1
|
Rassol N, Andersson C, Pettersson D, Al-Awar A, Shubbar E, Kovács A, Åkerström B, Gram M, Helou K, Forssell-Aronsson E. Co-administration with A1M does not influence apoptotic response of 177Lu-octreotate in GOT1 neuroendocrine tumors. Sci Rep 2023; 13:6417. [PMID: 37076494 PMCID: PMC10115890 DOI: 10.1038/s41598-023-32091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Recombinant α1-microglobulin (A1M) is a proposed radioprotector during 177Lu-octreotate therapy of neuroendocrine tumors (NETs). To ensure a maintained therapeutic effect, we previously demonstrated that A1M does not affect the 177Lu-octreotate induced decrease in GOT1 tumor volume. However, the underlying biological events of these findings are still unknown. The aim of this work was to examine the regulation of apoptosis-related genes in GOT1 tumors short-time after i.v. administration of 177Lu-octreotate with and without A1M or A1M alone. Human GOT1 tumor-bearing mice received 30 MBq 177Lu-octreotate or 5 mg/kg A1M or co-treatment with both. Animals were sacrificed after 1 or 7 days. Gene expression analysis of apoptosis-related genes in GOT1 tissue was performed with RT-PCR. In general, similar expression patterns of pro- and anti-apoptotic genes were found after 177Lu-octreotate exposure with or without co-administration of A1M. The highest regulated genes in both irradiated groups compared to untreated controls were FAS and TNFSFRS10B. Administration of A1M alone only resulted in significantly regulated genes after 7 days. Co-administration of A1M did not negatively affect the transcriptional apoptotic response of 177Lu-octreotate in GOT1 tumors.
Collapse
Affiliation(s)
- Nishte Rassol
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Charlotte Andersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amin Al-Awar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Neonatology Unit, Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Khalil Helou
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Spetz J, Rudqvist N, Langen B, Parris TZ, Dalmo J, Schüler E, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy. Nucl Med Biol 2018; 60:11-18. [PMID: 29502008 DOI: 10.1016/j.nucmedbio.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients with neuroendocrine tumors expressing somatostatin receptors are often treated with 177Lu[Lu]-octreotate. Despite being highly effective in animal models, 177Lu[Lu]-octreotate-based therapies in the clinical setting can be optimized further. The aims of the study were to identify and elucidate possible optimization venues for 177Lu[Lu]-octreotate tumor therapy by characterizing transcriptional responses in the GOT1 small intestine neuroendocrine tumor model in nude mice. METHODS GOT1-bearing female BALB/c nude mice were intravenously injected with 15 MBq 177Lu[Lu]-octreotate (non-curative amount) or mock-treated with saline solution. Animals were killed 1, 3, 7 or 41 d after injection. Total RNA was extracted from the tumor samples and profiled using Illumina microarray expression analysis. Differentially expressed genes were identified (treated vs. control) and pathway analysis was performed. RESULTS Distribution of differentially expressed transcripts indicated a time-dependent treatment response in GOT1 tumors after 177Lu[Lu]-octreotate administration. Regulation of CDKN1A, BCAT1 and PAM at 1 d after injection was compatible with growth arrest as the initial response to treatment. Upregulation of APOE and BAX at 3 d, and ADORA2A, BNIP3, BNIP3L and HSPB1 at 41 d after injection suggests first activation and then inhibition of the intrinsic apoptotic pathway during tumor regression and regrowth, respectively. CONCLUSION Transcriptional analysis showed radiation-induced apoptosis as an early response after 177Lu[Lu]-octreotate administration, followed by pro-survival transcriptional changes in the tumor during the regrowth phase. Time-dependent changes in cell cycle and apoptosis-related processes suggest different time points after radionuclide therapy when tumor cells may be more susceptible to additional treatment, highlighting the importance of timing when administering multiple therapeutic agents.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
4
|
