1
|
Willet AH, Chen JS, Ren L, Gould KL. Membrane binding of endocytic myosin-1s is inhibited by a class of ankyrin repeat proteins. Mol Biol Cell 2023; 34:br17. [PMID: 37531259 PMCID: PMC10559312 DOI: 10.1091/mbc.e23-06-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Myosin-1s are monomeric actin-based motors that function at membranes. Myo1 is the single myosin-1 isoform in Schizosaccharomyces pombe that works redundantly with Wsp1-Vrp1 to activate the Arp2/3 complex for endocytosis. Here, we identified Ank1 as an uncharacterized cytoplasmic Myo1 binding partner. We found that in ank1Δ cells, Myo1 dramatically redistributed from endocytic patches to decorate the entire plasma membrane and endocytosis was defective. Biochemical analysis and structural predictions suggested that the Ank1 ankyrin repeats bind the Myo1 lever arm and the Ank1 acidic tail binds the Myo1 TH1 domain to prevent TH1-dependent Myo1 membrane binding. Indeed, Ank1 overexpression precluded Myo1 membrane localization and recombinant Ank1 reduced purified Myo1 liposome binding in vitro. Based on biochemical and cell biological analyses, we propose budding yeast Ank1 and human OSTF1 are functional Ank1 orthologs and that cytoplasmic sequestration by small ankyrin repeat proteins is a conserved mechanism regulating myosin-1s in endocytosis.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
2
|
Willet AH, Chen JS, Ren L, Gould KL. Membrane binding of endocytic myosin-1s is inhibited by a class of ankyrin repeat proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538419. [PMID: 37163016 PMCID: PMC10168314 DOI: 10.1101/2023.04.26.538419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Myosin-1s are monomeric actin-based motors that function at membranes. Myo1 is the single myosin-1 isoform in Schizosaccharomyces pombe that works redundantly with Wsp1-Vrp1 to activate the Arp2/3 complex for endocytosis. Here, we identified Ank1 as an uncharacterized cytoplasmic Myo1 binding partner. We found that in ank1Δ cells, Myo1 dramatically redistributed from endocytic patches to decorate the entire plasma membrane and endocytosis was defective. Biochemical analysis and structural predictions suggested that the Ank1 ankyrin repeats bind the Myo1 lever arm and the Ank1 acidic tail binds the Myo1 TH1 domain to prevent TH1-dependent Myo1 membrane binding. Indeed, Ank1 over-expression precluded Myo1 membrane localization and recombinant Ank1 blocked purified Myo1 liposome binding in vitro. Based on biochemical and cell biology analyses, we propose budding yeast Ank1 and human OSTF1 are functional Ank1 orthologs and that cytoplasmic sequestration by small ankyrin repeat proteins is a conserved mechanism regulating myosin-1s in endocytosis. Summary Fission yeast long-tailed myosin-1 binds Ank1. Ank1 ankyrin repeats associate with the Myo1 lever arm and Ank1 acidic tail binds the Myo1 TH1 domain to inhibit Myo1 membrane binding. Ank1 orthologs exists in budding yeast (Ank1) and humans (OSTF1).
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
3
|
Baker K, Geeves MA, Mulvihill DP. Acetylation stabilises calmodulin-regulated calcium signalling. FEBS Lett 2022; 596:762-771. [PMID: 35100446 PMCID: PMC9303947 DOI: 10.1002/1873-3468.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
Calmodulin is a conserved calcium signalling protein that regulates a wide range of cellular functions. Amino‐terminal acetylation is a ubiquitous post‐translational modification that affects the majority of human proteins, to stabilise structure, as well as regulate function and proteolytic degradation. Here, we present data on the impact of amino‐terminal acetylation upon structure and calcium signalling function of fission yeast calmodulin. We show that NatA‐dependent acetylation stabilises the helical structure of the Schizosaccharomyces pombe calmodulin, impacting its ability to associate with myosin at endocytic foci. We go on to show that this conserved modification impacts both the calcium‐binding capacity of yeast and human calmodulins. These findings have significant implications for research undertaken into this highly conserved essential protein.
