1
|
Toupal S, Coşansu S. Effects of Freeze-Dried Banana and Watermelon Peel Powders on Bile Salt Resistance, Growth Kinetics, and Survival of Probiotic Bacteria. Probiotics Antimicrob Proteins 2024; 16:1762-1772. [PMID: 37535210 DOI: 10.1007/s12602-023-10131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Fruit peels have potential as prebiotic sources thanks to their dietary fiber contents. This study aimed to determine the effects of freeze-dried banana (BPP) and watermelon (WPP) peel powders on bile salt resistance, growth kinetics, and survival of Lactobacillus acidophilus and Lactiplantibacillus plantarum. In the presence of 0.5-1% bile salt, L. plantarum counts were 0.52-1.13 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder. Lactobacillus acidophilus population was 2.47-2.79 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder in the presence of 0.5% bile salt. Both peel powders did not affect the growth kinetics of L. acidophilus in milk. Conversely, the growth of L. plantarum was promoted in milk supplemented with peel powders and yielded a shorter generation time (P < 0.05). The maximum population density of L. plantarum in milk supplemented with BPP (8.68 log CFU/mL) was higher than in milk without peel powder (7.72 log CFU/mL; P < 0.05). Survival of L. acidophilus improved during storage at 4 °C in milk added with peel powders. The results suggest that BPP and WPP can be functional ingredients in probiotic foods and may be used to improve the growth and survival of probiotic cultures.
Collapse
Affiliation(s)
- Samin Toupal
- Department of Food Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey
| | - Serap Coşansu
- Department of Food Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey.
| |
Collapse
|
2
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacillus subtilis CU1 is a probiotic strain with beneficial effects on immune health in elderly subjects and diarrhea. Commercialized under spore form, new strategies to improve the germination, fitness and beneficial effects of the probiotic once in the gut have to be explored. For this purpose, functional food ingredients, such as isomaltooligosaccharides (IMOSs), could improve the fitness of Bacillus probiotics. IMOSs are composed of α(1 → 6)- and α(1 → 4)-linked oligosaccharides and are partially indigestible. Dietary IMOSs stimulate beneficial members of intestinal microbiota, but the effect of a combination of IMOSs with probiotics, such as B. subtilis CU1, is unknown. In this study, we evaluate the potential effect of IMOSs in B. subtilis CU1 and identify the metabolic pathways involved. The biochemical analysis of the commercial IMOSs highlights a degree of polymerization (DP) comprised between 1 and 29. The metabolism of IMOSs in CU1 was attributed to an α-glucosidase, secreted in the extracellular compartment one hundred times more than with glucose, and which seems to hydrolyze high DP IMOSs into shorter oligosaccharides (DP1, DP2 and DP3) in the culture medium. Proteomic analysis of CU1 after growth on IMOSs showed a reshaping of B. subtilis CU1 metabolism and functions, associated with a decreased production of lactic acid and acetic acid by two times. Moreover, we show for the first time that IMOSs could improve the germination of a Bacillus probiotic in the presence of bile salts in vitro, with an 8 h reduced lag-time when compared to a glucose substrate. Moreover, bacterial concentration (CFU/mL) was increased by about 1 log in IMOS liquid cultures after 48 h when compared to glucose. In conclusion, the use of IMOSs in association with probiotic B. subtilis CU1 in a synbiotic product could improve the fitness and benefits of the probiotic.