Limouris GS, Poulantzas V, Trompoukis N, Karfis I, Chondrogiannis S, Triantafyllou N, Gennimata V, Moulopoulou LE, Patsouris E, Nikou G, Michalaki V, Fragulidis G, Paphiti M, McCready RV, Colletti PM, Cook GJ, Rubello D. Comparison of 111In-[DTPA0]Octreotide Versus Non Carrier Added 177Lu- [DOTA0,Tyr3]-Octreotate Efficacy in Patients With GEP-NET Treated Intra-arterially for Liver Metastases. Clin Nucl Med 2016; 41:194-200. [PMID: 26673241 DOI: 10.1097/rlu.0000000000001096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM In patients with progressive, metastatic neuroendocrine tumors (NET), intra-arterial radionuclide infusions with high activities of In-[DTPA]-octreotide and more recently with non-carrier added (nca) Lu-[DOTA,Tyr]-octreotate have been performed with encouraging results. However, the affinity profiles (IC50) of these radiopeptides for human sst2 receptors are markedly different (In-[DTPA]-octreotide, 22 ± 3.6 nM and nca Lu-[DOTA,Tyr]-octreotate, 1.5 ± 4.0 nM). The total administered activity is determined by organ dose limits (kidneys and bone marrow), and our aim therefore was to compare and evaluate the therapeutic efficacy of both radiopeptides in metastatic NETs. METHODS Thirty patients with gastroenteropancreatic (GEP) somatostatin-positive NETs with liver metastases confirmed on biopsy and In-pentetreotide scan were included. They were treated with In-[DTPA]-octreotide (n = 17) or nca Lu-[DOTA,Tyr]-octreotate (n = 13). Blood samples were collected 2, 4, 8, and 24 hours postadministration to calculate residence time in blood and in red marrow. The maximum percentage uptake in organs and tumors was estimated by region of interest analysis, and tumor dosimetry calculations were performed using OLINDA/EXM/ 1.0 software. RESULTS ncaLu-[DOTA,Tyr3]-octreotate blood radioactivity, expressed as a percentage of the injected dose, was significantly lower than In-[DTPA]-octreotide (P < 0.05), as clearly depicted from the time-activity curves; the background-corrected tumor uptake was significantly higher than In-[DTPA]-octreotide but without any significant difference in other organs (spleen, kidneys, and liver). CONCLUSIONS Using Lu-[DOTA,Tyr]-octreotate, a 3-fold higher absorbed dose to tumor tissue was achieved compared with In-[DTPA] octreotide. Residence time of nca Lu-[DOTA,Tyr]-octreotate results in a significantly higher absorbed dose to bone marrow compared with In-[DTPA]-octreotide. However, a drawback of In-[DTPA]-octreotide therapy is that the number of administrations would need to be almost doubled to achieve an equal therapeutic outcome as compared with Lu-[DOTA,Tyr]-octreotate.
Collapse
Affiliation(s)
- G S Limouris
- From the *Division of Nuclear Medicine-I Radiology Department, "Aretaieion" Hospital, Athens University Medical Faculty, Greece; †Department of Nuclear Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy; ‡Neurologic Clinic 'Aeginiteion' Hospital, Athens University Medical Faculty, Greece; Departments of §Pathology, and ∥II Surgery, Athens University Medical Faculty, Greece; ¶Department of Nuclear Medicine, Royal Sussex County Hosp, Brighton, UK; **Department of Radiology, University of Southern California, Los Angeles, CA; and ††Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Forssell-Aronsson E, Spetz J, Ahlman H. Radionuclide therapy via SSTR: future aspects from experimental animal studies. Neuroendocrinology 2013; 97:86-98. [PMID: 22572526 DOI: 10.1159/000336086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/11/2011] [Indexed: 12/24/2022]
Abstract
There is need for better therapeutic options for neuroendocrine tumours. The aim of this review was to summarize results of experimental animal studies and raise ideas for future radionuclide therapy based on high expression of somatostatin (SS) receptors by many neuroendocrine tumours. In summary, one of the major options is individualized treatment for each patient, including choice of SS analogues, radionuclides and treatment schedules. Other options are methods to increase the treatment effect on tumour tissue (increasing tumour uptake and retention by upregulation of receptor expression and avoiding saturation of receptor binding), methods to increase the tumour tissue response (by choice of radionuclides, SS analogues or combined therapies), and methods to reduce side effects (diminished uptake and retention in critical organs and reduced normal tissue response). Furthermore, combination therapy with other radiopharmaceuticals, cytotoxic drugs or radiosensitizers can be considered to enhance the effects of radiolabelled SS analogues.
