1
|
Razar RM, Qi P, Devos KM, Missaoui AM. Genotyping-by-Sequencing and QTL Mapping of Biomass Yield in Two Switchgrass F 1 Populations (Lowland x Coastal and Coastal x Upland). FRONTIERS IN PLANT SCIENCE 2022; 13:739133. [PMID: 35665173 PMCID: PMC9162799 DOI: 10.3389/fpls.2022.739133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of genetic diversity in switchgrass germplasm can be exploited to capture favorable alleles that increase its range of adaptation and biomass yield. The objectives of the study were to analyze the extent of polymorphism and patterns of segregation distortion in two F1 populations and use the linkage maps to locate QTL for biomass yield. We conducted genotyping-by-sequencing on two populations derived from crosses between the allotetraploid lowland genotype AP13 (a selection from "Alamo") and coastal genotype B6 (a selection from PI 422001) with 285 progeny (AB population) and between B6 and the allotetraploid upland VS16 (a selection from "Summer") with 227 progeny (BV population). As predictable from the Euclidean distance between the parents, a higher number of raw variants was discovered in the coastal × upland BV cross (6 M) compared to the lowland × coastal AB cross (2.5 M). The final number of mapped markers was 3,107 on the BV map and 2,410 on the AB map. More segregation distortion of alleles was seen in the AB population, with 75% distorted loci compared to 11% distorted loci in the BV population. The distortion in the AB population was seen across all chromosomes in both the AP13 and B6 maps and likely resulted from zygotic or post-zygotic selection for increased levels of heterozygosity. Our results suggest lower genetic compatibility between the lowland AP13 and the coastal B6 ecotype than between B6 and the upland ecotype VS16. Four biomass QTLs were mapped in the AB population (LG 2N, 6K, 6N, and 8N) and six QTLs in the BV population [LG 1N (2), 8N (2), 9K, and 9N]. The QTL, with the largest and most consistent effect across years, explaining between 8.4 and 11.5% of the variation, was identified on 6N in the AP13 map. The cumulative effect of all the QTLs explained a sizeable portion of the phenotypic variation in both AB and BV populations and the markers associated with them may potentially be used for the marker-assisted improvement of biomass yield. Since switchgrass improvement is based on increasing favorable allele frequencies through recurrent selection, the transmission bias within individuals and loci needs to be considered as this may affect the genetic gain if the favorable alleles are distorted.
Collapse
Affiliation(s)
- Rasyidah M. Razar
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Genetic Resources and Improvement Unit, RRIM Research Station, Malaysian Rubber Board, Selangor, Malaysia
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Ali M. Missaoui
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Guan C, Zhang H, Zhang L, Li X, Deng J, Jiang T. Construction of Genetic Linkage Maps of Larch (Larix Kaempferi×Larix Gmelini) by Rapd Markers and Mapping of QTLS for Larch. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2699-716. [PMID: 23918062 DOI: 10.1007/s00122-013-2166-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/12/2013] [Indexed: 05/18/2023]
Abstract
Genotyping by sequencing (GBS) is the latest application of next-generation sequencing protocols for the purposes of discovering and genotyping SNPs in a variety of crop species and populations. Unlike other high-density genotyping technologies which have mainly been applied to general interest "reference" genomes, the low cost of GBS makes it an attractive means of saturating mapping and breeding populations with a high density of SNP markers. One barrier to the widespread use of GBS has been the difficulty of the bioinformatics analysis as the approach is accompanied by a high number of erroneous SNP calls which are not easily diagnosed or corrected. In this study, we use a 384-plex GBS protocol to add 30,984 markers to an indica (IR64) × japonica (Azucena) mapping population consisting of 176 recombinant inbred lines of rice (Oryza sativa) and we release our imputation and error correction pipeline to address initial GBS data sparsity and error, and streamline the process of adding SNPs to RIL populations. Using the final imputed and corrected dataset of 30,984 markers, we were able to map recombination hot and cold spots and regions of segregation distortion across the genome with a high degree of accuracy, thus identifying regions of the genome containing putative sterility loci. We mapped QTL for leaf width and aluminum tolerance, and were able to identify additional QTL for both phenotypes when using the full set of 30,984 SNPs that were not identified using a subset of only 1,464 SNPs, including a previously unreported QTL for aluminum tolerance located directly within a recombination hotspot on chromosome 1. These results suggest that adding a high density of SNP markers to a mapping or breeding population through GBS has a great value for numerous applications in rice breeding and genetics research.
