1
|
Bravo-Perez C, Guarnera L, Williams ND, Visconte V. Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1612. [PMID: 37763731 PMCID: PMC10535188 DOI: 10.3390/medicina59091612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal hematopoietic disorder characterized by the lack of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as a consequence of somatic mutations in the phosphatidylinositol glycan anchor biosynthesis class A (PIGA) gene. Clinical manifestations of PNH are intravascular hemolysis, thrombophilia, and bone marrow failure. Treatment of PNH mainly relies on the use of complement-targeted therapy (C5 inhibitors), with the newest agents being explored against other factors involved in the complement cascade to alleviate unresolved intravascular hemolysis and extravascular hemolysis. This review summarizes the biology and current treatment strategies for PNH with the aim of reaching a general audience with an interest in hematologic disorders.
Collapse
Affiliation(s)
- Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, University of Murcia, 30005 Murcia, Spain
| | - Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nakisha D. Williams
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| |
Collapse
|
2
|
Colden MA, Kumar S, Munkhbileg B, Babushok DV. Insights Into the Emergence of Paroxysmal Nocturnal Hemoglobinuria. Front Immunol 2022; 12:830172. [PMID: 35154088 PMCID: PMC8831232 DOI: 10.3389/fimmu.2021.830172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal Nocturnal Hemoglobinuria (PNH) is a disease as simple as it is complex. PNH patients develop somatic loss-of-function mutations in phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene (PIGA), required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. Ubiquitous in eukaryotes, GPI anchors are a group of conserved glycolipid molecules responsible for attaching nearly 150 distinct proteins to the surface of cell membranes. The loss of two GPI-anchored surface proteins, CD55 and CD59, from red blood cells causes unregulated complement activation and hemolysis in classical PNH disease. In PNH patients, PIGA-mutant, GPI (-) hematopoietic cells clonally expand to make up a large portion of patients’ blood production, yet mechanisms leading to clonal expansion of GPI (-) cells remain enigmatic. Historical models of PNH in mice and the more recent PNH model in rhesus macaques showed that GPI (-) cells reconstitute near-normal hematopoiesis but have no intrinsic growth advantage and do not clonally expand over time. Landmark studies identified several potential mechanisms which can promote PNH clonal expansion. However, to what extent these contribute to PNH cell selection in patients continues to be a matter of active debate. Recent advancements in disease models and immunologic technologies, together with the growing understanding of autoimmune marrow failure, offer new opportunities to evaluate the mechanisms of clonal expansion in PNH. Here, we critically review published data on PNH cell biology and clonal expansion and highlight limitations and opportunities to further our understanding of the emergence of PNH clones.
Collapse
Affiliation(s)
- Melissa A. Colden
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- *Correspondence: Daria V. Babushok,
| |
Collapse
|
3
|
Li C, Dong X, Wang H, Shao Z. The Role of T Lymphocytes in the Pathogenesis of Paroxysmal Nocturnal Hemoglobinuria. Front Immunol 2022; 12:777649. [PMID: 35003092 PMCID: PMC8739213 DOI: 10.3389/fimmu.2021.777649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell genetic mutation disease that causes defective erythrocyte membrane hemolysis. Its pathologic basis is the mutation of the PIG-A gene, whose product is necessary for the synthesis of glycosylphosphatidylinositol (GPI) anchors; the mutation of PIG-A gene results in the reduction or deletion of the GPI anchor, which leads to the deficiency of GPI-anchored proteins (GPI-APs), such as CD55 and CD59, which are complement inhibitors. The deficiency of complement inhibitors causes chronic complement-mediated intravascular hemolysis of GPI-anchor-deficient erythrocyte. PIG-A gene mutation could also be found in bone marrow hematopoietic stem cells (HSCs) of healthy people, but they have no growth advantage; only the HSCs with PIG-A gene mutation in PNH patients have this advantage and expand. Besides, HSCs from PIG-A-knockout mice do not show clonal expansion in bone marrow, so PIG-A mutation cannot explain the clonal advantage of the PNH clone and some additional factors are needed; thus, in recent years, many scholars have put forward the theories of the second hit, and immune escape theory is one of them. In this paper, we focus on how T lymphocytes are involved in immune escape hypothesis in the pathogenesis of PNH.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xifeng Dong
