1
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Nayyar N, Kaur I, Malhotra P, Bhatnagar RK. Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA. Sci Rep 2017; 7:10902. [PMID: 28883418 PMCID: PMC5589936 DOI: 10.1038/s41598-017-10787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022] Open
Abstract
System level knowledge of alterations in host is crucial to elucidate the molecular events of viral pathogenesis and to develop strategies to block viral establishment and amplification. Here, we applied quantitative proteomics approach to study global proteome changes in the host; Spodoptera frugiperda upon infection by a baculovirus, Spodoptera litura NPV at two stages i.e. 12 h and 72 h post infection. At 12 hpi, >95% of host proteins remained stable, however at 72 hpi, 52% host proteins exhibited downregulation of 2-fold or more. Functional analysis revealed significant upregulation of transposition and proteasomal machinery while translation, transcription, protein export and oxidative phosphorylation pathways were adversely affected. An assessment of perturbed proteome after viral infection and viral miRNA expression led to the identification of 117 genes that are potential targets of 10 viral miRNAs. Using miRNA mimics, we confirmed the down regulation of 9 host genes. The results comprehensively show dynamics of host responses after viral infection.
Collapse
Affiliation(s)
- Nishtha Nayyar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, GKVK, Bellary Road, Bangalore, 560065, India
| | - Inderjeet Kaur
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Using internal ribosome entry sites to facilitate engineering of insect cells and used in secretion proteins production. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus–insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 2015; 96:6-23. [DOI: 10.1099/vir.0.067108-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Salem TZ, Allam WR, Thiem SM. Verifying the stability of selected genes for normalization in Q PCR experiments of Spodoptera frugiperda cells during AcMNPV infection. PLoS One 2014; 9:e108516. [PMID: 25313905 PMCID: PMC4196776 DOI: 10.1371/journal.pone.0108516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022] Open
Abstract
It is challenging to find genes with stable transcripts for use as reference genes for quantitative realtime polymerase chain reaction (qRT-PCR) during viral infection. Autographa californica nucleopolyhedrovirus (AcMNPV) is known to globally shut off host gene transcription in Sf21 cells and to modify their cytoskeletons. In this study, seven host genes were selected for validation as references for gene expression experiments using qRT-PCR. Two of them, ecdysoneless (ECD) and myosin showed stable RNA levels in our previous microarray study at 6, 12, and 24 hpi for both genes and 48 hpi for ECD. The others, actin, tubulin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 28S ribosome (28S), are commonly employed as reference genes for qRT-PCR. Ribosomal protein L35 (L35) gene was selected to test if ribosomal protein genes show stable RNA transcript levels similar to 28S and 18S rRNA and to validate the microarray data. In addition to 28S, previously known to have stable transcript levels, qRT-PCR showed that ECD transcript levels remained constant throughout the time course of AcMNPV infection. Transcripts of cytoskeleton genes such as actin, tubulin, and myosin declined dramatically as the infection progressed. GAPDH and L35 transcripts also declined over time. These results indicate that ECD is a reliable reference gene for qRT-PCR experiments during AcMNPV infection of Spodoptera frugiperda cells. Although 28S could be used as a reference gene for these experiments, it is less useful than ECD because of its abundance, which might make it difficult to establish an accurate baseline value for data analysis.
