1
|
Cicali EJ, Elchynski AL, Cook KJ, Houder JT, Thomas CD, Smith DM, Elsey A, Johnson JA, Cavallari LH, Wiisanen K. How to Integrate CYP2D6 Phenoconversion Into Clinical Pharmacogenetics: A Tutorial. Clin Pharmacol Ther 2021; 110:677-687. [PMID: 34231197 PMCID: PMC8404400 DOI: 10.1002/cpt.2354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 01/26/2023]
Abstract
CYP2D6 genotype is increasingly being integrated into practice to guide prescribing of certain medications. The CYP2D6 drug metabolizing enzyme is susceptible to inhibition by concomitant drugs, which can lead to a clinical phenotype that is different from the genotype-based phenotype, a process referred to as phenoconversion. Phenoconversion is highly prevalent but not widely integrated into practice because of either limited experience on how to integrate or lack of knowledge that it has occurred. We built a calculator tool to help clinicians integrate a standardized method of assessing CYP2D6 phenoconversion into practice. During tool-building, we identified several clinical factors that need to be considered when implementing CYP2D6 phenoconversion into clinical practice. This tutorial shares the steps that the University of Florida Health Precision Medicine Program took to build the calculator tool and identified clinical factors to consider when implementing CYP2D6 phenoconversion in clinical practice.
Collapse
Affiliation(s)
- Emily J. Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Amanda L. Elchynski
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kelsey J. Cook
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Jacksonville, Florida, USA
- Nemours Children’s Specialty Care, Jacksonville, FL, USA
| | - John T. Houder
- Dean’s Office, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Cameron D. Thomas
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland
- Georgetown University Medical Center, Washington, DC
| | - Amanda Elsey
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Kristin Wiisanen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Jarvis JP, Peter AP, Shaman JA. Consequences of CYP2D6 Copy-Number Variation for Pharmacogenomics in Psychiatry. Front Psychiatry 2019; 10:432. [PMID: 31281270 PMCID: PMC6595891 DOI: 10.3389/fpsyt.2019.00432] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Pharmacogenomics represents a potentially powerful enhancement to the current standard of care for psychiatric patients. However, a variety of biological and technical challenges must be addressed in order to provide adequate clinical decision support for personalized prescribing and dosing based on genomic data. This is particularly true in the case of CYP2D6, a key drug-metabolizing gene, which not only harbors multiple genetic variants known to affect enzyme function but also shows a broad range of copy-number and hybrid alleles in various patient populations. Here, we describe several challenges in the accurate measurement and interpretation of data from the CYP2D6 locus including the clinical consequences of increased copy number. We discuss best practices for overcoming these challenges and then explore various current and future applications of pharmacogenomic analysis of CYP2D6 in psychiatry.
Collapse
|
3
|
Shah RR, Smith RL. Addressing phenoconversion: the Achilles' heel of personalized medicine. Br J Clin Pharmacol 2015; 79:222-40. [PMID: 24913012 PMCID: PMC4309629 DOI: 10.1111/bcp.12441] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023] Open
Abstract
Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype-phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype-phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype-phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion; (ii) co-medications that can cause phenoconversion; and (iii) dosage amendments that need to be applied during and following phenoconversion.
Collapse
Affiliation(s)
| | - Robert L Smith
- Department of Surgery and Cancer, Faculty of Medicine, Imperial CollegeLondon, UK
| |
Collapse
|
4
|
Shah RR, Smith RL. Phenocopy and phenoconversion: do they complicate association studies? Pharmacogenomics 2013; 13:981-4. [PMID: 22838943 DOI: 10.2217/pgs.12.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
5
|
Hellum BH, Nilsen OG. The in vitro Inhibitory Potential of Trade Herbal Products on Human CYP2D6-Mediated Metabolism and the Influence of Ethanol. Basic Clin Pharmacol Toxicol 2007; 101:350-8. [PMID: 17910620 DOI: 10.1111/j.1742-7843.2007.00121.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The six commonly used trade herbal products, St. John's wort, common valerian, common sage, Ginkgo biloba, Echinacea purpurea and horse chestnut, and ethanol, were investigated for their in vitro inhibitory potential of cytochrome P450 2D6 (CYP2D6)-mediated metabolism. Herbal components were extracted from commercially available products in a way that ensured the same composition of constituents in the extract as in the original trade products. c-DNA baculovirus expressed CYP2D6 was used with dextromethorphan as substrate. Quinidine was included as a positive control inhibitor. A validated high performance liquid chromatography methodology was used to quantify the formation of dextrorphan (product of dextromethorphan O-demethylation). Ethanol showed a biphasic effect on CYP2D6 metabolism, increasing initially the CYP2D6 activity with 175% of control up to a concentration of 1.1%, where after ethanol linearly inhibited the CYP2D6 activity. All the investigated herbs inhibited CYP2D6 activity to some extent, but only St. John's wort, common sage and common valerian were considered possible candidates for in vivo clinically significant effects. They showed IC50 values of 0.07 +/- 7 x 10(-3) mg/ml, 0.8 +/- 0.05 mg/ml and 1.6 +/- 0.2 mg/ml, respectively. St. John's wort inhibited CYP2D6-mediated metabolism in an uncompetitive manner, while common valerian and common sage in a non-competitive manner demonstrated interherb differences in inhibition patterns and differences when compared to the more homogenous competitive inhibitor quinidine. Common valerian was the only herb that showed a mechanistic inhibition of CYP2D6 activity and attention should be paid to a possible toxicity of this herb.
