1
|
Balfourier A, Kolosnjaj-Tabi J, Luciani N, Carn F, Gazeau F. Gold-based therapy: From past to present. Proc Natl Acad Sci U S A 2020; 117:22639-22648. [PMID: 32900936 PMCID: PMC7502769 DOI: 10.1073/pnas.2007285117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.
Collapse
Affiliation(s)
- Alice Balfourier
- Laboratoire Matière et Systèmes Complexes, CNRS, Université de Paris, Paris 75205 Cedex 13, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, CNRS/Université Toulouse Paul Sabatier, Toulouse 31077, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes, CNRS, Université de Paris, Paris 75205 Cedex 13, France
| | - Florent Carn
- Laboratoire Matière et Systèmes Complexes, CNRS, Université de Paris, Paris 75205 Cedex 13, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS, Université de Paris, Paris 75205 Cedex 13, France;
| |
Collapse
|
2
|
Abstract
Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.
Collapse
|
3
|
Andersson P, Bratt J, Heimbürger M, Cederholm T, Palmblad J. Inhibition of Neutrophil-Dependent Cytotoxicity for Human Endothelial Cells by ACE Inhibitors. Scand J Immunol 2014; 80:339-45. [DOI: 10.1111/sji.12218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 07/31/2014] [Indexed: 12/19/2022]
Affiliation(s)
- P. Andersson
- Department of Medicine; Stockholm Soder Hospital; Stockholm Sweden
| | - J. Bratt
- Department of Rheumatology; Karolinska University Hospital; Stockholm Sweden
| | - M. Heimbürger
- Department of Rheumatology; Karolinska University Hospital; Stockholm Sweden
| | - T. Cederholm
- Departments of Clinical Nutrition and Metabolism and of Geriatrics; Uppsala University; Uppsala Sweden
| | - J. Palmblad
- Department of Hematology; Karolinska University Hospital; Center for Inflammation and Hematology Research; Stockholm Sweden
- Department of Medicine; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
4
|
Phase I dose escalation study of the PKCι inhibitor aurothiomalate for advanced non-small-cell lung cancer, ovarian cancer, and pancreatic cancer. Anticancer Drugs 2014; 24:1079-83. [PMID: 23962904 DOI: 10.1097/cad.0000000000000009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein kinase C iota (PKCι) is overexpressed in non-small-cell lung cancer, ovarian, and pancreatic cancers, where it plays a critical role in oncogenesis. The gold compound aurothiomalate (ATM) has been shown to inhibit PKCι signaling and exerts potent antitumor activity in preclinical models. We sought to determine the maximum tolerated dose (MTD) of ATM. We conducted a phase I dose escalation trial of ATM in patients with non-small-cell lung cancer, ovarian or pancreatic cancer. Patients received ATM intramuscularly weekly for three cycles (cycle duration 4 weeks) at 25, 50, or 75 mg in a 3+3 design. The dose was not escalated for individual patients. Blood samples were analyzed for elemental gold levels. Patients were evaluated every 4 weeks for toxicity and every 8 weeks for response. Fifteen patients were enrolled in this study. Six patients were treated at 25 mg, seven at 50 mg, and two at 75 mg. There was one dose-limiting toxicity at 25 mg (hypokalemia), one at 50 mg (urinary tract infection), and none at 75 mg. There were three grade 3 hematologic toxicities. The recommended MTD of ATM is 50 mg. Patients received treatment for a median of two cycles (range 1-3). There appeared to be a dose-related accumulation of steady-state plasma concentrations of gold consistent with linear pharmacokinetics. In summary, this phase I study was successful in identifying ATM 50 mg intramuscularly weekly as the MTD. Future clinical investigations targeting PKCι are currently in progress.