Collapse
Affiliation(s)
- Tamer Z. Salem
- Department of Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza, Egypt
- * E-mail: (TZS); (SMT)
| | - Walaa R. Allam
- Department of Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Suzanne M. Thiem
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (TZS); (SMT)
| |
Collapse
|
6
|
Singh CP, Vaishna RL, Kakkar A, Arunkumar KP, Nagaraju J. Characterization of antiviral and antibacterial activity ofBombyx moriseroin proteins. Cell Microbiol 2014; 16:1354-65. [DOI: 10.1111/cmi.12294] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 12/30/2022]
Affiliation(s)
- C. P. Singh
- Centre of Excellence for Genetics and Genomics of Silkmoths; Laboratory of Molecular Genetics; Centre for DNA Fingerprinting and Diagnostics; Tuljaguda Complex Nampally Hyderabad 500001 India
| | - R. L. Vaishna
- Centre of Excellence for Genetics and Genomics of Silkmoths; Laboratory of Molecular Genetics; Centre for DNA Fingerprinting and Diagnostics; Tuljaguda Complex Nampally Hyderabad 500001 India
| | - A. Kakkar
- Centre of Excellence for Genetics and Genomics of Silkmoths; Laboratory of Molecular Genetics; Centre for DNA Fingerprinting and Diagnostics; Tuljaguda Complex Nampally Hyderabad 500001 India
| | - K. P. Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths; Laboratory of Molecular Genetics; Centre for DNA Fingerprinting and Diagnostics; Tuljaguda Complex Nampally Hyderabad 500001 India
| | - J. Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths; Laboratory of Molecular Genetics; Centre for DNA Fingerprinting and Diagnostics; Tuljaguda Complex Nampally Hyderabad 500001 India
| |
Collapse
|
7
|
Mainz D, Quadt I, Stranzenbach AK, Voss D, Guarino LA, Knebel-Mörsdorf D. Expression and nuclear localization of the TATA-box-binding protein during baculovirus infection. J Gen Virol 2014; 95:1396-1407. [PMID: 24676420 DOI: 10.1099/vir.0.059949-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-box-binding protein (TBP) plays a key role in initiating eukaryotic transcription and is used by many viruses for viral transcription. We previously reported increased TBP levels during infection with the baculovirus Autographa californica multicapsid nuclear polyhedrovirus (AcMNPV). The TBP antiserum used in that study, however, cross-reacted with a baculoviral protein. Here, we reported that increased amounts of nuclear TBP were detected upon infection of Spodoptera frugiperda and TN-368 cells with a TBP-specific antiserum. TBP levels increased until 72 h post-infection (p.i.), whilst tbp transcripts decreased by 16 h p.i., which suggested a virus-induced influence on the TBP protein levels. To address a potential modification of the TBP degradation pathway during infection, we investigated the possible role of viral ubiquitin. Infection studies with AcMNPV recombinants carrying a mutated viral ubiquitin gene revealed that the TBP increase during infection was not altered. In addition, pulse-chase experiments indicated a high TBP half-life of ~60 h in uninfected cells, suggesting that a virus-induced increase of TBP stability was unlikely. This increase in TBP correlated with a redistribution to nuclear domains resembling sites of viral DNA synthesis. Furthermore, we observed colocalization of TBP with host RNA polymerase (RNAP) II, but only until 8 h p.i., whilst TBP, but not RNAPII, was present in the enlarged replication domains late during infection. Thus, we suggested that AcMNPV adapted a mechanism to accumulate the highly stable cellular TBP at sites of viral DNA replication and transcription.
Collapse
Affiliation(s)
- Daniela Mainz
- Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Ilja Quadt
- Max-Planck-Institute for Neurological Research, 50931 Cologne, Germany.,Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | | | - Daniel Voss
- Max-Planck-Institute for Neurological Research, 50931 Cologne, Germany
| | - Linda A Guarino
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA
| | - Dagmar Knebel-Mörsdorf
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany.,Max-Planck-Institute for Neurological Research, 50931 Cologne, Germany.,Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
8
|
Nguyen Q, Nielsen LK, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses 2013; 5:2721-47. [PMID: 24226166 PMCID: PMC3856412 DOI: 10.3390/v5112721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/25/2023] Open
Abstract
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Collapse
Affiliation(s)
- Quan Nguyen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | |
Collapse
|
9
|