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology and Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Katagiri T, Qi Z, Ohtake S, Nakao S. GPI-anchored protein-deficient T cells in patients with aplastic anemia and low-risk myelodysplastic syndrome: implications for the immunopathophysiology of bone marrow failure. Eur J Haematol 2011; 86:226-36. [PMID: 21166881 DOI: 10.1111/j.1600-0609.2010.01563.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol-anchored protein-deficient (GPI-AP(-) ) T cells can be detected in some patients with bone marrow failure (BMF), but the link between these cells and BMF pathophysiology remains to be elucidated. To clarify the significance of GPI-AP(-) T cells in BMF, peripheral blood from 562 patients was examined for the presence of CD48(-) CD59(-) CD3(+) cells using high-resolution flow cytometry (FCM), and the GPI-AP(-) T cells were characterized with regard to their phenotype and sensitivity to inhibitory molecules, including herpesvirus entry mediator (HVEM) and a myelosuppressive cytokine, TGF-β. A multi-lineage FCM analysis detected CD48(-) CD59(-) CD3(+) T cells in 72 (12.8%) of the patients, together with GPI-AP(-) myeloid cells. Unexpectedly, 12 patients (10 with aplastic anemia and 2 with myelodysplastic syndrome-refractory anemia, 2.1%), who showed clinical features similar to those of other BMF patients with GPI-AP(-) myeloid cells, such as a good response to immunosuppressive therapy, displayed 0.01-0.3% GPI-AP(-) cells exclusively in T cells. The CD48(-) CD59(-) T cells consisted of predominantly effector memory (EM) and terminal effector cells, while CD48(-) CD59(-) T cells from non-BMF patients who had received anti-CD52 antibody only showed EM and central memory phenotypes. TGF-β and HVEM capable of inhibiting T-cell proliferation via its GPI-AP CD160 ligation suppressed the in vitro proliferation of GPI-AP(+) T cells more potently than that of GPI-AP(-) T cells from the same patients. The presence of GPI-AP(-) T cells, as well as GPI-AP(-) myeloid cells, may therefore reflect the immunopathophysiology of BMF in which cytokine-mediated suppression of hematopoietic stem cells via GPI-AP-type receptors takes place.
Collapse
Affiliation(s)
- Takamasa Katagiri
- Clinical Laboratory Science, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
5
|
Brodsky RA. How do PIG-A mutant paroxysmal nocturnal hemoglobinuria stem cells achieve clonal dominance? Expert Rev Hematol 2009; 2:353-6. [PMID: 21082939 DOI: 10.1586/ehm.09.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Savage WJ, Barber JP, Mukhina GL, Hu R, Chen G, Matsui W, Thoburn C, Hess AD, Cheng L, Jones RJ, Brodsky RA. Glycosylphosphatidylinositol-anchored protein deficiency confers resistance to apoptosis in PNH. Exp Hematol 2008; 37:42-51. [PMID: 19013003 DOI: 10.1016/j.exphem.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Investigate the contribution of PIG-A mutations to clonal expansion in paroxysmal nocturnal hemoglobinuria (PNH). MATERIALS AND METHODS Primary CD34+ hematopoietic progenitors from PNH patients were assayed for annexin-V positivity by flow cytometry in a cell-mediated killing assay using autologous effectors from PNH patients or allogeneic effectors from healthy controls. To specifically assess the role of the PIG-A mutation in the development of clonal dominance and address confounders of secondary mutation and differential immune attack that can confound experiments using primary cells, we established an inducible PIG-A CD34+ myeloid cell line, TF-1. Apoptosis resistance was assessed after exposure to allogeneic effectors, NK92 cells (an interleukin-2-dependent cell line with the phenotype and function of activated natural killer [NK] cells), tumor necrosis factor (TNF)-alpha, and gamma-irradiation. Apoptosis was measured by annexin-V staining and caspase 3/7 activity. RESULTS In PNH patients, CD34+ hematopoietic progenitors lacking glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-AP(-)) were less susceptible than GPI-AP+ CD34+ precursors to autologous (8% vs 49%; p < 0.05) and allogeneic (28% vs 58%; p < 0.05) cell-mediated killing from the same patients. In the inducible PIG-A model, GPI-AP(-) TF-1 cells exhibited less apoptosis than induced, GPI-AP+ TF-1 cells in response to allogeneic cell-mediated killing, NK92-mediated killing, TNF-alpha, and gamma-irradiation. GPI-AP(-) TF-1 cells maintained resistance to apoptosis when effectors were raised against GPI-AP(-) cells, arguing against a GPI-AP being the target of immune attack in PNH. NK92-mediated killing was partially inhibited with blockade by specific antibodies to the stress-inducible GPI-AP ULBP1 and ULBP2 that activate immune effectors. Clonal competition experiments demonstrate that the mutant clone expands over time under proapoptotic conditions with TNF-alpha. CONCLUSION PIG-A mutations contribute to clonal expansion in PNH by conferring a survival advantage to hematopoietic progenitors under proapoptotic stresses.