Collapse
Affiliation(s)
- Bent H Hellum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
6
|
Frank D, Jaehde U, Fuhr U. Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. Eur J Clin Pharmacol 2007; 63:321-33. [PMID: 17273835 DOI: 10.1007/s00228-006-0250-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 12/07/2006] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Cytochrome P450 2D6 (CYP2D6) is one of the most important enzymes catalyzing biotransformation of xenobiotics in the human liver. This enzyme's activity shows a high degree of interindividual variability caused in part by its genetic polymorphism, the so-called debrisoquine/sparteine polymorphism. The genetic component influencing CYP2D6 activity can be determined by genotyping. However, genotyping alone is not sufficient to accurately predict an individual's actual CYP2D6 activity, as this is also influenced by other factors. For the determination of the exact actual enzymatic activity ("phenotyping"), adequate probe drugs have to be administered prior to measurements of these compounds and/or their metabolites in body fluids. PROBE DRUGS: Debrisoquine, sparteine, metoprolol or dextromethorphan represent well-established probe drugs while tramadol has been recently investigated for this purpose. The enzymatic activity is reflected by various pharmacokinetic metrics such as the partial clearance of a parent compound to the respective CYP2D6-mediated metabolite or metabolic ratios. Appropriate metrics need to fulfill pre-defined validation criteria. METHODS In this review, we have compiled a list of such criteria useful to select the best metrics to reflect CYP2D6 activity. A comprehensive Medline search for reports on CYP2D6 phenotyping trials with the above mentioned probe drugs was carried out. CONCLUSION Application of the validation criteria suggests that dextromethorphan and debrisoquine are the best CYP2D6 phenotyping drugs, with debrisoquine having the problem of very limited availability as a therapeutic drug. However, the assessment of the best dextromethorphan CYP2D6 phenotyping metric/procedure is still ongoing.
Collapse
Affiliation(s)
- D Frank
- Department of Pharmacology, Clinical Pharmacology, University of Cologne, Gleueler Strasse 24, 50931, Köln, Germany.
| | | | | |
Collapse
|
7
|
Srinivas NR. Drug disposition of chiral and achiral drug substrates metabolized by cytochrome P450 2D6 isozyme: case studies, analytical perspectives and developmental implications. Biomed Chromatogr 2006; 20:466-91. [PMID: 16779774 DOI: 10.1002/bmc.680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concepts of drug development have evolved over the last few decades. Although number of novel chemical entitities belonging to varied classes have made it to the market, the process of drug development is challenging, intertwined as it is with complexities and uncertainities. The intention of this article is to provide a comprehensive review of novel chemical entities (NCEs) that are substrates to cytochrome P450 (CYP) 2D6 isozyme. Topics covered in this review aim: (1) to provide a framework of the importance of CYP2D6 isozyme in the biotransformation of NCEs as stand-alones and/or in conjunction with other CYP isozymes; (2) to provide several case studies of drug disposition of important drug substrates, (3) to cover key analytical perspectives and key assay considerations to assess the role and involvement of CYP2D6, and (4) to elaborate some important considerations from the development point of view. Additionally, wherever applicable, special emphasis is provided on chiral drug substrates in the various subsections of the review.