Teng CY, Chang SL, van Oers MM, Wu TY. Enhanced protein secretion from insect cells by co-expression of the chaperone calreticulin and translation initiation factor eIF4E. Mol Biotechnol 2013; 54:68-78. [PMID: 22555850 DOI: 10.1007/s12033-012-9545-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Host protein synthesis is shut down in the lytic baculovirus expression vector system (BEVS). This also affects host proteins involved in routing secretory proteins through the endoplasmic reticulum (ER)-Golgi system. It has been demonstrated that a secretory alkaline phosphatase-EGFP fusion protein (SEFP) can act as a traceable and sensitive secretory reporter protein in BEVS. In this study, a chaperone, calreticulin (CALR), and the translation initiation factor eIF4E were co-expressed with SEFP using a bicistronic baculovirus expression vector. We observed that the intracellular distribution of SEFP in cells co-expressing CALR was different from co-expressing eIF4E. The increased green fluorescence emitted by cells co-expressing CALR had a good correlation with the abundance of intracellular SEFP protein and an unconventional ER expansion. Cells co-expressing eIF4E, on the other hand, showed an increase in extracellular SEAP activity compared to the control. Utilization of these baculovirus expression constructs containing either eIF4E or CALR offers a significant advantage for producing secreted proteins for various biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Chao-Yi Teng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
10
|
Teng CY, van Oers MM, Wu TY. Additive effect of calreticulin and translation initiation factor eIF4E on secreted protein production in the baculovirus expression system. Appl Microbiol Biotechnol 2013; 97:8505-16. [DOI: 10.1007/s00253-013-5098-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
11
|
Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS One 2012; 7:e42462. [PMID: 22860129 PMCID: PMC3409162 DOI: 10.1371/journal.pone.0042462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/09/2012] [Indexed: 02/07/2023] Open
Abstract
Background The impact of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infection on host gene expression in Spodoptera exigua 4th instar larvae was investigated through the use of 454 sequencing-based RNA-seq of cDNA libraries developed from insects challenged with active AcMNPV or heat-inactivated AcMNPV. Methodology/Principal Findings By comparing the two cDNA libraries, we show that 201 host genes are significantly up-regulated and 234 genes are significantly down-regulated by active AcMNPV infection. Down-regulated host genes included genes encoding antimicrobial peptides, namely three gloverin isoforms and an attacin, indicating that the viral infection actively repressed the expression of a portion of the host immune gene repertoire. Another interesting group of down-regulated host genes included genes encoding two juvenile hormone binding proteins and a hexamerin, all of which are involved in juvenile hormone regulation. The expression of these genes was enhanced by the topical application of Juvenile Hormone III (JHIII) in the insects challenged with heat-inactivated AcMNPV. However, infection with the active virus strongly suppresses the expression of these three genes, regardless of the absence or presence of JHIII. Conclusions/Significance Using RNA-seq, we have identified groups of immune-regulated and juvenile hormone-regulated genes that are suppressed by infection with active AcMNPV. This information and further studies on the regulation of host gene expression by AcMNPV will provide the tools needed to enhance the utility of the virus as an effective protein expression system and as an insecticide.
Collapse
|
12
|
Carinhas N, Robitaille AM, Moes S, Carrondo MJT, Jenoe P, Oliveira R, Alves PM. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection. PLoS One 2011; 6:e26444. [PMID: 22039490 PMCID: PMC3196586 DOI: 10.1371/journal.pone.0026444] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/27/2011] [Indexed: 01/24/2023] Open
Abstract
Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC) to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.
Collapse
Affiliation(s)
- Nuno Carinhas
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Aaron Mark Robitaille
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Suzette Moes
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Manuel José Teixeira Carrondo
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paul Jenoe
- Department of Biochemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | - Rui Oliveira
- REQUIMTE, Systems Biology and Engineering Group (SBE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Marques Alves
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
13
|
Salem TZ, Zhang F, Xie Y, Thiem SM. Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology 2011; 412:167-78. [PMID: 21276998 DOI: 10.1016/j.virol.2011.01.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 01/08/2023]
Abstract
Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus and most commonly used virus vector for baculovirus expression vector systems. The effect of AcMNPV infection on host cells is incompletely understood. A microarray based on Spodoptera frugiperda ESTs was used to investigate the impact of AcMNPV on host gene expression in cultured S. frugiperda, Sf21 cells. Most host genes were down-regulated over the time course of infection, although a small number were up-regulated. The most highly up-regulated genes encoded heat shock protein 70s and several poorly characterized proteins. Regulated genes with the highest score identified by functional annotation clustering included primarily products required for protein expression and trafficking in the ER and golgi. All were significantly down-regulated by approximately 12h post-infection. Microarray data were validated by qRT-PCR. This study provides the first comprehensive host transcriptome overview of Sf21 cells during AcMNPV infection.