Collapse
Affiliation(s)
- Karen Baker
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
4
|
Barger SR, James ML, Pellenz CD, Krendel M, Sirotkin V. Human myosin 1e tail but not motor domain replaces fission yeast Myo1 domains to support myosin-I function during endocytosis. Exp Cell Res 2019; 384:111625. [PMID: 31542284 DOI: 10.1016/j.yexcr.2019.111625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 10/26/2022]
Abstract
In both unicellular and multicellular organisms, long-tailed class I myosins function in clathrin-mediated endocytosis. Myosin 1e (Myo1e) in vertebrates and Myo1 in fission yeast have similar domain organization, yet whether these proteins or their individual protein domains are functionally interchangeable remains unknown. In an effort to assess functional conservation of class I myosins, we tested whether human Myo1e could replace Myo1 in fission yeast Schizosaccharomyces pombe and found that it was unable to substitute for yeast Myo1. To determine if any individual protein domain is responsible for the inability of Myo1e to function in yeast, we created human-yeast myosin-I chimeras. By functionally testing these chimeric myosins in vivo, we concluded that the Myo1e motor domain is unable to function in yeast, even when combined with the yeast Myo1 tail and a full complement of yeast regulatory light chains. Conversely, the Myo1e tail, when attached to the yeast Myo1 motor domain, supports localization to endocytic actin patches and partially rescues the endocytosis defect in myo1Δ cells. Further dissection showed that both the TH1 and TH2-SH3 domains in the human Myo1e tail are required for localization and function of chimeric myosin-I at endocytic sites. Overall, this study provides insights into the role of individual myosin-I domains, expands the utility of fission yeast as a simple model system to study the effects of disease-associated MYO1E mutations, and supports a model of co-evolution between a myosin motor and its actin track.
Collapse
Affiliation(s)
- Sarah R Barger
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael L James
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Christopher D Pellenz
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Baker K, Gyamfi IA, Mashanov GI, Molloy JE, Geeves MA, Mulvihill DP. TORC2-Gad8-dependent myosin phosphorylation modulates regulation by calcium. eLife 2019; 8:e51150. [PMID: 31566560 PMCID: PMC6802964 DOI: 10.7554/elife.51150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023] Open
Abstract
Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.
Collapse
Affiliation(s)
- Karen Baker
- School of BiosciencesUniversity of KentCanterburyUnited Kingdom
| | - Irene A Gyamfi
- School of BiosciencesUniversity of KentCanterburyUnited Kingdom
| | | | | | | | | |
Collapse
|
6
|
A Novel Role of Fungal Type I Myosin in Regulating Membrane Properties and Its Association with d-Amino Acid Utilization in Cryptococcus gattii. mBio 2019; 10:mBio.01867-19. [PMID: 31455652 PMCID: PMC6712397 DOI: 10.1128/mbio.01867-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus gattii, one of the etiological agents of cryptococcosis, can be distinguished from its sister species Cryptococcus neoformans by growth on d-amino acids. C. gattiiMYO5 affected the growth of C. gattii on d-amino acids. The myo5Δ cells accumulated high levels of various substrates from outside the cells, and excessively accumulated d-amino acids appeared to have caused toxicity in the myo5Δ cells. We provide evidence on the alteration of membrane properties in the myo5Δ mutants. Additionally, alteration in the myo5Δ membrane permeability causing higher substrate accumulation is associated with the changes in the sterol distribution. Furthermore, myosin-I in three other yeasts also manifested a similar role in substrate accumulation. Thus, while fungal myosin-I may function as a classical myosin-I, it has hitherto unknown additional roles in regulating membrane permeability. Since deletion of fungal myosin-I causes significantly elevated susceptibility to multiple antifungal drugs, it could serve as an effective target for augmentation of fungal therapy. We found a novel role of Myo5, a type I myosin (myosin-I), and its fortuitous association with d-amino acid utilization in Cryptococcus gattii. Myo5 colocalized with actin cortical patches and was required for endocytosis. Interestingly, the myo5Δ mutant accumulated high levels of d-proline and d-alanine which caused toxicity in C. gattii cells. The myo5Δ mutant also accumulated a large set of substrates, such as membrane-permeant as well as non-membrane-permeant dyes, l-proline, l-alanine, and flucytosine intracellularly. Furthermore, the efflux rate of fluorescein was significantly increased in the myo5Δ mutant. Importantly, the endocytic defect of the myo5Δ mutant did not affect the localization of the proline permease and flucytosine transporter. These data indicate that the substrate accumulation phenotype is not solely due to a defect in endocytosis, but the membrane properties may have been altered in the myo5Δ mutant. Consistent with this, the sterol staining pattern of the myo5Δ mutant was different from that of the wild type, and the mutant was hypersensitive to amphotericin B. It appears that the changes in sterol distribution may have caused altered membrane permeability in the myo5Δ mutant, allowing increased accumulation of substrate. Moreover, myosin-I mutants generated in several other yeast species displayed a similar substrate accumulation phenotype. Thus, fungal type I myosin appears to play an important role in regulating membrane permeability. Although the substrate accumulation phenotype was detected in strains with mutations in the genes involved in actin nucleation, the phenotype was not shared in all endocytic mutants, indicating a complicated relationship between substrate accumulation and endocytosis.