Collapse
Affiliation(s)
- Nuggehally R Srinivas
- Drug Development, Discovery Research, Dr Reddy's Laboratories, Miyapur, Hyderabad, India.
| |
Collapse
|
8
|
Shah RR. Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos Trans R Soc Lond B Biol Sci 2005; 360:1617-38. [PMID: 16096112 PMCID: PMC1569525 DOI: 10.1098/rstb.2005.1693] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pharmacogenetic factors operate at pharmacokinetic as well as pharmacodynamic levels-the two components of the dose-response curve of a drug. Polymorphisms in drug metabolizing enzymes, transporters and/or pharmacological targets of drugs may profoundly influence the dose-response relationship between individuals. For some drugs, although retrospective data from case studies suggests that these polymorphisms are frequently associated with adverse drug reactions or failure of efficacy, the clinical utility of such data remains unproven. There is, therefore, an urgent need for prospective data to determine whether pre-treatment genotyping can improve therapy. Various regulatory guidelines already recommend exploration of the role of genetic factors when investigating a drug for its pharmacokinetics, pharmacodynamics, dose-response relationship and drug interaction potential. Arising from the global heterogeneity in the frequency of variant alleles, regulatory guidelines also require the sponsors to provide additional information, usually pharmacogenetic bridging data, to determine whether data from one ethnic population can be extrapolated to another. At present, sponsors explore pharmacogenetic influences in early clinical pharmacokinetic studies but rarely do they carry the findings forward when designing dose-response studies or pivotal studies. When appropriate, regulatory authorities include genotype-specific recommendations in the prescribing information. Sometimes, this may include the need to adjust a dose in some genotypes under specific circumstances. Detailed references to pharmacogenetics in prescribing information and pharmacogenetically based prescribing in routine therapeutics will require robust prospective data from well-designed studies. With greater integration of pharmacogenetics in drug development, regulatory authorities expect to receive more detailed genetic data. This is likely to complicate the drug evaluation process as well as result in complex prescribing information. Genotype-specific dosing regimens will have to be more precise and marketing strategies more prudent. However, not all variations in drug responses are related to pharmacogenetic polymorphisms. Drug response can be modulated by a number of non-genetic factors, especially co-medications and presence of concurrent diseases. Inappropriate prescribing frequently compounds the complexity introduced by these two important non-genetic factors. Unless prescribers adhere to the prescribing information, much of the benefits of pharmacogenetics will be squandered. Discovering highly predictive genotype-phenotype associations during drug development and demonstrating their clinical validity and utility in well-designed prospective clinical trials will no doubt better define the role of pharmacogenetics in future clinical practice. In the meantime, prescribing should comply with the information provided while pharmacogenetic research is deservedly supported by all concerned but without unrealistic expectations.
Collapse
|
9
|
Shimizu T, Ochiai H, Asell F, Yokono Y, Kikuchi Y, Nitta M, Hama Y, Yamaguchi S, Hashimoto M, Taki K, Nakata K, Aida Y, Ohashi A, Ozawa N. Bioinformatics Research on Inter-racial Difference in Drug Metabolism II. Analysis on Relationship between Enzyme Activities of CYP2D6 and CYP2C19 and their Relevant Genotypes. Drug Metab Pharmacokinet 2003; 18:71-8. [PMID: 15618720 DOI: 10.2133/dmpk.18.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme activities of CYP2D6 and CYP2C19 show a genetic polymorphism, and the frequency of poor metabolizers (PMs) on these enzymes depends on races. We have analyzed frequencies of mutant alleles and PMs based on the published data in previous study (Shimizu, T. et al.: Bioinformatics research on inter-racial difference in drug metabolism, I. Analysis on frequencies of mutant alleles and poor metabolizers on CYP2D6 and CYP2C19.). The study shows that there were racial differences in the frequencies of each mutant allele and PMs. In the present study, the correlation between genotypes and drug-metabolizing enzyme activities was investigated. The result showed that enzyme activities varied according to the genotypes of subjects even in the same race. On the other hand, if subjects had the same genotypes, almost no racial differences were observed in drug-metabolizing enzyme activities. From these results, it was supposed that the racial differences in activities of these enzymes could be explained by the differences in distribution of genotypes. It would be possible to explain the racial differences in drug-metabolizing enzyme activities based on the differences on individual pharmacogenetic background information, not merely by comparison of frameworks such as races and nations.