Collapse
|
4
|
Chan M, Liu D, Wu Y, Yang F, Howell K. Microorganisms in Whole Botanical Fermented Foods Survive Processing and Simulated Digestion to Affect Gut Microbiota Composition. Front Microbiol 2022; 12:759708. [PMID: 35035384 PMCID: PMC8757042 DOI: 10.3389/fmicb.2021.759708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
Botanical fermented foods have been shown to improve human health, based on the activity of potentially beneficial lactic acid bacteria (LAB) and yeasts and their metabolic outputs. However, few studies have explored the effects of prolonged storage and functional spices on microbial viability of whole fermented foods from fermentation to digestion. Even fewer have assessed their impact on the gut microbiota. Our study investigated the effects of production processes on LAB and yeast microbial viability and gut microbiota composition. We achieved this by using physicochemical assessments and an in vitro gastrointestinal and a porcine gut microbiota model. In low-salt sauerkraut, we assessed the effects of salt concentration, starter cultures, and prolonged storage, and in tibicos, prolonged storage and the addition of spices cayenne, ginger, and turmeric. In both food matrices, LAB counts significantly increased (p<0.05), reaching a peak of 7–8 log cfu/g, declining to 6–6.5 log cfu/g by day 96. Yeast viability remained at 5–6 log cfu/g in tibicos. Ginger tibicos had significantly increased LAB and yeast viability during fermentation and storage (p<0.05). For maximum microbial consumption, tibicos should be consumed within 28days, and sauerkraut, 7weeks. Simulated upper GI digestion of both products resulted in high microbial survival rates of 70–80%. The 82% microbial survival rate of cayenne tibicos was significantly higher than other treatments (p<0.05). 16S rRNA sequencing of simulated porcine colonic microbiota showed that both spontaneously fermented sauerkraut and tibicos increase the relative abundance of Megasphaera 85-fold. These findings will inform researchers, producers, and consumers about the factors that affect the microbial content of fermented foods, and their potential effects on the gut.
Collapse
Affiliation(s)
- Miin Chan
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Di Liu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Yingying Wu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Fan Yang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Kate Howell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Stasiak-Różańska L, Berthold-Pluta A, Pluta AS, Dasiewicz K, Garbowska M. Effect of Simulated Gastrointestinal Tract Conditions on Survivability of Probiotic Bacteria Present in Commercial Preparations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1108. [PMID: 33513771 PMCID: PMC7908519 DOI: 10.3390/ijerph18031108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are recommended, among others, in the diet of children who are under antibiotic therapy, or that suffer from food allergies or travel diarrhea, etc. In the case of toddlers taking probiotic preparations, it is highly recommended to first remove the special capsule, which normally protects probiotic strains against hard conditions in the gastrointestinal tract. Otherwise, the toddler may choke. This removal can impair probiotic survival and reduce its efficacy in a toddler's organism. The aim of this study was to evaluate the survivability of five strains of lactic acid bacteria from the commercial probiotics available on the Polish market under simulated conditions of the gastrointestinal tract. Five probiotics (each including one of these strains: Bifidobacterium BB-12, Lactobacillus (Lb.) rhamnosus GG, Lb. casei, Lb. acidophilus, Lb. plantarum) were protective capsule deprived, added in a food matrix (chicken-vegetable soup) and subjected under simulated conditions of the gastric and gastrointestinal passage. Strain survivability and possibility to growth were evaluated. Obtained results showed that, among all analyzed commercial probiotic strains, the Lb. plantarum was the most resistant to the applied conditions of the culture medium. They showed a noticeable growth under both in vitro gastric conditions at pH 4.0 and 5.0, as well as in vitro intestinal conditions at all tested concentrations of bile salts.
Collapse
Affiliation(s)
- Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.B.-P.); (A.S.P.); (K.D.); (M.G.)