Collapse
|
7
|
Ueda EI, Kashiwazaki J, Inoué S, Mabuchi I. Fission yeast Adf1 is necessary for reassembly of actin filaments into the contractile ring during cytokinesis. Biochem Biophys Res Commun 2018; 506:330-338. [DOI: 10.1016/j.bbrc.2018.07.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
|
8
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Imada K, Nakamura T. The exocytic Rabs Ypt3 and Ypt2 regulate the early step of biogenesis of the spore plasma membrane in fission yeast. Mol Biol Cell 2016; 27:3317-3328. [PMID: 27630265 PMCID: PMC5170864 DOI: 10.1091/mbc.e16-03-0162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/07/2016] [Indexed: 11/24/2022] Open
Abstract
Two Rabs, Ypt3 and Ypt2, regulating the trafficking of Golgi-derived secretory vesicles have key roles in biogenesis of the spore plasma membrane in fission yeast. During sporulation, the Rabs and secretory vesicles relocalize at the meiotic spindle pole body, where spore plasma membrane formation subsequently initiates. During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood. Here a genetic screen for sporulation-deficient mutations identified Ypt3, a Rab-family small GTPase known to function in the exocytic pathway. The ypt3-ki8 mutant showed defects in both the initiation of FSM biogenesis and FSM expansion. We also show that a mutation in Ypt2, another Rab protein that may function in the same pathway as Ypt3, compromises the initiation of FSM formation. As meiosis proceeds, both GFP-Ypt3 and GFP-Ypt2 are observed at the SPB and then relocalize to the FSM. Their localizations at the SPB precede FSM formation and depend on the meiotic SPB component Spo13, a putative GDP/GTP exchange factor for Ypt2. Given that Spo13 is essential for initiating FSM formation, these results suggest that two exocytic Rabs, Ypt3 and Ypt2, regulate the initiation of FSM formation on the SPB in concert with Spo13.
Collapse
Affiliation(s)
- Kazuki Imada
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
10
|
Lara-Rojas F, Bartnicki-García S, Mouriño-Pérez RR. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genet Biol 2016; 88:24-34. [DOI: 10.1016/j.fgb.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
11
|
Petrini E, Baillet V, Cridge J, Hogan CJ, Guillaume C, Ke H, Brandetti E, Walker S, Koohy H, Spivakov M, Varga-Weisz P. A new phosphate-starvation response in fission yeast requires the endocytic function of myosin I. J Cell Sci 2015; 128:3707-13. [PMID: 26345368 PMCID: PMC4631780 DOI: 10.1242/jcs.171314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022] Open
Abstract
Endocytosis is essential for uptake of many substances into the cell, but how it links to nutritional signalling is poorly understood. Here, we show a new role for endocytosis in regulating the response to low phosphate in Schizosaccharomyces pombe. Loss of function of myosin I (Myo1), Sla2/End4 or Arp2, proteins involved in the early steps of endocytosis, led to increased proliferation in low-phosphate medium compared to controls. We show that once cells are deprived of phosphate they undergo a quiescence response that is dependent on the endocytic function of Myo1. Transcriptomic analysis revealed a wide perturbation of gene expression with induction of stress-regulated genes upon phosphate starvation in wild-type but not Δmyo1 cells. Thus, endocytosis plays a pivotal role in mediating the cellular response to nutrients, bridging the external environment and internal molecular functions of the cell. Highlighted Article: The endocytic machinery, including the type 1 myosin Myo1, is required to establish a quiescence response to low-phosphate stress in fission yeast.
Collapse
Affiliation(s)
- Edoardo Petrini
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | | | - Jake Cridge
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | | | - Cindy Guillaume
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | - Huiling Ke
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | - Elisa Brandetti
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge CB22 3AT, USA
| | - Hashem Koohy
- Nuclear Dynamics, Babraham Institute, Cambridge CB22 3AT, USA
| | | | | |
Collapse
|
12
|
Class I myosins have overlapping and specialized functions in left-right asymmetric development in Drosophila. Genetics 2015; 199:1183-99. [PMID: 25659376 DOI: 10.1534/genetics.115.174698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left-right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.
Collapse
|
13
|
Encinar del Dedo J, Idrissi FZ, Arnáiz-Pita Y, James M, Dueñas-Santero E, Orellana-Muñoz S, del Rey F, Sirotkin V, Geli MI, Vázquez de Aldana CR. Eng2 is a component of a dynamic protein complex required for endocytic uptake in fission yeast. Traffic 2014; 15:1122-42. [PMID: 25040903 DOI: 10.1111/tra.12198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2-GFP dynamics did not match the pattern of other endocytic proteins. Eng2-GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3-YFP, a WASP-interacting protein, interacted with Eng2 by co-immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.
