regions in control of sympathetic outflow and body fluid homeostasis. Nitric oxide (NO) modulates the activity of PVN and SON neurons, and alterations in NO transmission within these brain regions may contribute to symptoms of cardiovascular deconditioning. The purpose of the present study was to examine nitric oxide synthase (NOS) activity and expression in the PVN and SON of control and hindlimb unloaded (HU) rats, an animal model of cardiovascular deconditioning. The number of neurons exhibiting NOS activity as assessed by NADPH-diaphorase staining was significantly greater in the PVN but not SON of HU rats. Western blot analysis revealed that neuronal NOS (nNOS) but not endothelial NOS (eNOS) protein expression was higher in the PVN of HU rats. In the SON, there was a strong trend for an increase in nNOS (p=0.052) and a significant increase in eNOS expression in HU rats. Our results suggest that increased nNOS in the PVN contributes to autonomic and humoral alterations following cardiovascular deconditioning. In contrast, the functional significance of increases in nNOS and eNOS protein in the SON may be related to alterations in vasopressin release observed previously in HU rats.
Collapse
Affiliation(s)
- Patrick J Mueller
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211-3300, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.
Collapse
Affiliation(s)
- David W Infanger
- Department of Anatomy and Cell Biology, Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, 52245, USA
| | | | | |
Collapse
|
13
|
Abstract
Hypertension - the chronic elevation of blood pressure - is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, Health Sciences Center, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
14
|
Benarroch EE. Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 2005; 15:254-63. [PMID: 16032381 DOI: 10.1007/s10286-005-0290-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/21/2005] [Indexed: 02/07/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is a complex effector structure that initiates endocrine and autonomic responses to stress. It receives inputs from visceral receptors, circulating hormones such as angiotensin II, and limbic circuits and contains neurons that release vasopressin, activate the adrenocortical axis, and activate preganglionic sympathetic or parasympathetic outflows. The neurochemical control of the different subgroups of PVN neurons is complex. The PVN has been implicated in the pathophysiology of congestive heart failure and the metabolic syndrome.
Collapse
Affiliation(s)
- Eduardo E Benarroch
- Mayo Clinic, Dept. of Neurology, 811 Guggenheim Building, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Smith GL, Shlipak MG, Havranek EP, Masoudi FA, McClellan WM, Foody JM, Rathore SS, Krumholz HM. Race and renal impairment in heart failure: mortality in blacks versus whites. Circulation 2005; 111:1270-7. [PMID: 15769768 DOI: 10.1161/01.cir.0000158131.78881.d5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal impairment is an emerging prognostic indicator in heart failure (HF) patients. Despite known racial differences in the progression of both HF and renal disease, it is unclear whether the prognosis for renal impairment in HF patients differs by race. We sought to determine in HF patients the 1-year mortality risks associated with elevated creatinine and impaired estimated glomerular filtration rate (eGFR) and to quantify racial differences in mortality. METHODS AND RESULTS We retrospectively evaluated the National Heart Care Project nationally representative cohort of 53,640 Medicare patients hospitalized with HF. Among 5669 black patients, mean creatinine was 1.6+/-0.9 mg/dL, and 54% had an eGFR < or =60, compared with creatinine 1.5+/-0.7 mg/dL and 68% eGFR < or =60 in 47,971 white patients. Higher creatinine predicted increased mortality risk, although the magnitude of risk differed by race (interaction P=0.0001). Every increase in creatinine of 0.5 mg/dL was associated with a >10% increased risk in adjusted mortality for blacks, compared with >15% increased risk in whites (interaction P=0.0001), with the most striking racial disparities at the highest levels of renal impairment. Depressed eGFR showed similar racial differences (interaction P=0.0001). CONCLUSIONS Impaired renal function predicts increased mortality in elderly HF patients, although risks are more pronounced in whites. Distinct morbidity and mortality burdens in black versus white patients underscore the importance of improving patient risk-stratification, defining optimal therapies, and exploring physiological underpinnings of racial differences.