| | | | | | | | | |
Collapse
|
6
|
Wang G, Zhai Z, Ren F, Li Z, Zhang B, Hao Y. Combined transcriptomic and proteomic analysis of the response to bile stress in a centenarian-originated probiotic Lactobacillus salivarius Ren. Food Res Int 2020; 137:109331. [PMID: 33233046 DOI: 10.1016/j.foodres.2020.109331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/24/2023]
Abstract
Tolerance to bile stress is a crucial property for probiotics to survive in the gastrointestinal tract and exert their beneficial effects. In this work, transcriptomic analysis combined with two-dimensional electrophoresis revealed that the transcript levels of 129 genes and the abundance of 34 proteins were significantly changed in Lactobacillus salivarius Ren when exposed to 0.75 g/L ox-bile. Notably, carbohydrate metabolism shifted to the utilization of maltose and glycerol for energy production, suggesting that L. salivarius Ren expanded carbon sources profile for gut adaptation in response to bile. Moreover, the enzymes involved in cell surface charge modification and the cell envelope-located hemolysin-like protein were overproduced, which was supposed to hinder the penetration of bile. Then, the up-regulated ABC transporters could contribute to the extrusion of bile accumulated in the cytoplasm. Additionally, proteolytic system was activated to provide more amino acids for the synthesis and repair of proteins damaged by bile. Finally, γ-glutamylcysteine with antioxidant activity and oxidoreductases for redox homeostasis were increased to cope with the bile-induced oxidative stress. These findings provide new insights into the molecular mechanisms involved in bile stress response and adaptation in L. salivarius.
Collapse
Affiliation(s)
- Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China
| | - Zaigui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, Beijing, China.
| |
Collapse
|
7
|
Wang J, Wang S, Liu H, Zhang D, Wang Y, Ji H. Effects of oligosaccharides on the growth and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of L. plantarum ZLP001 and fructo-oligosaccharide in post-weaning piglets1. J Anim Sci 2019; 97:4588-4597. [PMID: 31410455 PMCID: PMC6827270 DOI: 10.1093/jas/skz254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we evaluated the effects of seven oligosaccharides on the growth rate and stress tolerance of Lactobacillus plantarum ZLP001 in vitro, and the potential synbiotic effects of the most effective oligosaccharide [fructo-oligosaccharide (FOS)] and L. plantarum ZLP001 on the growth performance, apparent nutrient digestibility, fecal microbiota, and serum immune index in weaning piglets. Most oligosaccharides were utilized as carbohydrate sources by L. plantarum ZLP001, but we observed obvious differences in the bacterial growth depending on oligosaccharide type and concentration. Oligosaccharides and glucose significantly alleviated the decrease in L. plantarum ZLP001 viability in artificial gastric fluid, whereas none of the sugars affected viability in artificial intestinal fluid. FOS and galacto-oligosaccharide significantly improved the viability of L. plantarum ZLP001 under heat stress (65 °C for 15 and 30 min). FOS and soybean oligosaccharide significantly increased the viability of L. plantarum ZLP001 in response to cold stress (4 °C for 30 and 60 days). On the basis of the findings of in vitro experiments, we selected FOS for in vivo studies. Eighty-four weaned piglets were randomly assigned to one of the following groups: control (basal diet, no additives), freeze-dried L. plantarum ZLP001 (4.2 × 109 CFU/g, 2 g/kg diet), FOS (5 g/kg diet), and combination (0.2% L. plantarum ZLP001 + 0.5% FOS). Body weight and feed consumption were recorded for determinations of the average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F/G). On day 28, fresh fecal samples were collected to evaluate the apparent digestibility of nutrients and microbiota, and serum samples were collected to determine the immune status. L. plantarum ZLP001 plus FOS significantly increased ADG and decreased the F/G ratio compared with the no-additive control. The combination treatment also increased the apparent nutrient digestibility of dry matter and crude protein. Compared with the control and single supplementation, the combination treatment had a significant regulatory effect on the intestinal microbiota, as evidenced by increases in Lactobacillus spp. and a decrease in Enterobacteriaceae. In addition, the combination treatment increased the concentrations of serum IFN-γ and immunoglobulin G. In conclusion, FOS can be utilized well by L. plantarum ZLP001 and can be combined with it as a potential synbiotic that shows synergistic effects in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Growth characteristics of Lactobacillus brevis KB290 in the presence of bile. Anaerobe 2015; 35:96-101. [PMID: 26272823 DOI: 10.1016/j.anaerobe.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/01/2015] [Accepted: 08/05/2015] [Indexed: 12/20/2022]