Collapse
Affiliation(s)
- Javier Encinar del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stark BC, James ML, Pollard LW, Sirotkin V, Lord M. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. PLoS One 2013; 8:e79593. [PMID: 24244528 PMCID: PMC3828377 DOI: 10.1371/journal.pone.0079593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 12/25/2022] Open
Abstract
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Michael L. James
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Luther W. Pollard
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York - Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew Lord
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
15
|
Yan H, Balasubramanian MK. A Meiotic Actin Ring (MeiAR) Essential for Proper Sporulation in Fission Yeast. J Cell Sci 2012. [DOI: 10.1242/jcs.jcs091561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sporulation is a unique form of cytokinesis that occurs following meiosis II in many yeasts, during which four daughter cells (spores) are generated within a single mother cell. Here we characterize the role of F-actin in the process of sporulation in the fission yeast Schizosaccharomyces pombe. As shown previously, we find that F-actin assembles into 4 ring structures per ascus, referred to as the MeiAR (meiotic actin ring). The actin nucleators Arp2/3 and formin-For3 assemble into ring structures that overlap with Meu14, a protein known to assemble into the so-called leading edge, a ring structure that is known to guide forespore membrane assembly. Interestingly, F-actin makes rings that occupy a larger region behind the leading edge ring. Time-lapse microscopy showed that the MeiAR assembles near the spindle pole bodies and undergoes an expansion in diameter during the early stages of meiosis II, followed by closure in later stages of meiosis II. MeiAR closure completes the process of forespore membrane assembly. Loss of MeiAR leads to excessive assembly of forespore membranes with a deformed appearance. The rate of closure of the MeiAR is dictated by the function of the Septation Initiation Network (SIN). We conclude that the MeiAR ensures proper targeting of the membrane biogenesis machinery to the leading edge, thereby ensuring the formation of spherically shaped spores.
Collapse
|
16
|
Kashiwazaki J, Yamasaki Y, Itadani A, Teraguchi E, Maeda Y, Shimoda C, Nakamura T. Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis. Mol Biol Cell 2011; 22:3658-70. [PMID: 21832151 PMCID: PMC3183020 DOI: 10.1091/mbc.e11-03-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission yeast sporulation seems to accompany a dynamic alteration of membrane traffic pathways in which the destination of secretory vesicles changes from the plasma membrane to the developing spore membrane. Evidence shows that endocytosis is responsible for this alteration in traffic pathways via the relocalization of syntaxin 1. Syntaxin is a component of the target soluble N-ethylmaleimide–sensitive factor attachment protein receptor complex, which is responsible for fusion of membrane vesicles at the target membrane. The fission yeast syntaxin 1 orthologue Psy1 is essential for both vegetative growth and spore formation. During meiosis, Psy1 disappears from the plasma membrane (PM) and dramatically relocalizes on the nascent forespore membrane, which becomes the PM of the spore. Here we report the molecular details and biological significance of Psy1 relocalization. We find that, immediately after meiosis I, Psy1 is selectively internalized by endocytosis. In addition, a meiosis-specific signal induced by the transcription factor Mei4 seems to trigger this internalization. The internalization of many PM proteins is facilitated coincident with the initiation of meiosis, whereas Pma1, a P-type ATPase, persists on the PM even during the progression of meiosis II. Ergosterol on the PM is also important for the internalization of PM proteins in general during meiosis. We consider that during meiosis in Schizosaccharomyces pombe cells, the characteristics of endocytosis change, thereby facilitating internalization of Psy1 and accomplishing sporulation.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Crawley SW, Liburd J, Shaw K, Jung Y, Smith SP, Côté GP. Identification of calmodulin and MlcC as light chains for Dictyostelium myosin-I isozymes. Biochemistry 2011; 50:6579-88. [PMID: 21671662 DOI: 10.1021/bi2007178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
18
|
Sammons MR, James ML, Clayton JE, Sladewski TE, Sirotkin V, Lord M. A calmodulin-related light chain from fission yeast that functions with myosin-I and PI 4-kinase. J Cell Sci 2011; 124:2466-77. [PMID: 21693583 DOI: 10.1242/jcs.067850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fission yeast myosin-I (Myo1p) not only associates with calmodulin, but also employs a second light chain called Cam2p. cam2Δ cells exhibit defects in cell polarity and growth consistent with a loss of Myo1p function. Loss of Cam2p leads to a reduction in Myo1p levels at endocytic patches and a 50% drop in the rates of Myo1p-driven actin filament motility. Thus, Cam2p plays a significant role in Myo1p function. However, further studies indicated the existence of an additional Cam2p-binding partner. Cam2p was still present at cortical patches in myo1Δ cells (or in myo1-IQ2 mutants, which lack an intact Cam2p-binding motif), whereas a cam2 null (cam2Δ) suppressed cytokinesis defects of an essential light chain (ELC) mutant known to be impaired in binding to PI 4-kinase (Pik1p). Binding studies revealed that Cam2p and the ELC compete for Pik1p. Cortical localization of Cam2p in the myo1Δ background relied on its association with Pik1p, whereas overexpression studies indicated that Cam2p, in turn, contributes to Pik1p function. The fact that the Myo1p-associated defects of a cam2Δ mutant are more potent than those of a myo1-IQ2 mutant suggests that myosin light chains can contribute to actomyosin function both directly and indirectly (via phospholipid synthesis at sites of polarized growth).