Collapse
Affiliation(s)
- Tamer Z Salem
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
14
|
Katsuma S, Mita K, Shimada T. ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol 2007; 81:13700-9. [PMID: 17913811 PMCID: PMC2168829 DOI: 10.1128/jvi.01683-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) often play important roles in virus infection. To explore intracellular signaling pathways induced by baculovirus infection, we examined the involvement of MAPKs in Bombyx mori nucleopolyhedrovirus (BmNPV) infection of BmN cells. We found that specific inhibitors of extracellular signal-regulated kinase (ERK) kinase and c-Jun NH(2)-terminal kinase (JNK) significantly reduced occlusion body (OB) formation and budded virus (BV) production. Next, we quantified OB and BV production after applying the inhibitors at different times postinfection (p.i.). The inhibitors significantly reduced OB and BV production to various extents when applied at 12 h p.i., indicating that the reduction of BmNPV infectivity by these inhibitors occurs at the late stage of infection. Also, we observed that these inhibitors markedly repressed or deregulated the expression of delayed early, late, and very late gene products. Western blot analysis using phospho-MAPK-specific antibodies showed that ERK and JNK were activated at the late stage of BmNPV infection. In addition, the magnitude and pattern of MAPK activation were dependent on the multiplicity of infection. To verify the effects of the inhibitors on BmNPV infection, we also attempted to knock down the B. mori genes BmErk and BmJnk, which encode ERK and JNK, respectively. Knockdown of BmErk and BmJnk resulted in the reduced production of OBs and BVs, confirming that BmERK and BmJNK are involved in the BmNPV infection process. Taken together, these results indicate that the activation of MAPK signaling pathways is required for efficient infection by BmNPV.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
15
|
Hefferon KL. Characterization of HCF-1, a determinant of Autographa californica multiple nucleopolyhedrovirus host specificity. INSECT MOLECULAR BIOLOGY 2003; 12:651-658. [PMID: 14986926 DOI: 10.1046/j.1365-2583.2003.00451.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infects a wide variety of insect species. A number of AcMNPV late expression factors that are involved in replication have been identified as playing a role in determining host specificity. Host cell factor-1, or HCF-1, was previously demonstrated to be essential for viral replication in Tn-368 cells. Here we demonstrate that HCF-1 is an early protein and localizes to the cell nucleus. Coprecipitation experiments revealed that HCF-1 interacts with itself but none of the other late expression factors required for replication in Tn-368 cells. HCF-1 mutants were constructed and utilized to search for the domains involved in HCF-1 biological function and oligomerization. Possible roles of HCF-1 in determining host specificity are discussed.
Collapse
Affiliation(s)
- K L Hefferon
- Cornell Research Foundation, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
16
|
Nobiron I, O'Reilly DR, Olszewski JA. Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. J Gen Virol 2003; 84:3029-3039. [PMID: 14573808 DOI: 10.1099/vir.0.19270-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autographa californica nucleopolyhedrovirus (AcMNPV), the type member of the virus family Baculoviridae, infects pest insects and has been the subject of many studies for its development as a biopesticide. It is also the virus upon which most of the commercial baculovirus protein expression systems are based. AcMNPV infection of cultured host Spodoptera frugiperda (Sf9) cells can induce a number of alterations of host cell properties including altering the cellular cytoskeleton, an arrest of the cell cycle in G(2)/M, and the global shutoff of host protein translation. Additionally, several cellular transcripts have been shown to be down-regulated following AcMNPV infection. In this study, we take a differential display approach to address whether a global down-regulation of Sf9 host transcripts occurs at late times of infection. Additionally, we also use this approach to search for host mRNAs which are up-regulated at early times of infection, and may be important for facilitating baculovirus infection. From these experiments we can confirm a global down-regulation of Sf9 mRNA levels at late times of infection. We also found that up-regulation of individual host gene RNA levels at early times of infection did not occur frequently. One host transcript which was found to be transiently up-regulated as a result of AcMNPV infection was an Sf9 Hsc70 gene. Hsc70 proteins have been shown to play a vital role in the life-cycle of other large DNA viruses, which suggests that this protein is also important for baculovirus infection.
Collapse
Affiliation(s)
- Isabelle Nobiron
- Department of Biological Sciences, SAF Building, South Kensington Campus, Imperial College, London SW7 2AZ, UK
| | - David R O'Reilly
- Department of Biological Sciences, SAF Building, South Kensington Campus, Imperial College, London SW7 2AZ, UK
| | - Julie A Olszewski
- Department of Biological Sciences, SAF Building, South Kensington Campus, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
17
|
van Oers MM, Doitsidou M, Thomas AAM, de Maagd RA, Vlak JM. Translation of both 5'TOP and non-TOP host mRNAs continues into the late phase of Baculovirus infection. INSECT MOLECULAR BIOLOGY 2003; 12:75-84. [PMID: 12542638 DOI: 10.1046/j.1365-2583.2003.00389.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Complete cDNA sequences were obtained for ribosomal protein (rp) L15 and eukaryotic initiation factor eIF2alpha from the lepidopteran insect Spodoptera frugiperda, and for elongation factor eEF2 from S. exigua. The presence of a 5' terminal oligopyrimidine (TOP) tract classified the lepidopteran rpL15 transcript as a TOP mRNA. For eEF2, two types of transcripts were observed, one of which had a 5'TOP tract. The transcript levels for rpL15, eEF2 and eIF2alpha decreased following baculovirus infection. Polysome analysis showed that the corresponding mRNAs remained to be translated until at least 16 h post-infection for both TOP and non-TOP mRNAs. Baculovirus-induced host shut-off therefore appears to be regulated at the level of RNA abundance rather than at the translational level.
Collapse
Affiliation(s)
- M M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|