Abstract
Live Lactobacillus brevis KB290 have several probiotic activities, including immune stimulation and modulation of intestinal microbial balance. We investigated the adaptation of L. brevis KB290 to bile as a mechanism of intestinal survival. Strain KB290 was grown for 5 days at 37 °C in tryptone-yeast extract-glucose (TYG) broth supplemented with 0.5% sodium acetate (TYGA) containing 0.15%, 0.3%, or 0.5% bile. Growth was determined by absorbance at 620 nm or by dry weight. Growth was enhanced as the broth's bile concentration increased. Bile-enhanced growth was not observed in TYG broth or with xylose or fructose as the carbon source, although strain KB290 could assimilate these sugars. Compared with cells grown without bile, cells grown with bile had twice the cell yield (dry weight) and higher hydrophobicity, which may improve epithelial adhesion. Metabolite analysis revealed that bile induced more lactate production by glycolysis, thus enhancing growth efficiency. Scanning electron microscopy revealed that cells cultured without bile for 5 days in TYGA broth had a shortened rod shape and showed lysis and aggregation, unlike cells cultured for 1 day; cells grown with bile for 5 days had an intact rod shape and rarely appeared damaged. Cellular material leakage through autolysis was lower in the presence of bile than in its absence. Thus lysis of strain KB290 cells cultured for extended periods was suppressed in the presence of bile. This study provides new role of bile and sodium acetate for retaining an intact cell shape and enhancing cell yield, which are beneficial for intestinal survival.
Collapse
|
9
|
Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions. J Biotechnol 2015; 200:19-26. [DOI: 10.1016/j.jbiotec.2015.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
|
10
|
Ushkalova EA, Gushchina YS. Linex forte in the prevention and treatment of gastrointestinal diseases. TERAPEVT ARKH 2015; 87:138-144. [DOI: 10.17116/terarkh20158712138-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food Res Int 2014; 64:880-888. [DOI: 10.1016/j.foodres.2014.08.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/14/2014] [Accepted: 08/30/2014] [Indexed: 12/19/2022]
|
12
|
Genetic and physiological responses of Bifidobacterium animalis subsp. lactis to hydrogen peroxide stress. J Bacteriol 2013; 195:3743-51. [PMID: 23772066 DOI: 10.1128/jb.00279-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Consumer interest in probiotic bifidobacteria is increasing, but industry efforts to secure high cell viability in foods is undermined by these anaerobes' sensitivity to oxidative stress. To address this limitation, we investigated genetic and physiological responses of two fully sequenced Bifidobacterium animalis subsp. lactis strains, BL-04 and DSM 10140, to hydrogen peroxide (H₂O₂) stress. Although the genome sequences for these strains are highly clonal, prior work showed that they differ in both intrinsic and inducible H₂O₂ resistance. Transcriptome analysis of early-stationary-phase cells exposed to a sublethal H₂O₂ concentration detected significant (P < 0.05) changes in expression of 138 genes in strain BL-04 after 5 min and 27 genes after 20 min. Surprisingly, no significant changes in gene expression were detected in DSM 10140 at either time. Genomic data suggested that differences in H₂O₂ stress resistance might be due to a mutation in a BL-04 gene encoding long-chain fatty acid coenzyme A (CoA) ligase. To explore this possibility, membrane fatty acids were isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Results confirmed that the strains had significantly different lipid profiles: the BL-04 membrane contained higher percentages of C(14:0) and C(16:0) and lower percentages of C(18:1n9). Alteration of the DSM 10140 membrane lipid composition using modified growth medium to more closely mimic that of BL-04 yielded cells that showed increased intrinsic resistance to lethal H₂O₂ challenge but did not display an inducible H₂O₂ stress response. The results show that deliberate stress induction or membrane lipid modification can be employed to significantly improve H₂O₂ resistance in B. animalis subsp. lactis strains.