Collapse
Affiliation(s)
- Matthew R Sammons
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
It is now quarter of a century since the actin cytoskeleton was first described in the fission yeast, Schizosaccharomyces pombe. Since then, a substantial body of research has been undertaken on this tractable model organism, extending our knowledge of the organisation and function of the actomyosin cytoskeleton in fission yeast and eukaryotes in general. Yeast represents one of the simplest eukaryotic model systems that has been characterised to date, and its genome encodes genes for homologues of the majority of actin regulators and actin-binding proteins found in metazoan cells. The ease with which diverse methodologies can be used, together with the small number of myosins, makes fission yeast an attractive model system for actomyosin research and provides the opportunity to fully understand the biochemical and functional characteristics of all myosins within a single cell type. In this Commentary, we examine the differences between the five S. pombe myosins, and focus on how these reflect the diversity of their functions. We go on to examine the role that the actin cytoskeleton plays in regulating the myosin motor activity and function, and finally explore how research in this simple unicellular organism is providing insights into the substantial impacts these motors can have on development and viability in multicellular higher-order eukaryotes.
Collapse
Affiliation(s)
- Daniel A East
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | |
Collapse
|
20
|
Kovar DR, Sirotkin V, Lord M. Three's company: the fission yeast actin cytoskeleton. Trends Cell Biol 2011; 21:177-87. [PMID: 21145239 PMCID: PMC3073536 DOI: 10.1016/j.tcb.2010.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/22/2010] [Accepted: 11/04/2010] [Indexed: 11/20/2022]
Abstract
How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly challenging in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review we explore recent studies in fission yeast that help unravel how different actin structures operate in cells.
Collapse
Affiliation(s)
- David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
21
|
Nakano K, Kuwayama H, Kawasaki M, Numata O, Takaine M. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Cytoskeleton (Hoboken) 2010; 67:373-82. [PMID: 20517925 DOI: 10.1002/cm.20451] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin is widely expressed in eukaryotes and plays a central role in reorganizing the actin cytoskeleton by disassembling actin filaments. The ADF-homologous domain (ADF-H) is conserved in several other actin-modulating proteins such as twinfilin, Abp1/drebrin, and coactosin. Although these proteins interact with actin via ADF-H, their effects on actin are not identical to each other. Here, we report a novel ADF/cofilin-super family protein, Gmf1 (Glia maturation factor-like protein 1), from the fission yeast Schizosaccharomyces pombe. Gmf1 is a component of actin patches, which are located on the cell cortex and required for endocytosis, and may be involved in the control of the disassembly of actin patches since its overexpression diminishes them. We provide evidence that Gmf1 binds weakly if at all to actin, but it associates with actin-related protein (Arp) 2/3 complex and suppresses its functions such as the promotion of actin polymerization and branching filaments. Importantly, Arp2/3 complex-suppressing activity is conserved among GMF-family proteins from other organisms. Given the functional plasticity of ADF-H, GMF-family proteins possibly have changed their target from conventional actin to Arps through molecular evolution.