Collapse
Affiliation(s)
- Jennifer Spindel
- Department of Plant Breeding and Genetics, Cornell University, 162 Emerson Hall, Ithaca, NY, 14853-1901, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yatabe-Kakugawa Y, Tsutsumi C, Hirayama Y, Tsuneki S, Murakami N, Kato M. Transmission ratio distortion of molecular markers in a doubled haploid population originated from a natural hybrid between Osmunda japonica and O. lancea. JOURNAL OF PLANT RESEARCH 2013; 126:469-482. [PMID: 23224293 DOI: 10.1007/s10265-012-0540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
In ferns, intra-gametophytic selfing occurs as a mode of reproduction where two gametes from the same gametophyte form a completely homozygous sporophyte. Intra-gametophytic selfing is considered to be prevented by lethal or deleterious recessive genes in several diploid species. In order to investigate the modes and tempo of selection acting different developmental stages, doubled haploids obtained from intra-gametophytic selfing within isolated gametophytes of a putative F1 hybrid between Osmunda japonica and O. lancea were analyzed with EST_derived molecular markers, and the distribution pattern of transmission ratio distortion (TRD) along linkage map was clarified. As the results, the markers with skewness were clustered in two linkage groups. For the two highly distorted regions, gametophytes and F2 population were also examined. The markers skewed towards O. japonica on a linkage group (LG_2) showed skewness also in gametophytes, and the TRD was generated in the process of spore formation or growth of gametophytes. Also, selection appeared to be operating in the gametophytic stage. The markers on other linkage group (LG_11) showed highest skewness towards O. lancea in doubled haploids, and it was suggested that the segregation of LG_11 were influenced by zygotic lethality or genotypic evaluation and that some deleterious recessive genes exist in LG_11 and reduce the viability of homozygotes with O. japonica alleles. It is very likely that a region of LG_11were responsible for the low frequencies of intra-gametophytic selfing in O. japonica.
Collapse
Affiliation(s)
- Yoko Yatabe-Kakugawa
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Goodwillie C, Ritland C, Ritland K. THE GENETIC BASIS OF FLORAL TRAITS ASSOCIATED WITH MATING SYSTEM EVOLUTION IN LEPTOSIPHON (POLEMONIACEAE): AN ANALYSIS OF QUANTITATIVE TRAIT LOCI. Evolution 2007. [DOI: 10.1111/j.0014-3820.2006.tb01131.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Carol Goodwillie
- Department of Biology, East Caroline University, Greenville, North Carolina 27858
| | - Carol Ritland
- Faculty of Forestry, The University of British Columbia, Vancounver, British Columbia V6T IZ4, Canada
| | - Kermit Ritland
- Faculty of Forestry, The University of British Columbia, Vancounver, British Columbia V6T IZ4, Canada
| |
Collapse
|
6
|
Goodwillie C, Ritland C, Ritland K. THE GENETIC BASIS OF FLORAL TRAITS ASSOCIATED WITH MATING SYSTEM EVOLUTION IN LEPTOSIPHON (POLEMONIACEAE): AN ANALYSIS OF QUANTITATIVE TRAIT LOCI. Evolution 2006. [DOI: 10.1554/05-471.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang B, Porter AH. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genetics 2005; 168:215-25. [PMID: 15454539 PMCID: PMC1448107 DOI: 10.1534/genetics.104.028118] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colias eurytheme and C. philodice are sister species with broad sympatry in North America. They hybridize frequently and likely share a significant portion of their genomes through introgression. Both taxa have been ecologically well characterized and exploited to address a broad spectrum of evolutionary issues. Using AFLP markers, we constructed the first linkage map of Colias butterflies. The map is composed of 452 markers spanning 2541.7 cM distributed over 51 linkage groups (40 major groups and 11 small groups with 2-4 markers). Statistical tests indicate that these AFLP markers tend to cluster over the map, with the coefficient of variation of interval sizes being 1.236 (95% C.I. is 1.234-1.240). This nonrandom marker distribution can account for the nonequivalence between the number of linkage groups and the actual haploid chromosome number (N = 31). This study presents the initial step for further marker-assisted research on Colias butterflies, including QTL and introgression analyses. Further investigation of the genomes will help us understand better the roles of introgression and natural selection in the evolution of hybridizing species and devise more appropriate strategies to control these pests.