Collapse
|
13
|
Bedani R, Rossi EA, Isay Saad SM. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol 2013; 34:382-9. [PMID: 23541206 DOI: 10.1016/j.fm.2013.01.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/11/2013] [Accepted: 01/21/2013] [Indexed: 12/19/2022]
Abstract
The effect of inulin and/or okara flour on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product (FSP) and on probiotic survival under in vitro simulated gastrointestinal conditions were investigated throughout 28 days of storage at 4 °C. Employing a 2(2) design, four FSP trials were produced from soymilk fermented with ABT-4 culture (La-5, Bb-12, and Streptococcus thermophilus): FSP (control); FSP-I (with inulin, 3 g/100 mL of soymilk); FSP-O (with okara, 5 g/100 mL); FSP-IO (with inulin + okara, ratio 3:5 g/100 mL). Probiotic viabilities ranged from 8 to 9 log cfu/g during the 28 days of storage, and inulin and/or okara flour did not affect the viability of La-5 and Bb-12. Bb-12 resistance to the artificial gastrointestinal juices was higher than for La-5, since the Bb-12 and La-5 populations decreased approximately 0.6 log cfu/g and 3.8 log cfu/g, respectively, throughout storage period. Even though the protective effect of inulin and/or okara flour on probiotic microorganisms was not significant, when compared to a fresh culture, the FSP matrix improved Bb-12 survival on day 1 of storage and may be considered a good vehicle for Bb-12 and could play an important role in probiotic protection against gastrointestinal juices.
Collapse
Affiliation(s)
- Raquel Bedani
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, SP, Brazil
| | | | | |
Collapse
|
14
|
Muthaiyan A, Hernandez-Hernandez O, Moreno FJ, Sanz ML, Ricke SC. Hydrolyzed caseinomacropeptide conjugated galactooligosaccharides support the growth and enhance the bile tolerance in Lactobacillus strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6839-6845. [PMID: 22686275 DOI: 10.1021/jf301392y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study bioactive caseinomacropeptide was conjugated with prebiotic galactooligosaccharides (hCMP:GOS) by Maillard reaction to synthesize value added prebiotic compounds to Lactobacillus strains. Growth study showed the ability of hCMP:GOS to serve as a sole carbon source for Lactobacillus strains. A significant amount of acetate and lactate was detected in cell free culture supernatant by HPLC. It demonstrated the ability of Lactobacillus strains to ferment the hCMP:GOS as a carbon source. In addition, hCMP:GOS grown Lactobacillus cells exhibited enhanced bile tolerance and retained 90% viability. Overall results of this study indicate that the hCMP conjugated GOS can be potential multipurpose prebiotic substrates to enhance the growth and bile tolerance in Lactobacillus strains and serve as a fermentable substrate to produce beneficial metabolites in the host.
Collapse
Affiliation(s)
- Arunachalam Muthaiyan
- Center for Food Safety-Department of Food Science, University of Arkansas , Fayetteville, Arkansas 72704, United States
| | | | | | | | | |
Collapse
|
15
|
Mati M, Staruch L. Monitoring of a gluten content in selected meat products from three biggest meat producers in Slovakia. POTRAVINARSTVO 2012. [DOI: 10.5219/167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The work is focused on a monitoring of a gluten content in selected meat products from three biggest and most popular meat producers in Slovakia. Gluten is a type of protein complex which is typical naturally presented component of wheat, barley and rye. Flour from this sources with natural gluten content is also added into the some type of meat products and other foodstuffs for a technological reasons hand in hand with economic reasons. Some of the gluten quantities could be hazardous for sensitive people as celiatics and allergic to gluten. Within the context of this reasons there is a need to control the amounts of this hidden type of gluten inclusive of spice mixes using in a meat production. Monitoring by itself was realized with a use of the sandwich ELISA RIDASCREEN® Fast Gliadin test. ELISA means enzyme linked immunosorbent assay. It is based on a specific reaction among the enzyme and antigen leading to a creation of a complex. This test provides us exact quantitification of a gluten content in this type of food products using a colorimetric reaction of a complex by observing of all fundamentals of this technique. There were analysed 16 meat products and 5 types of spice mixes in total.