Collapse
Affiliation(s)
- Kentaro Nakano
- Department of Structural Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
22
|
Doyle A, Martín-García R, Coulton AT, Bagley S, Mulvihill DP. Fission yeast Myo51 is a meiotic spindle pole body component with discrete roles during cell fusion and spore formation. J Cell Sci 2009; 122:4330-40. [PMID: 19887589 DOI: 10.1242/jcs.055202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Class V myosins are dimeric actin-associated motor proteins that deliver cellular cargoes to discrete cellular locations. Fission yeast possess two class V myosins, Myo51 and Myo52. Although Myo52 has been shown to have roles in vacuole distribution, cytokinesis and cell growth, Myo51 has no as yet discernible function in the vegetative life cycle. Here, we uncover distinct functions for this motor protein during mating and meiosis. Not only does Myo51 transiently localise to a foci at the site of cell fusion upon conjugation, but overexpression of the Myo51 globular tail also leads to disruption of cell fusion. Upon completion of meiotic prophase Myo51 localises to the outside of the spindle pole bodies (SPBs), where it remains until completion of meiosis II. Association of Myo51 with SPBs is not dependent upon actin or the septation initiation network (SIN); however, it is dependent on a stable microtubule cytoskeleton and the presence of the Cdc2-CyclinB complex. We observe a rapid and dynamic exchange of Myo51 at the SPB during meiosis I but not meiosis II. Finally, we show that Myo51 has an important role in regulating spore formation upon completion of meiosis.
Collapse
Affiliation(s)
- Alex Doyle
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | |
Collapse
|
23
|
Attanapola SL, Alexander CJ, Mulvihill DP. Ste20-kinase-dependent TEDS-site phosphorylation modulates the dynamic localisation and endocytic function of the fission yeast class I myosin, Myo1. J Cell Sci 2009; 122:3856-61. [PMID: 19808887 DOI: 10.1242/jcs.053959] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type I myosins are monomeric motors involved in a range of motile and sensory activities in different cell types. In simple unicellular eukaryotes, motor activity of class I myosins is regulated by phosphorylation of a conserved 'TEDS site' residue within the motor domain. The mechanism by which this phosphorylation event affects the cellular function of each myosin I remains unclear. The fission yeast myosin I, Myo1, activates Arp2/3-dependent polymerisation of cortical actin patches and also regulates endocytosis. Using mutants and Myo1-specific antibodies, we show that the phosphorylation of the Myo1 TEDS site (serine 361) plays a crucial role in regulating this protein's dynamic localisation and cellular function. We conclude that although phosphorylation of serine 361 does not affect the ability of this motor protein to promote actin polymerisation, it is required for Myo1 to recruit to sites of endocytosis and function during this process.
Collapse
Affiliation(s)
- Sheran L Attanapola
- Cell and Developmental Biology Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
24
|
Takaine M, Mabuchi I. Properties of actin from the fission yeast Schizosaccharomyces pombe and interaction with fission yeast profilin. J Biol Chem 2007; 282:21683-94. [PMID: 17533155 DOI: 10.1074/jbc.m611371200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
25
|
García P, Tajadura V, García I, Sánchez Y. Role of Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 2007; 23:1031-43. [PMID: 17072882 DOI: 10.1002/yea.1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rho family of GTPases are highly conserved molecular switches that control some of the most fundamental processes of cell biology, including morphogenesis, vesicular transport, cell division and motility. Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to extracellular stimuli. In fission yeast, there are seven Dbl-related GEFs and they activate six Rho-type GTPases within a particular spatio-temporal context. The failure to do so might have consequences reflected in aberrant phenotypes and in some cases lead to cell death. In this review, we briefly summarize the role of Rho GTPases and Rho-GEFs in the establishment and maintenance of cell polarity and cell integrity in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
26
|
Itadani A, Nakamura T, Shimoda C. Localization of Type I Myosin and F-actin to the Leading Edge Region of the Forespore Membrane in Schizosaccharomyces pombe. Cell Struct Funct 2006; 31:181-95. [PMID: 17202724 DOI: 10.1247/csf.06027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myo1, a heavy chain of type I myosin of the fission yeast Schizosaccharomyces pombe, is essential for sporulation. Here we have analyzed the expression, localization and cellular function of the type I myosin light chain calmodulin, Cam2, encoded by cam2(+). Transcription of cam2(+) was constitutive and markedly enhanced in meiosis. The cam2 null mutant was viable and completed sporulation normally at 28 degrees C, but formed four-spored asci poorly at 34 degrees C. In those sporulation-defective cells, the forespore membrane was formed abnormally. A Cam2-GFP fusion protein accumulated at the cell poles in interphase cells and at the medial septation site in postmitotic cells, colocalizing with Myo1 and F-actin patches. During the mating process, a single Cam2-GFP dot was detected at the tip of the mating projection. During meiosis-I, the Cam2-GFP dots dispersed into the cell periphery and the cytoplasm. At metaphase-II, intense Cam2-GFP signals appeared near Meu14 rings which were formed at the leading edge of expanding forespore membranes. This localization of Cam2 was dependent upon Myo1; and sporulation defect of cam2Delta at 34 degrees C was alleviated by overexpressing Myo1DeltaIQ. These results suggest a close relationship between Cam2 and Myo1. In addition, both F-actin and Myo1 localized with Cam2 in the leading edge region. In summary, type I myosin and F-actin accumulate at the leading edge area of the forespore membrane and may play a pivotal role in its assembly.