Collapse
|
5
|
The aPKCι blocking agent ATM negatively regulates EMT and invasion of hepatocellular carcinoma. Cell Death Dis 2014; 5:e1129. [PMID: 24651432 PMCID: PMC3973203 DOI: 10.1038/cddis.2014.91] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/08/2014] [Accepted: 02/10/2014] [Indexed: 12/23/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has an important role in invasion and metastasis of hepatocellular carcinoma (HCC). To explore the regulatory mechanism of atypical protein kinase C ι (aPKCι) signaling pathways to HCC development, and find an agent for targeted therapy for HCC, immortalized murine hepatocytes were employed to establish an EMT cell model of HCC, MMH-RT cells. Our study showed that EMT took place in MMH-R cells under the effect of transforming growth factor-β1 (TGF-β1) overexpressing aPKCι. Furthermore, we showed that the aPKCι blocking agent aurothiomalate (ATM) inhibited EMT and decreased invasion of hepatocytes. Moreover, ATM selectively inhibited proliferation of mesenchymal cells and HepG2 cells and induced apoptosis. However, ATM increased proliferation of epithelial cells and had little effect on apoptosis and invasion of epithelial cells. In conclusion, our result suggested that aPKCι could be an important bio-marker of tumor EMT, and used as an indicator of invasion and malignancy. ATM might be a promising agent for targeted treatment of HCC.
Collapse
|
6
|
Sharma M, Salisbury RL, Maurer EI, Hussain SM, Sulentic CEW. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. NANOSCALE 2013; 5:3747-56. [PMID: 23503581 PMCID: PMC10156170 DOI: 10.1039/c3nr30071d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.
Collapse
Affiliation(s)
- Monita Sharma
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, 206 Health Sciences Bldg., 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | | | | | | | | |
Collapse
|
7
|
Murray NR, Kalari KR, Fields AP. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer. J Cell Physiol 2011; 226:879-87. [PMID: 20945390 DOI: 10.1002/jcp.22463] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence demonstrates that PKCι is an oncogene and prognostic marker that is frequently targeted for genetic alteration in many major forms of human cancer. Functional data demonstrate that PKCι is required for the transformed phenotype of lung, pancreatic, ovarian, prostate, colon, and brain cancer cells. Future studies will be required to determine whether PKCι is also an oncogene in the many other cancer types that also overexpress PKCι. Studies of PKCι using genetically defined models of tumorigenesis have revealed a critical role for PKCι in multiple stages of tumorigenesis, including tumor initiation, progression, and metastasis. Recent studies in a genetic model of lung adenocarcinoma suggest a role for PKCι in transformation of lung cancer stem cells. These studies have important implications for the therapeutic use of aurothiomalate (ATM), a highly selective PKCι signaling inhibitor currently undergoing clinical evaluation. Significant progress has been made in determining the molecular mechanisms by which PKCι drives the transformed phenotype, particularly the central role played by the oncogenic PKCι-Par6 complex in transformed growth and invasion, and of several PKCι-dependent survival pathways in chemo-resistance. Future studies will be required to determine the composition and dynamics of the PKCι-Par6 complex, and the mechanisms by which oncogenic signaling through this complex is regulated. Likewise, a better understanding of the critical downstream effectors of PKCι in various human tumor types holds promise for identifying novel prognostic and surrogate markers of oncogenic PKCι activity that may be clinically useful in ongoing clinical trials of ATM.
Collapse
Affiliation(s)
- Nicole R Murray
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | |
Collapse
|
8
|
Corthey G, Giovanetti LJ, Ramallo-López JM, Zelaya E, Rubert AA, Benitez GA, Requejo FG, Fonticelli MH, Salvarezza RC. Synthesis and characterization of gold at gold(i)-thiomalate core at shell nanoparticles. ACS NANO 2010; 4:3413-3421. [PMID: 20459111 DOI: 10.1021/nn100272q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper, the synthesis of gold at gold(I)-thiolate core at shell nanoparticles is described for the first time. The chemical nature and structure of these nanoparticles were characterized by a multi-technique approach. The prepared particles consist of gold metallic cores, about 1 nm in size, surrounded by stable gold(I)-thiomalate shells (Au at Au(I)-TM). These nanoparticles could be useful in medicine due to the interesting properties that gold(I)-thiomalate has against rheumatoid arthritis. Furthermore, the described results give new insights in the synthesis and characterization of metallic and core at shell nanoparticles.