Collapse
|
16
|
|
17
|
Ruiz L, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Sánchez B. How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. GENES & NUTRITION 2011; 6:307-18. [PMID: 21484166 PMCID: PMC3145062 DOI: 10.1007/s12263-010-0207-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/26/2010] [Indexed: 01/04/2023]
Abstract
An effective response to stress is of paramount importance for probiotic bifidobacteria administered in foods, since it determines their performance as beneficial microorganisms. Firstly, bifidobacteria have to be resistant to the stress sources typical in manufacturing, including heating, exposure to low water activities, osmotic shock and presence of oxygen. Secondly, and once they are orally ingested, bifidobacteria have to overcome physiological barriers in order to arrive in the large intestine biologically active. These barriers are mainly the acid pH in the stomach and the presence of high bile salt concentrations in the small intestine. In addition, the large intestine is, in terms of microbial amounts, a densely populated environment in which there is an extreme variability in carbon source availability. For this reason, bifidobacteria harbours a wide molecular machinery allowing the degradation of a wide variety of otherwise non-digestible sugars. In this review, the molecular mechanisms allowing this bacterial group to favourably react to the presence of different stress sources are presented and discussed.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
18
|
|
19
|
Factors for bile tolerance in Lactococcus lactis: analysis by using plasmid variants. Folia Microbiol (Praha) 2009; 54:395-400. [PMID: 19937211 DOI: 10.1007/s12223-009-0055-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/10/2009] [Indexed: 10/20/2022]
Abstract
The factors of bile tolerance (as one among the fundamental characteristics of probiotic bacteria) were determined in lactococci by using plasmid variants. Bile tolerance of Lactococcus lactis wild-type (WT) strains 527 and N7 (determined by viability counts on bile-containing agar) was equivalent to the corresponding plasmid-free derivatives. In contrast, L. lactis WT strain DRC1 had lower bile tolerance than its plasmid-free derivative DRC1021. Plasmid pDR1-1B, extracted from strain DRC1, was introduced into strain DRC1021 by co-transformation with the vector plasmid pGKV21 as an indicator. Strain DRC121 (DRC1021 harboring pGKV21) had good bile tolerance as did strain DRC1021, while strain DRC13 (DRC1021 harboring both pDR1-1B and pGKV21) did not. Fatty acid (FA) composition was different between strains DRC121 and DRC13. The plasmid pDR1-1B or plasmid profile and FA composition are key factors for bile tolerance of strain DRC1, and therefore changing the plasmid profile might be a way of modulating bile tolerance in lactococci.
Collapse
|
20
|
Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Suzuki C. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: Analysis by using different growth media. Int J Food Microbiol 2009; 131:183-8. [DOI: 10.1016/j.ijfoodmicro.2009.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/22/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
21
|
Zhang F, Hang X, Fan X, Li G, Yang H. Selection and optimization procedure of synbiotic for cholesterol removal. Anaerobe 2007; 13:185-92. [PMID: 17681806 DOI: 10.1016/j.anaerobe.2007.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 06/01/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
A selection and optimization procedure for the synbiotic combination of probiotic and prebiotics was established to optimize its cholesterol removal in vitro. In light of fermentability, prebiotics utilization by probiotics was highly variable and interspecies differences existed. Based on the results of fermentability, L. plantarum LS12, Ls31, LP529 and L. ruminis La3 could be the better candidates for symbiotic research. The bile tolerance of all the tested strains could be improved by the strain-specific prebiotics comparing to the control carbon source (glucose). The strain LS12 was finally selected to form the symbiotic according to its better ability to ferment prebiotics and bile tolerance, while the five prebiotics (FOS, stachyose, GOS, IMO and mannitol) were selected to make their synbiotic combination because of their better enhancement of bile tolerance and growth support to LS12. The synbiotic combination for cholesterol removal was optimized by use of response surface methodology. The first-order model showed that the selected prebiotics mannitol and GOS were significant factors. Then through the second-order polynomial regression model, the optimum conditions of the two factors for cholesterol removal by the synbiotic were suggested.