Collapse
Affiliation(s)
- Akiko Itadani
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | |
Collapse
|
27
|
Takeda T, Chang F. Role of fission yeast myosin I in organization of sterol-rich membrane domains. Curr Biol 2005; 15:1331-6. [PMID: 16051179 DOI: 10.1016/j.cub.2005.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/27/2005] [Accepted: 06/13/2005] [Indexed: 11/15/2022]
Abstract
Specialized membrane domains containing lipid rafts are thought to be important for membrane processes such as signaling and trafficking. An unconventional type I myosin has been shown to reside in lipid rafts and function to target a disaccharidase to rafts in brush borders of intestinal mammalian cells. In the fission yeast Schizosaccharomyces pombe, distinct sterol-rich membrane domains are formed at the cell division site and sites of polarized cell growth at cell tips. Here, we show that the sole S. pombe myosin I, myo1p, is required for proper organization of these membrane domains. myo1 mutants lacking the TH1 domain exhibit a uniform distribution of sterol-rich membranes all over the plasma membrane throughout the cell cycle. These effects are independent of endocytosis because myo1 mutants exhibit no endocytic defects. Conversely, overexpression of myo1p induces ectopic sterol-rich membrane domains. Myo1p localizes to nonmotile foci that cluster in sterol-rich plasma membrane domains and fractionates with detergent-resistant membranes. Because the myo1p TH1 domain may bind directly to acidic phospholipids, these findings suggest a model for how type I myosin contributes to the organization of specialized membrane domains.
Collapse
Affiliation(s)
- Tetsuya Takeda
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
28
|
Suda A, Kusama-Eguchi K, Ogawa Y, Watanabe K. Novel actin ring structure in sporulation of Zygosaccharomyces rouxii. MYCOSCIENCE 2005. [DOI: 10.1007/s10267-004-0216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Oberholzer U, Iouk TL, Thomas DY, Whiteway M. Functional characterization of myosin I tail regions in Candida albicans. EUKARYOTIC CELL 2005; 3:1272-86. [PMID: 15470256 PMCID: PMC522603 DOI: 10.1128/ec.3.5.1272-1286.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular motor myosin I is required for hyphal growth in the pathogenic yeast Candida albicans. Specific myosin I functions were investigated by a deletion analysis of five neck and tail regions. Hyphal formation requires both the TH1 region and the IQ motifs. The TH2 region is important for optimal hyphal growth. All of the regions, except for the SH3 and acidic (A) regions that were examined individually, were required for the localization of myosin I at the hyphal tip. Similarly, all of the domains were required for the association of myosin I with pelletable actin-bound complexes. Moreover, the hyphal tip localization of cortical actin patches, identified by both rhodamine-phalloidin staining and Arp3-green fluorescent protein signals, was dependent on myosin I. Double deletion of the A and SH3 domains depolarized the distribution of the cortical actin patches without affecting the ability of the mutant to form hyphae, suggesting that myosin I has distinct functions in these processes. Among the six myosin I tail domain mutants, the ability to form hyphae was strictly correlated with endocytosis. We propose that the uptake of cell wall remodeling enzymes and excess plasma membrane is critical for hyphal formation.
Collapse
Affiliation(s)
- Ursula Oberholzer
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | |
Collapse
|
30
|
Abstract
We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity. Unc45-/Cro1p-/She4p-related (UCS) protein Rng3p restored the full motility and actin-activated Mg-ATPase activity of purified Myo2. The COOH-terminal UCS domain of Rng3p alone restored motility to pure Myo2. Thus, Rng3p contributes directly to the motility activity of native Myo2. Consistent with a role in Myo2 activation, Rng3p colocalizes with Myo2p in the cytokinetic contractile ring. The absence of Rlc1p or mutations in the Myo2p head or Rng3p compromise the in vitro motility of Myo2 and explain the defects in cytokinesis associated with some of these mutations. In contrast, Myo2 with certain temperature-sensitive forms of Cdc4p has normal motility, so these mutations compromise other functions of Cdc4p required for cytokinesis.