Collapse
Affiliation(s)
- Gastón Corthey
- Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Sucursal 4 Casilla de Correo 16 (1900) La Plata, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Scholz M, Nowak P, Schuller A, Margraf S, Blaheta R, Cinatl J, Windolf J, Moritz A. Cardiac Surgery With Extracorporeal Circulation: Neutrophil Transendothelial Migration Is Mediated by β1 Integrin (CD29) in the Presence of TNF-Alpha. J INVEST SURG 2009; 17:239-47. [PMID: 15385257 DOI: 10.1080/08941930490502808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cardiac surgery with extracorporeal circulation is associated with neutrophil activation, inflammation, and edema. Endothelial hyperpermeability elicited by the interaction of activated neutrophils and/or cytokines with endothelial cells may be critical in this regard. However, the immune and cellular mechanisms involved are not fully understood. Cocultures with human endothelial cells and neutrophils from cardiac surgery patients were used to evaluate the role of beta1 integrin activity and the proinflammatory cytokine tumor necrosis factor (TNF)-alpha in neutrophil transendothelial migration and in impairment of the integrity of endothelial cell-to-cell contacts. Blocking of CD29 (heavy chain of beta1 integrins) totally prevented neutrophil adhesion and transendothelial migration. Pretreatment of neutrophils with either a CD29-stimulating monoclonal antibody or the addition of TNF-alpha (0.1-10 U/ml) to the coculture failed to induce transendothelial migration. However, coculture of endothelial cells with CD29-stimulated neutrophils in the presence of 0.1-10 U/ml TNF-alpha strongly induced neutrophil transmigration. CD29/TNF-alpha-mediated transmigration was associated with intracellular redistribution of endothelial beta-catenin. We further showed that CD29/TNF-alpha-mediated effects involved PI3K and tyrosine kinase-dependent signaling via MAPK but were independent of nuclear transcription factor (NF)-kappaB activity. Inhibition of CD29/TNF-alpha might be a therapeutic option to limit endothelial dysfunction following cardiac surgery with extracorporeal circulation.
Collapse
Affiliation(s)
- Martin Scholz
- Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Metallic gold reduces TNFα expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury. Brain Res 2009; 1271:103-13. [DOI: 10.1016/j.brainres.2009.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/21/2022]
|
11
|
Fields AP, Regala RP. Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 2007; 55:487-97. [PMID: 17570678 PMCID: PMC2705893 DOI: 10.1016/j.phrs.2007.04.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases has been the subject of intensive study in the field of cancer since their initial discovery as major cellular receptors for the tumor promoting phorbol esters nearly 30 years ago. However, despite these efforts, the search for a direct genetic link between members of the PKC family and human cancer has yielded only circumstantial evidence that any PKC isozyme is a true cancer gene. This situation changed in the past year with the discovery that atypical protein kinase C iota (PKC iota) is a bonafide human oncogene. PKC iota is required for the transformed growth of human cancer cells and the PKC iota gene is the target of tumor-specific gene amplification in multiple forms of human cancer. PKC iota participates in multiple aspects of the transformed phenotype of human cancer cells including transformed growth, invasion and survival. Herein, we review pertinent aspects of atypical PKC structure, function and regulation that relate to the role of these enzymes in oncogenesis. We discuss the evidence that PKC iota is a human oncogene, review mechanisms controlling PKC iota expression in human cancers, and describe the molecular details of PKC iota-mediated oncogenic signaling. We conclude with a discussion of how oncogenic PKC iota signaling has been successfully targeted to identify a novel, mechanism-based therapeutic drug currently entering clinical trials for treatment of human lung cancer. Throughout, we identify key unanswered questions and exciting future avenues of investigation regarding this important oncogenic molecule.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Amplification
- Gold Sodium Thiomalate/pharmacology
- Gold Sodium Thiomalate/therapeutic use
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/physiology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Oncogenes
- Ovarian Neoplasms/enzymology
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Protein Kinase C/physiology
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, FL 32224, USA.