Collapse
Affiliation(s)
- William J Savage
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brodsky RA. Paroxysmal nocturnal hemoglobinuria: stem cells and clonality. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:111-115. [PMID: 19074067 DOI: 10.1182/asheducation-2008.1.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria is a clonal hematopoietic stem cell disease that manifests with intravascular hemolysis, bone marrow failure, thrombosis, and smooth muscle dystonias. The disease can arise de novo or in the setting of acquired aplastic anemia. All PNH patients to date have been shown to harbor PIG-A mutations; the product of this gene is required for the synthesis of glycosylphosphatidylinositol (GPI) anchored proteins. In PNH patients, PIG-A mutations arise from a multipotent hematopoietic stem cell. Interestingly, PIG-A mutations can also be found in the peripheral blood of most healthy controls; however, these mutations arise from progenitor cells rather than multipotent hematopoietic stem cells and do not propagate the disease. The mechanism of whereby PNH stem cells achieve clonal dominance remains unclear. The leading hypotheses to explain clonal outgrowth in PNH are: 1) PNH cells evade immune attack possibly, because of an absent cell surface GPI-AP that is the target of the immune attack; 2) The PIG-A mutation confers an intrinsic resistance to apoptosis that becomes more conspicuous when the marrow is under immune attack; and 3) A second mutation occurs in the PNH clone to give it an intrinsic survival advantage. These hypotheses may not be mutually exclusive, since data in support of all three models have been generated.
Collapse
Affiliation(s)
- Robert A Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-0185, USA.
| |
Collapse
|
8
|
Abstract
Aplastic anaemia is a rare haemopoietic stem-cell disorder that results in pancytopenia and hypocellular bone marrow. Although most cases are acquired, there are unusual inherited forms. The pathophysiology of acquired aplastic anaemia is immune mediated in most cases; autoreactive lymphocytes mediate the destruction of haemopoietic stem cells. Environmental exposures, such as to drugs, viruses, and toxins, are thought to trigger the aberrant immune response in some patients, but most cases are classified as idiopathic. Similarly to other autoimmune diseases, aplastic anaemia has a varied clinical course; some patients have mild symptoms that necessitate little or no therapy, whereas others present with life-threatening pancytopenia representing a medical emergency. Paroxysmal nocturnal haemoglobinuria and myelodysplastic syndrome commonly arise in patients with aplastic anaemia, showing a pathophysiological link between these disorders. Acquired aplastic anaemia can be effectively treated by allogeneic bone-marrow transplantation, immunosuppression (generally antithymocyte globulin and ciclosporin), and high-dose cyclophosphamide.
Collapse
Affiliation(s)
- Robert A Brodsky
- Johns Hopkins University School of Medicine, Division of Hematology, and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | | |
Collapse
|
9
|
Alenzi FQB, Wyse RKH, Altamimi WG. Apoptosis as a tool for therapeutic agents in haematological diseases. Expert Opin Biol Ther 2004; 4:407-20. [PMID: 15006734 DOI: 10.1517/14712598.4.3.407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptosis, an active mechanism of cell death, is an important process in many biological systems. Apoptosis is thought to contribute to many disease processes. This notion has raised expectations that therapeutic opportunities will naturally follow once a better understanding of these processes has been achieved. The regulation of apoptosis in normal and malignant haematological diseases represents an important therapeutic approach in the treatment of leukaemia and lymphoma. This review summarises recent developments in the clinical manipulation of apoptosis pathways in haematological therapy.
Collapse
Affiliation(s)
- Faris Q B Alenzi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, King Faisal University, PO Box 1982, Dammam 31451, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|