Collapse
Affiliation(s)
- Baiqing Wang
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst 01003, USA.
| | | |
Collapse
|
8
|
Brubaker CL, Brown AHD. The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of theGossypiumG genome. Genome 2003; 46:774-91. [PMID: 14608394 DOI: 10.1139/g03-063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary germplasm pools represent the most accessible source of new alleles for crop improvement, but not all effective alleles are available in the primary germplasm pool, and breeders must sometimes confront the difficulties of introgressing genes from the secondary and tertiary germplasm pools in cotton by using synthetic polyploids as introgression bridges. Two parental Gossypium nelsonii × Gossypium australe AFLP genetic linkage maps were used to identify G genome chromosome-specific molecular markers, which in turn were used to track the fidelity and frequency of G. australe chromosome transmission in a Gossypium hirsutum × G. australe hexaploid bridging family. Conversely, when homoeologous recombination is low, first generation aneuploids are useful adjuncts to genetic linkage mapping. Although locus ordering was not possible, the distribution of AFLP markers among 18 multiple chromosome addition aneuploids identified mapping errors among the G. australe and G. nelsonii linkage groups and assigned non-segregating G. australe AFLPs to linkage groups. Four putatively recombined G. australe chromosomes were identified in 5 of the 18 aneuploids. The G. australe and G. nelsonii genetic linkage maps presented here represent the first AFLP genetic linkage maps for the Gossypium G genome.Key words: Gossypium, G genome, AFLP, cotton, aneuploid.
Collapse
Affiliation(s)
- Curt L Brubaker
- Centre for Plant Diversity Research, CSIRO Plant Industry, Canberra, Australia.
| | | |
Collapse
|
9
|
Douek J, Barki Y, Gateño D, Rinkevich B. Possible cryptic speciationwithin the sea anemone Actinia equina complex detected by AFLP markers. Zool J Linn Soc 2002. [DOI: 10.1046/j.1096-3642.2002.00034.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Knox MR, Ellis THN. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics 2002; 162:861-73. [PMID: 12399396 PMCID: PMC1462271 DOI: 10.1093/genetics/162.2.861] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several plant genetic maps presented in the literature are longer than expected from cytogenetic data. Here we compare F(2) and RI maps derived from a cross between the same two parental lines and show that excess heterozygosity contributes to map inflation. These maps have been constructed using a common set of dominant markers. Although not generally regarded as informative for F(2) mapping, these allowed rapid map construction, and the resulting data analysis has provided information not otherwise obvious when examining a population from only one generation. Segregation distortion, a common feature of most populations and marker systems, found in the F(2) but not the RI, has identified excess heterozygosity. A few markers with a deficiency of heterozygotes were found to map to linkage group V (chromosome 3), which is known to form rod bivalents in this cross. Although the final map length was longer for the F(2) population, the mapped order of markers was generally the same in the F(2) and RI maps. The data presented in this analysis reconcile much of the inconsistency between map length estimates from chiasma counts and genetic data.
Collapse
Affiliation(s)
- M R Knox
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, United Kingdom.
| | | |
Collapse
|
11
|
Yin T, Zhang X, Huang M, Wang M, Zhuge Q, Tu S, Zhu LH, Wu R. Molecular linkage maps of the Populus genome. Genome 2002; 45:541-55. [PMID: 12033623 DOI: 10.1139/g02-013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report molecular genetic linkage maps for an interspecific hybrid population of Populus, a model system in forest-tree biology. The hybrids were produced by crosses between P. deltoides (mother) and P. euramericana (father), which is a natural hybrid of P. deltoides (grandmother) and P. nigra (grandfather). Linkage analysis from 93 of the 450 backcross progeny grown in the field for 15 years was performed using random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and inter-simple sequence repeats (ISSRs). Of a total of 839 polymorphic markers identified, 560 (67%) were testcross markers heterozygous in one parent but null in the other (segregating 1:1), 206 (25%) were intercross dominant markers heterozygous in both parents (segregating 3:1), and the remaining 73 (9%) were 19 non-parental RAPD markers (segregating 1:1) and 54 codominant AFLP markers (segregating 1:1:1:1). A mixed set of the testcross markers, non-parental RAPD markers, and codominant AFLP markers was used to construct two linkage maps, one based on the P. deltoides (D) genome and the other based on P. euramericana (E). The two maps showed nearly complete coverage of the genome, spanning 3801 and 3452 cM, respectively. The availability of non-parental RAPD and codominant AFLP markers as orthologous genes allowed for a direct comparison of the rate of meiotic recombination between the two different parental species. Generally, the rate of meiotic recombination was greater for males than females in our interspecific poplar hybrids. The confounded effect of sexes and species causes the mean recombination distance of orthologous markers to be 11% longer for the father (P. euramericana; interspecific hybrid) than for the mother (P. deltoides; pure species). The linkage maps constructed and the interspecific poplar hybrid population in which clonal replicates for individual genotypes are available present a comprehensive foundation for future genomic studies and quantitative trait locus (QTL) identification.