| | | |
Collapse
|
12
|
Stuhlmeier KM. The anti-rheumatic gold salt aurothiomalate suppresses interleukin-1beta-induced hyaluronan accumulation by blocking HAS1 transcription and by acting as a COX-2 transcriptional repressor. J Biol Chem 2006; 282:2250-8. [PMID: 17085450 DOI: 10.1074/jbc.m605011200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gold compounds are among the oldest disease-modifying drugs and are still widely used today for treating rheumatoid arthritis. Despite decades of use, little is known about the mode of action of this class of drugs. Here we have demonstrated that aurothiomalate (AuTM) suppresses hyaluronan accumulation by blocking interleukin (IL)-1beta-induced hyaluronan synthase-1 transcription. We have further demonstrated that, in fibroblast-like synoviocytes (FLSs), AuTM acts as a specific COX-2 transcriptional repressor in that IL-1beta-induced COX-2 transcription is blocked, whereas COX-1 transcription and translation is unaffected. As a consequence, PGE2 levels released by FLS are dose-dependently reduced in cells exposed to AuTM. Of similar importance is the demonstration that AuTM does block NFkappaB-DNA interaction. In addition, two other transcription factors implicated in inflammatory events, namely AP-1 and STAT3, are blocked as well. The effect on NFkappaB likely explains the inhibition of COX-2 as well as that of HAS1, as both are genes that depend on the activation of NFkappaB. Interestingly, AuTM does not interfere with IL-1beta-induced IkappaB alpha degradation, in most cases a prerequisite for subsequent NFkappaB activation. Furthermore, evidence is presented that, in FLS, AuTM blocks NFkappaB-DNA interaction neither by binding to NFkappaB binding sites nor by interacting with activated NFkappaB proteins. Taken together, AuTM treatment of FLS blocks two of the most important proinflammatory events that are associated with rheumatoid arthritis. AuTM blocks the release of PGE2 and prevents the activation of NFkappaB, therefore blocking IL-1beta-induced hyaluronan accumulation and likely a series of other pro-inflammatory NFkappaB-dependent genes.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, 1100 Vienna, Austria.
| |
Collapse
|
13
|
Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 2006; 350:866-71. [PMID: 17034761 PMCID: PMC2668920 DOI: 10.1016/j.bbrc.2006.09.097] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/20/2006] [Indexed: 01/23/2023]
Abstract
Toll-like receptors (TLRs), which are activated by invading microorganisms or endogenous molecules, evoke immune and inflammatory responses. TLR activation is closely linked to the development of many chronic inflammatory diseases including rheumatoid arthritis. Auranofin, an Au(I) compound, is a well-known and long-used anti-rheumatic drug. However, the mechanism as to how auranofin relieves the symptom of rheumatoid arthritis has not been fully clarified. Our results demonstrated that auranofin suppressed TLR4-mediated activation of transcription factors, NF-kappaB and IRF3, and expression of COX-2, a pro-inflammatory enzyme. This suppression was well correlated with the inhibitory effect of auranofin on the homodimerization of TLR4 induced by an agonist. Furthermore, auranofin inhibited NF-kappaB activation induced by MyD88-dependent downstream signaling components of TLR4, MyD88, IKKbeta, and p65. IRF3 activation induced by MyD88-independent signaling components, TRIF and TBK1, was also downregulated by auranofin. Our results first demonstrate that auranofin suppresses the multiple steps in TLR4 signaling, especially the homodimerization of TLR4. The results suggest that the suppression of TLR4 activity by auranofin may be the molecular mechanism through which auranofin exerts anti-rheumatic activity.