Collapse
Affiliation(s)
- Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
6
|
John BJ, Davidson BR. Treatment options for unresectable neuroendocrine liver metastases. Expert Rev Gastroenterol Hepatol 2012; 6:357-69. [PMID: 22646257 DOI: 10.1586/egh.11.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic metastases develop in 85% of patients with gastroenteropancreatic neuroendocrine tumors. Radical surgery, which involves resection of the primary and liver metastases, is the mainstay of treatment, with 60-70% 5-year survival and 35% 10-year survival rates. However, less than 15% of neuroendocrine tumor liver metastases (NETLMs) are resectable, owing either to multifocality or the inability to preserve sufficient parenchyma following resection. This article deals with the therapeutic modalities available for nonresectable liver metastases, and the therapeutic options available for management of nonresectable NETLMs are discussed. Targeted therapies for NETLMs include hepatic artery embolization, transcatheter arterial chemoembolization, radiolabeled/drug-eluting microspheres, radiofrequency ablation, cryoablation and phenol injection. Hepatic artery embolization/transcatheter arterial chemoembolization is associated with 75-100% symptom relief and an objective tumor response varying from 33 to 80%. Other modalities, such as biotherapy, peptide receptor therapy and chemotherapy, target both the primary and metastatic disease. Their effects on NETLMs as a subgroup have not been evaluated. Various therapeutic options are available for the treatment of unresectable NETLMs. Most offer significant symptomatic relief, with only a few comparative studies showing survival benefit. Most of the available evidence is based on retrospective and prospective case series rather than randomized controlled trials. Well-designed studies on existing treatment modalities and the search for newer therapeutic options are required.
Collapse
Affiliation(s)
- Biku Joseph John
- HPB and Liver Transplant Surgery and Neuroendocrine Unit, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | | |
Collapse
|
7
|
Selective hepatic arterial infusion of In-111-DTPA-Phe1-octreotide in neuroendocrine liver metastases. Eur J Nucl Med Mol Imaging 2008; 35:1827-37. [DOI: 10.1007/s00259-008-0779-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Accepted: 03/07/2008] [Indexed: 01/12/2023]
|
8
|
Cecconi D, Donadelli M, Rinalducci S, Zolla L, Scupoli MT, Scarpa A, Palmieri M, Righetti PG. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A. Proteomics 2007; 7:1644-53. [PMID: 17443844 DOI: 10.1002/pmic.200600811] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.
Collapse
Affiliation(s)
- Daniela Cecconi
- Department of Science and Technologies, Section of Biochemical Methodologies, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neuroendocrine tumors (NETs) constitute a heterogeneous group of neoplasms that originate from endocrine glands such as the pituitary, the parathyroids, and the (neuroendocrine) adrenal, as well as endocrine islets within glandular tissue (thyroid or pancreatic) and cells dispersed between exocrine cells, such as endocrine cells of the digestive (gastroenteropancreatic) and respiratory tracts. Conventionally, NETs may present with a wide variety of functional or nonfunctional endocrine syndromes and may be familial and have other associated tumors. Assessment of specific or general tumor markers offers high sensitivity in establishing the diagnosis and can also have prognostic significance. Imaging modalities include endoscopic ultrasonography, computed tomography and magnetic resonance imaging, and particularly, scintigraphy with somatostatin analogs and metaiodobenzylguanidine. Successful treatment of disseminated NETs requires a multimodal approach; radical tumor surgery may be curative but is rarely possible. Well-differentiated and slow-growing gastroenteropancreatic tumors should be treated with somatostatin analogs or alpha-interferon, with chemotherapy being reserved for poorly differentiated and progressive tumors. Therapy with radionuclides may be used for tumors exhibiting uptake to a diagnostic scan, either after surgery to eradicate microscopic residual disease or later if conventional treatment or biotherapy fails. Maintenance of the quality of life should be a priority, particularly because patients with disseminated disease may experience prolonged survival.
Collapse
Affiliation(s)
- Gregory A Kaltsas
- Department of Endocrinology, St Bartholomew's Hospital, London EC1A 7BE, United Kingdom
| | | | | |
Collapse
|
10
|
Kaltsas G, Mukherjee JJ, Plowman PN, Grossman AB. The role of chemotherapy in the nonsurgical management of malignant neuroendocrine tumours. Clin Endocrinol (Oxf) 2001; 55:575-87. [PMID: 11894967 DOI: 10.1046/j.1365-2265.2001.01396.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- G Kaltsas
- Department of Clinical Oncology-Radiotherapy, St Bartholomew's Hospital, London, UK
| | | | | | | |
Collapse
|
11
|
Mercatante DR, Bortner CD, Cidlowski JA, Kole R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. analysis of apoptosis and cell death. J Biol Chem 2001; 276:16411-7. [PMID: 11278482 DOI: 10.1074/jbc.m009256200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells.
Collapse
Affiliation(s)
- D R Mercatante
- Lineberger Comprehensive Cancer Center and the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|