Collapse
Affiliation(s)
- Grace L Smith
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Current evidence favors the view that regardless of etiology, there is a predictable sequence of neuroendocrine activation that operates in most dogs and cats with progressive heart disease and that it is largely, but not entirely, independent of etiology. The natriuretic peptides and sympathetic nervous system seem to be early responders to developing cardiac and hemodynamic perturbations in both species. BNP plays a particularly prominent role in cats, possibly as a reflection of disease etiology. Shortly thereafter, plasma endothelin concentrations rise, reflecting the impact of the hemodynamic alterations on the vasculature. Endothelin and the natriuretic peptides directly suppress plasma renin release but have divergent effects on aldosterone. Activation of the tissue RAAS may operate early on to further the progression of heart failure, but evidence of plasma RAAS activation occurs comparatively late and near the time of development of overt CHF. Finally, in animals with severe CHF that are prone to hypotension,vasopressin levels may also rise, contributing to the retention of free water and congestion that is refractory to diuretics. Although oversimplified, this scenario seems to be consistent with data obtained in human, canine, and feline patients. These observations provide some impetus for evaluating ACE inhibitors in cats and beta-receptor-blocking drugs in dogs and cats. Perhaps we are also a little closer to identifying useful biochemical markers that can aid in the diagnosis of heart disease, guide therapy, and improve our understanding of the biologic processes occurring in our patients.
Collapse
Affiliation(s)
- D David Sisson
- Veterinary Teaching Hospital Cardiology Service, Department of Veterinary Clinical Medicine, University of Illinois, 1008 West Hazelwood Drive, Urbana, IL 61802, USA.
| |
Collapse
|
17
|
Baltatu O, Campos LA, Bader M. Genetic targeting of the brain renin-angiotensin system in transgenic rats: Impact on stress-induced renin release. ACTA ACUST UNITED AC 2004; 181:579-84. [PMID: 15283773 DOI: 10.1111/j.1365-201x.2004.01333.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advance of genetic technologies to permit tissue-specific targeted gene manipulation allowed the development of transgenic models with alterations of the renin-angiotensin (RAS) solely in the brain. We have used such methodology to develop a transgenic rat with a brain specific alteration of the RAS [TGR(ASrAOGEN)], in order to elucidate a causative role for the brain RAS and its relevance in different pathophysiological processes. The TGR(ASrAOGEN) rats have decreased levels of angiotensinogen (AOGEN) throughout the brain because of an antisense inhibition of the astroglial AOGEN synthesis. In this review we aimed at summarizing the experience obtained from utilizing the TGR(ASrAOGEN) rat model to study the brain RAS and present novel results providing evidence for the involvement of this system in stress-induced renin release.
Collapse
Affiliation(s)
- O Baltatu
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | |
Collapse
|
18
|
Francis J, Beltz T, Johnson AK, Felder RB. Mineralocorticoids act centrally to regulate blood-borne tumor necrosis factor-α in normal rats. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1402-9. [PMID: 14615404 DOI: 10.1152/ajpregu.00027.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excessive mineralocorticoid receptor (MR) stimulation induces neurohumoral excitation and cardiac and vascular fibrosis. In heart failure (HF) rats, with excessive neurohumoral drive, central infusion of the MR antagonist spironolactone (SL) decreases blood-borne TNF-α. This study aimed to determine whether DOCA, a precursor of aldosterone, acts centrally to stimulate TNF-α production in normal rats. DOCA (5 mg sc daily for 8 days) induced a progressive increase in TNF-α beginning on day 3 and increased tissue TNF-α in hypothalamus, pituitary, and heart but not in other brain and peripheral tissues harvested on day 9. A continuous intracerebroventricular infusion of SL (100 ng/h) blocked the plasma TNF-α response. Oral SL (1 mg/kg) blocked the plasma and tissue TNF-α responses. Thus DOCA increases TNF-α in brain, heart, and blood in normal rats. Activation of brain MR appears to account for the increase in plasma TNF-α. These findings have important implications for the understanding of pathophysiological states (e.g., HF, hypertension) characterized by high circulating levels of aldosterone.
Collapse
Affiliation(s)
- Joseph Francis
- Department of Internal Medicine,University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
19
|
Baltatu O, Bader M. Brain renin-angiotensin system. Lessons from functional genomics. Neuroendocrinology 2003; 78:253-9. [PMID: 14657606 DOI: 10.1159/000074446] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 09/08/2003] [Indexed: 11/19/2022]
Abstract
The existence of a brain renin-angiotensin system (RAS) was postulated 30 years ago. Since then our knowledge on the biology of the brain RAS has advanced considerably. The brain RAS has been found to be involved in the modulation of cardiovascular and fluid-electrolyte homeostasis, generally complementing the classical roles of the endocrine RAS. The RAS has additionally been implicated in other brain-specific functions, such as memory, cognition and stress. During the last years, the development of transgenic technologies allowed to get further insight into the functionality and relevance of the brain RAS. This paper is attempting to summarize our recent experience from transgenic animals.
Collapse
Affiliation(s)
- Ovidiu Baltatu
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
| | | |
Collapse
|