Collapse
Affiliation(s)
- Hyung S Youn
- USDA, ARS, Western Human Nutrition Research Center, Department of Nutrition, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
14
|
Erdogan E, Lamark T, Stallings-Mann M, Pellecchia M, Pellechia M, Thompson EA, Johansen T, Fields AP. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. J Biol Chem 2006; 281:28450-9. [PMID: 16861740 DOI: 10.1074/jbc.m606054200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We recently identified the gold compound aurothiomalate (ATM) as a potent inhibitor of the Phox and Bem1p (PB1)-PB1 domain interaction between protein kinase C (PKC) iota and the adaptor molecule Par6. ATM also blocks oncogenic PKCiota signaling and the transformed growth of human lung cancer cells. Here we demonstrate that ATM is a highly selective inhibitor of PB1-PB1 domain interactions between PKCiota and the two adaptors Par6 and p62. ATM has no appreciable inhibitory effect on other PB1-PB1 domain interactions, including p62-p62, p62-NBR1, and MEKK3-MEK5 interactions. ATM can form thio-gold adducts with cysteine residues on target proteins. Interestingly, PKCiota (and PKCzeta) contains a unique cysteine residue, Cys-69, within its PB1 domain that is not present in other PB1 domain containing proteins. Cys-69 resides within the OPR, PC, and AID motif of PKCiota at the binding interface between PKCiota and Par6 where it interacts with Arg-28 on Par6. Molecular modeling predicts formation of a cysteinyl-aurothiomalate adduct at Cys-69 that protrudes into the binding cleft normally occupied by Par6, providing a plausible structural explanation for ATM inhibition. Mutation of Cys-69 of PKCiota to isoleucine or valine, residues frequently found at this position in other PB1 domains, has little or no effect on the affinity of PKCiota for Par6 but confers resistance to ATM-mediated inhibition of Par6 binding. Expression of the PKCiota C69I mutant in human non-small cell lung cancer cells confers resistance to the inhibitory effects of ATM on transformed growth. We conclude that ATM inhibits cellular transformation by selectively targeting Cys-69 within the PB1 domain of PKCiota.
Collapse
Affiliation(s)
- Eda Erdogan
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP. A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 2006; 66:1767-74. [PMID: 16452237 DOI: 10.1158/0008-5472.can-05-3405] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently showed that atypical protein kinase Ciota (PKCiota) is required for transformed growth of human non-small-cell lung cancer (NSCLC) cells by activating Rac1. Genetic disruption of PKCiota signaling blocks Rac1 activity and transformed growth, indicating that PKCiota is a viable target for development of novel therapeutics for NSCLC. Here, we designed and implemented a novel fluorescence resonance energy transfer-based assay to identify inhibitors of oncogenic PKCiota signaling. This assay was used to identify compounds that disrupt the interaction between PKCiota and its downstream effector Par6, which links PKCiota to Rac1. We identified aurothioglucose (ATG), a gold compound used clinically to treat rheumatoid arthritis, and the related compound, aurothiomalate (ATM), as potent inhibitors of PKCiota-Par6 interactions in vitro (IC(50) approximately 1 micromol/L). ATG blocks PKCiota-dependent signaling to Rac1 and inhibits transformed growth of NSCLC cells. ATG-mediated inhibition of transformation is relieved by expression of constitutively active Rac1, consistent with a mechanism at the level of the interaction between PKCiota and Par6. ATG inhibits A549 cell tumor growth in nude mice, showing efficacy against NSCLC in a relevant preclinical model. Our data show the utility of targeting protein-protein interactions involving PKCiota for antitumor drug development and provide proof of concept that chemical disruption of PKCiota signaling can be an effective treatment for NSCLC. ATG and ATM will be useful reagents for studying PKCiota function in transformation and represent promising new agents for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Melody Stallings-Mann
- Department of Cancer Biology, Comprehensive Cancer Center, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
16
|