Collapse
Affiliation(s)
- Matthew Lord
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
31
|
Carnahan RH, Gould KL. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 2003; 162:851-62. [PMID: 12939254 PMCID: PMC2172828 DOI: 10.1083/jcb.200305012] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinetic actin ring (CAR) formation in Schizosaccharomyces pombe requires two independent actin nucleation pathways, one dependent on the Arp2/3 complex and another involving the formin Cdc12p. Here we investigate the role of the S. pombe Cdc15 homology family protein, Cdc15p, in CAR assembly and find that it interacts with proteins from both of these nucleation pathways. Cdc15p binds directly to the Arp2/3 complex activator Myo1p, which likely explains why actin patches and the Arp2/3 complex fail to be medially recruited during mitosis in cdc15 mutants. Cdc15p also binds directly to Cdc12p. Cdc15p and Cdc12p not only display mutual dependence for CAR localization, but also exist together in a ring-nucleating structure before CAR formation. The disruption of these interactions in cdc15 null cells is likely to be the reason for their complete lack of CARs. We propose a model in which Cdc15p plays a critical role in recruiting and coordinating the pathways essential for the assembly of medially located F-actin filaments and construction of the CAR.
Collapse
Affiliation(s)
- Robert H Carnahan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
32
|
Kurahashi H, Imai Y, Yamamoto M. Tropomyosin is required for the cell fusion process during conjugation in fission yeast. Genes Cells 2002; 7:375-84. [PMID: 11952834 DOI: 10.1046/j.1365-2443.2002.00526.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tropomyosin is an actin-binding protein, which is thought to stabilize actin filaments and influence many aspects of F-actin. In fission yeast, the cdc8 gene encodes tropomyosin, and the gene product Cdc8p is known to be essential for the formation of the F-actin contractile ring and hence for cytokinesis in the mitotic cell cycle. RESULTS We isolated fission yeast mutants that were defective in cell fusion during conjugation. One of them turned out to carry a point mutation in cdc8. We found that the original temperature-sensitive cdc8 mutant frequently failed to undergo cell fusion when mated at a semi-permissive temperature. Additional cdc8 mutants isolated by targeted mutagenesis also showed defects in both cell fusion and cytokinesis. A decrease in the amount of intracellular Cdc8p also affected both, but cell growth was more severely blocked than cell fusion in this case. Immunostaining revealed that Cdc8p was localized as a spot at the cell-to-cell attachment site during conjugation, without overlapping with F-actin patches. CONCLUSIONS Tropomyosin Cdc8p is indispensable for cell fusion during conjugation in fission yeast. However, cell fusion appears to require fewer tropomyosin molecules than cytokinesis. We speculate that tropomyosin may organize a small F-actin-containing organelle at the cell-to-cell contact site in each mating cell, which plays a key role in cell fusion.
Collapse
Affiliation(s)
- Hiroshi Kurahashi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
33
|
Oberholzer U, Marcil A, Leberer E, Thomas DY, Whiteway M. Myosin I is required for hypha formation in Candida albicans. EUKARYOTIC CELL 2002; 1:213-28. [PMID: 12455956 PMCID: PMC118025 DOI: 10.1128/ec.1.2.213-228.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenic yeast Candida albicans can undergo a dramatic change in morphology from round yeast cells to long filamentous cells called hyphae. We have cloned the CaMYO5 gene encoding the only myosin I in C. albicans. A strain with a deletion of both copies of CaMYO5 is viable but cannot form hyphae under all hypha-inducing conditions tested. This mutant exhibits a higher frequency of random budding and a depolarized distribution of cortical actin patches relative to the wild-type strain. We found that polar budding, polarized localization of cortical actin patches, and hypha formation are dependent on a specific phosphorylation site on myosin I, called the "TEDS-rule" site. Mutation of this serine 366 to alanine gives rise to the null mutant phenotype, while a S366D mutation, the product of which mimics a phosphorylated serine, allows hypha formation. However, the S366D mutation still causes a depolarized distribution of cortical actin patches in budding cells, similar to that in the null mutant. The localization of CaMyo5-GFP together with cortical actin patches at the bud and hyphal tips is also dependent on serine 366. Intriguingly, the cortical actin patches in the majority of the hyphae of the mutant expressing Camyo5(S366D) were depolarized, suggesting that although their distribution is dependent on myosin I localization, polarized cortical actin patches may not be required for hypha formation.
Collapse
Affiliation(s)
- U Oberholzer
- Genetics Division, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada.
| | | | | | | | | |
Collapse
|
34
|
Win TZ, Mulvihill DP, Hyams JS. Take five: a myosin class act in fission yeast. CELL MOTILITY AND THE CYTOSKELETON 2002; 51:53-6. [PMID: 11921163 DOI: 10.1002/cm.10021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thein Z Win
- Department of Biology, University College London, London, United Kingdom
| | | | | |
Collapse
|
35
|
Current awareness on yeast. Yeast 2001; 18:1091-8. [PMID: 11481679 DOI: 10.1002/yea.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|