Collapse
|
10
|
Granvil CP, Krausz KW, Gelboin HV, Idle JR, Gonzalez FJ. 4-Hydroxylation of debrisoquine by human CYP1A1 and its inhibition by quinidine and quinine. J Pharmacol Exp Ther 2002; 301:1025-32. [PMID: 12023534 DOI: 10.1124/jpet.301.3.1025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A panel of 15 recombinant cytochromes P450 expressed in human B-lymphoblastoid cells was used to study debrisoquine 4-hydroxylation. Both CYP2D6 and CYP1A1 carried out the reaction. The apparent K(m) (micromolar) and V(max) (picomoles per minute per picomole of P450) for CYP2D6 were 12.1 and 18.2 and for CYP1A1 were 23.1 and 15.2, respectively. CYP1A1 debrisoquine 4-hydroxylase was inhibited by the CYP1A1 inhibitor alpha-naphthoflavone and the CYP1A1 substrate 7-ethoxyresorufin. Additionally and surprisingly, this reaction was also inhibited by quinidine and quinine, with respective IC(50) values of 1.38 +/- 0.10 and 3.31 +/- 0.14 microM, compared with those for CYP2D6 debrisoquine 4-hydroxylase of 0.018 +/- 0.05 and 3.75 +/- 2.07 microM, respectively. Anti-CYP1A1 monoclonal antibody (mAb) 1-7-1 abolished CYP1A1 debrisoquine hydroxylase and anti-CYP2D6 mAb 50-1-3 eradicated CYP2D6 debrisoquine 4-hydroxylase. Three further CYP2D6-specific reactions were tested: dextromethorphan O-demethylation, bufuralol 1'-hydroxylation, and sparteine dehydrogenation. The CYP2D6 specificity, judged by the CYP2D6/CYP1A1 activity ratios was 18.5, 7.0, 6.0, and 1.6 for dextromethorphan, bufuralol, sparteine, and debrisoquine, respectively. Thus, debrisoquine is not a specific CYP2D6 substrate and quinidine is not a specific CYP2D6 inhibitor. These findings have significant implications for the conduct of in vitro drug metabolism inhibition studies and underscore the fallacy of "specific chemical inhibitors" of a supergene family of enzymes that have overlapping substrate specificities. The use of highly specific mAbs in such studies is mandated. It is unclear as yet whether these findings have implications for the relationship between CYP2D6 genotype and in vivo debrisoquine 4-hydroxylase activity.
Collapse
Affiliation(s)
- Camille P Granvil
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 3E24, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Drug treatment is in many cases ineffective. Besides patients who do not respond to the treatment despite receiving expensive drugs, adverse drug reactions (ADRs) as a consequence of the treatment, is estimated to cost the US society 100 billion USD and over 100,000 deaths per year. Pharmacogenetics is the discipline which takes the patient's genetic information of drug transporters, drug metabolizing enzymes and drug receptors into account to allow for an individualized drug therapy leading to optimal choice and dose of the drugs in question. It is believed that much cost for the society can be saved in this manner. Many drug transporters are polymorphic. In addition, the majority of phase I and phase II dependent drug metabolism is carried out by polymorphic enzymes which can cause abolished, quantitatively or qualitatively altered or enhanced drug metabolism. Stable duplication, multiduplication or amplification of active genes, most likely in response to dietary components that have resulted in a selection of alleles with multiple noninducible genes, has been described. Several examples exist where subjects carrying certain alleles suffer from a lack of drug efficacy because of ultrarapid metabolism caused by multiple genes or by induction of gene expression, or, alternatively, adverse effects from the drug treatment as a result of the presence of defective alleles. The information about the role of polymorphic drug receptors for efficiency of drug therapy is more scarce, although promising examples are seen in drug treatment of asthma where the efficiency can be severely enhanced by predictive genotyping of the drug targets. In addition, certain polymorphic genes can be used as markers for optimization of the drug therapy. It is likely that predictive genotyping is of benefit in 10-20% of drug treatment and thereby allows for prevention of causalities as a cause of ADRs and thus improves the health for a significant fraction of the patients. In 15-40% of the cases, the penetrance of genetic polymorphism is of less importance because of the polygenic influence on the outcome of drug treatment and in 50% of the cases, pharmacogenetics would be without influence because of other more important physiological and environmental factors. In the present contribution an overview about our present knowledge how polymorphic genes can influence the drug efficacy is presented. Some emphasis will be given to different forms of cytochrome P450 which are of importance for drug metabolism.
Collapse
Affiliation(s)
- M Ingelman-Sundberg
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Wilcox RA, Owen H. Variable cytochrome P450 2D6 expression and metabolism of codeine and other opioid prodrugs: implications for the Australian anaesthetist. Anaesth Intensive Care 2000; 28:611-9. [PMID: 11153286 DOI: 10.1177/0310057x0002800602] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Codeine is a popular opioid prodrug dependent on the activity of the specific cytochrome P450 enzyme 2D6 (CYP2D6). This enzyme catalyses the production of the potent analgesic metabolite morphine, but genetic studies have demonstrated that individuals from different ethnic groups exhibit considerable variability in the functional capacities of their expressed CYP2D6 enzymes, and pharmacological studies have shown many commonly prescribed drugs can reduce the action of CYP2D6 enzymes. These findings have significant clinical implications for the rational prescription of effective analgesia, especially in a multicultural country like Australia.
Collapse
Affiliation(s)
- R A Wilcox
- Department of Anaesthesia, Flinders University, Flinders Medical Centre, South Australia
| | | |
Collapse
|