Corrigan CJ. Asthma refractory to glucocorticoids: the role of newer immunosuppressants. ACTA ACUST UNITED AC 2005; 1:47-54. [PMID: 14720075 DOI: 10.1007/bf03257162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Asthma is orchestrated by cytokine products of activated T cells. Glucocorticoids are thought to ameliorate asthma at least partly through T cell inhibition. Consequently, other T cell immunomodulatory agents have been assessed for asthma therapy. Since these agents may have serious unwanted effects, attention has been focused on patients with severe asthma refractory to maximal topical, and additional systemic glucocorticoid therapy. Although gold salts show a modest but significant glucocorticoid-sparing effect in severe asthma, lung function is not improved and not all patients respond. The minimum duration of a valid trial of therapy is probably 6 months. Unwanted effects include dermatitis, hepatic dysfunction, proteinuria and interstitial pneumonitis. Meta-analysis of trials of methotrexate in oral glucocorticoid-dependent asthma have confirmed that concomitant weekly methotrexate for a minimum of 3 to 6 months enables significant (approximately 20%) overall reduction in oral glucocorticoid requirements, although only approximately 60% of patients show a significant response. There is little effect on lung function. Blood count and liver function must be monitored. Opportunistic infection is rare but potentially fatal. Cyclosporine, administered for at least 3 months, is effective in only a proportion of patients with oral glucocorticoid-dependent asthma, where it may improve disease severity and/or enable oral glucocorticoid dosage reductions. Regular monitoring of renal function, blood pressure and blood concentrations of cyclosporine is required. The evidence that intravenous immunoglobulin (Ig) is of any benefit in patients with glucocorticoid-dependent asthma is at present equivocal. The therapy is expensive and associated with a high incidence of unwanted effects (fever, aseptic meningitis, urticaria). The macrolides tacrolimus (FK506) and sirolimus (rapamycin) have end effects similar to those of cyclosporine. Brequinar sodium, mycophenolate mofetil and leflunomide are inhibitors of de novo synthesis of pyrimidines and purines, to which T cells are particularly sensitive. Such drugs may in theory be beneficial for therapy of patients with oral glucocorticoid-dependent asthma. Humanized anti-CD4, anti-IgE and anti-interleukin (IL)-5 monoclonal antibodies, and other cytokine inhibitors such as soluble IL-4 receptor have entered early trials. The worth of current immunomodulatory drugs is limited since: (i) not all patients respond, and response cannot be predicted a priori; (ii) the high incidence of unwanted effects makes it difficult to assess overall benefit/risk ratios; (iii) there is increased risk of opportunistic infection and (theoretically) neoplasia; (iv) there are many relative and absolute contraindications to therapy; and (v) there is lack of knowledge about the long-term effects, beneficial or otherwise, of therapy.
Collapse
Affiliation(s)
- Chris J Corrigan
- Department of Respiratory Medicine & Allergy, Guy's, King's and St. Thomas' School of Medicine, Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
17
|
Yamashita M, Ashino S, Oshima Y, Kawamura S, Ohuchi K, Takayanagi M. Inhibition of TPA-induced NF-kappaB nuclear translocation and production of NO and PGE2 by the anti-rheumatic gold compounds. J Pharm Pharmacol 2003; 55:245-51. [PMID: 12631417 DOI: 10.1211/002235702513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Auranofin, aurothioglucose and aurothiomalate (10 microM each) inhibited 12-O-tetradecanoylphorbol 13-acetate (TPA, 16.2 nM)-induced nuclear translocation of nuclear factor-kappa B (NF-kappaB), and production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in rat peritoneal macrophages when the cells were pre-incubated with each gold compound for 20 h. Without pre-incubation for 20 h, aurothioglucose and aurothiomalate, but not auranofin, failed to inhibit the TPA-induced NF-kappaB nuclear translocation and production of NO and PGE(2). Auranofin, aurothioglucose and aurothiomalate did not affect the direct binding of NF-kappaB to the DNA probe. It was suggested that these gold compounds inhibit the TPA-induced production of NO and PGE(2) by inhibiting the NF-kappaB nuclear translocation.