Collapse
Affiliation(s)
- Tongming Yin
- The Key Laboratory of Forest Tree Genetic Engineering of the State Forestry Administration, Nanjing Forestry University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Howard DJ, Marshall JL, Hampton DD, Britch SC, Draney ML, Chu J, Cantrell RG. The Genetics of Reproductive Isolation: A Retrospective and Prospective Look with Comments on Ground Crickets. Am Nat 2002; 159 Suppl 3:S8-S21. [DOI: 10.1086/338369] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Ford-Lloyd BV, Newbury HJ, Jackson MT, Virk PS. Genetic basis for co-adaptive gene complexes in rice (Oryza sativa L.) landraces. Heredity (Edinb) 2001; 87:530-6. [PMID: 11869343 DOI: 10.1046/j.1365-2540.2001.00937.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One hundred and twenty-two AFLP markers were mapped using an IR64 x Azucena rice doubled-haploid (DH) population. The distribution of these mapped markers was monitored across a set of 48 diverse landraces of rice. Strong statistical associations were observed between 960 of the 7381 possible pairs of markers across the diverse material. These 960 strongly associated pairs of markers mapped to the same chromosomes in only 111 cases. The remaining 849 pairs were the result of association between markers found on different chromosomes. More than 21% of these genetically unlinked but strongly associated markers are not randomly distributed across the genome but instead occupy blocks of DNA on different rice chromosomes. Amongst associated blocks, there has clearly been maintenance of combinations of marker alleles across very diverse germplasm. Analyses have also revealed that markers are found in association with performance for each of four quantitative traits in both the diverse landrace material and a DH mapping population. It is proposed that the present data provide strong evidence for the co-adaptation of geographically distinct landraces and that this has resulted over time in the maintenance of 'adaptive gene complexes' involving agronomically important quantitative traits.
Collapse
Affiliation(s)
- B V Ford-Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
14
|
Brondani C, Brondani RP, Rangel PH, Ferreira ME. Development and mapping of Oryza glumaepatula-derived microsatellite markers in the interspecific cross Oryza glumaepatula x O. sativa. Hereditas 2001; 134:59-71. [PMID: 11525066 DOI: 10.1111/j.1601-5223.2001.00059.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.
Collapse
Affiliation(s)
- C Brondani
- Rice Molecules Genetics and Breeding, Embrapa Arroz e Feijão, Goiânia-GO, Brazil.
| | | | | | | |
Collapse
|
15
|
Sawkins MC, Maass BL, Pengelly BC, Newbury HJ, Ford-Lloyd BV, Maxted N, Smith R. Geographical patterns of genetic variation in two species of Stylosanthes Sw. using amplified fragment length polymorphism. Mol Ecol 2001; 10:1947-58. [PMID: 11555239 DOI: 10.1046/j.0962-1083.2001.01347.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the extent and distribution of genetic diversity within a species is essential for the development of effective conservation strategies. The objective of this study was to assess genetic variation using amplified fragment length polymorphisms (AFLP) in two species of the tropical legume genus Stylosanthes Sw. Annual, S. humilis (2n = 20) and perennial, S. viscosa (2n = 20) are found throughout tropical America, and are sympatric for much of their range of distribution. One hundred and eleven accessions, covering a wide geographical range, were selected for AFLP analysis. Binary data matrices derived from DNA banding patterns were analysed using the software programs NTSYS-PC and ARLEQUIN. Several accessions were found to be misidentified. Of the S. humilis accessions, the overall average similarity value was (0.72) slightly higher than the value obtained for S. viscosa (0.67). Cluster analysis and principal coordinate analysis grouped accessions from both species by geographical origin, with a few exceptions. Analysis of molecular variance (AMOVA) in S. humilis revealed 59.4% of the variation among groups formed from the cluster analysis. This was highly significant (P < 0.001). For S. viscosa AMOVA also revealed more variation among than within groups (66.5%). This was also highly significant (P < 0.001). The majority of accessions of both species conserved ex situ are of Brazilian and Venezuelan origin. This study has identified areas in Central America and Mexico for which novel genetic variation may be found and where conservation activities should be focused.
Collapse
Affiliation(s)
- M C Sawkins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|