Collapse
Affiliation(s)
- Masamichi Yamashita
- Department of Pathophysiological Science, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The regulation of gene expression by transcription factors is fundamental to the phenotype of all cells. The activated phenotype of cells engaged in inflammatory processes is characterized by induced expression of a diverse set of genes, including cytokines, enzymes and cell adhesion molecules. A relatively small number of inducible transcription factors, particularly NF-kappaB, AP-1, NFATs and STATs, are responsible for the expression of a wide variety of inflammatory phenotypic characteristics and therefore play a central role in the pathogenesis of rheumatic diseases. Each of these transcription factors can be modified by existing anti-rheumatic and anti-inflammatory drugs, although adverse effects and limited efficacy remain problems. The future development of therapeutic agents with specificity for transcription factors, especially NF-kappaB, might lead to safer and more effective treatment.
Collapse
Affiliation(s)
- M L Handel
- Garvan Institute of Medical Research & University of New South Wales, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | |
Collapse
|
19
|
Abstract
The cell adhesion receptors that participate in the extravasation and migration of leucocytes towards inflammatory foci mainly include the selectins and different members of the integrin and immunoglobulin superfamilies. These adhesion receptors mediate the sequential steps of leucocyte-endothelial cell interaction and, together with chemoattractant molecules (e.g., chemokines), direct the influx of inflammatory cells and define the characteristics of the cell infiltrate. Many different drugs, including non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, rheumatoid arthritis disease-modifying agents and phosphodiesterase inhibitors, interfere with the expression and/or function of cell adhesion receptors and this effect accounts for, at least in part, their anti-inflammatory activity. In recent years, novel approaches for the modulation of the cell membrane receptors involved in inflammation have been active areas in pharmaceutical research. Upgraded synthetic blocking compounds, chimeric monoclonal antibodies or improved antisense oligonucleotides represent important advances in this field. The proper development of these novel approaches, as well as other alternative strategies, will allow a better and more specific pharmacological modulation of the inflammatory phenomenon.
Collapse
Affiliation(s)
- F Sánchez-Madrid
- Sección de Inmunología, Hospital de la Princesa, Diego de León 62, 28006 Madrid, Spain.
| | | |
Collapse
|
20
|
Ballinger A, Smith G. COX-2 inhibitors vs. NSAIDs in gastrointestinal damage and prevention. Expert Opin Pharmacother 2001; 2:31-40. [PMID: 11336566 DOI: 10.1517/14656566.2.1.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit production of protective gastric mucosal prostaglandins and also have a direct topical irritant effect. In some patients this results in dyspepsia and development of gastroduodenal erosions and ulceration. The risk of ulcer complications, such as bleeding, perforation and death is increased approximately 4-fold in NSAID users. Patients at high risk of ulcer complications include the elderly, those taking anticoagulants, steroids and aspirin, those with a previous history of peptic ulceration and patients with concomitant serious medical problems. The interaction of NSAIDs with Helicobacter pylori (the major cause of peptic ulceration in non-NSAID users) is controversial and some studies suggest that H. pylori infection may even protect against NSAID-induced ulceration. Selective inhibitors of the inducible cyclooxygenase-2 (COX-2) enzyme spare COX-1 in the gastric mucosa and, hence, do not inhibit production of mucosal prostaglandins. COX-2-selective inhibitors are associated with a significant reduction in gastroduodenal damage compared with traditional NSAIDs. Proton pump inhibitors (PPI) are probably the best agents for healing and prevention of NSAID-induced ulcers. Preliminary studies suggest that COX-2 selective inhibitors, like traditional NSAIDs, may prevent lower gastrointestinal cancer. Further studies are needed but they may be useful in individuals at high risk of certain types of lower gastrointestinal malignancy with increased gastrointestinal tolerability and safety.
Collapse
Affiliation(s)
- A Ballinger
- Digestive Diseases Research Centre, Department of Adult and Paediatric Gastroenterology, St Bartholomew's and The Royal London School of Medicine and Dentistry, 2 Newark Street, London E1 2AT, UK.
| | | |
Collapse
|