Collapse
Affiliation(s)
- Fang Zhang
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
22
|
Noriega L, Cuevas I, Margolles A, de los Reyes-Gavilán CG. Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Ruas-Madiedo P, Hernández-Barranco A, Margolles A, de los Reyes-Gavilán CG. A bile salt-resistant derivative of Bifidobacterium animalis has an altered fermentation pattern when grown on glucose and maltose. Appl Environ Microbiol 2005; 71:6564-70. [PMID: 16269682 PMCID: PMC1287725 DOI: 10.1128/aem.71.11.6564-6570.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of Bifidobacterium animalis subsp. lactis IPLA 4549 and its derivative with acquired resistance to bile, B. animalis subsp. lactis 4549dOx, was evaluated in batch cultures with glucose or the glucose disaccharide maltose as the main carbon source. The acquisition of bile salt resistance caused a change in growth pattern for both sugars, which mainly resulted in a preferential use of maltose compared to glucose, whereas the mother strain used both carbohydrates in a similar way. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed to determine the amounts of glucose consumption and organic acid and ethanol formation from glucose by buffered resting cells taken at different points during growth. Resting cells of the bile-adapted strain generally consumed less glucose than those of the nonadapted one but showed an enhanced production of ethanol and higher acetic acid-to-lactic acid as well as formic acid-to-lactic acid ratios. These findings suggest a shift in the catabolism of carbohydrates promoted by the acquisition of bile resistance that may cause changes in the redox potential and improvements in the cellular ATP yield.
Collapse
Affiliation(s)
- Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias, CSIC, Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|
24
|
Noriega L, Gueimonde M, Sánchez B, Margolles A, de los Reyes-Gavilán CG. Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. Int J Food Microbiol 2004; 94:79-86. [PMID: 15172487 DOI: 10.1016/j.ijfoodmicro.2004.01.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Revised: 07/23/2003] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
Six derivatives with increased resistance to ox gall (MIC: > or = 1% w/v) and one derivative resistant to sodium cholate (MIC: 0.8% w/v) were obtained from more sensitive original Bifidobacterium strains. These microorganisms, and two additional cholate resistant derivatives obtained in a previous study (Int. J. Food Microbiol. 82 (2003) 191), were partially characterised in this study. Acquisition of resistance against a given bile salt, also conferred cross-resistance to other bile salts, and promoted an increase in the survival of these microorganisms at low pH. Bile resistance levels of derivatives were dependent on the external pH so that the resistance was lower at neutral pH values than in acidic environments. In addition, the acquisition of bile resistance induced changes on glycoside-hydrolysing activities of derivatives obtained from five out of eight original strains, with certain activities such as beta-glucosidase showing more than tenfold increases in some of these microorganisms. These data suggest that the exposure to high bile salts concentrations may have induced a synergic response on Bifidobacterium for the adaptation to the conditions of the gastrointestinal tract. This could have improved the survival at low pH in these microorganisms, the resistance to high bile salts concentrations, and the assimilation of non-digestible carbohydrates by the enhancement of some glycoside-hydrolysing activities.
Collapse
Affiliation(s)
- Luis Noriega
- Instituto de Productos Lácteos de Asturias, CSIC, Ctra. de Infiesto s/n. 33300 Villaviciosa, Asturias, Spain
| | | | | | | | | |
Collapse
|
25
|
Patel H, Pandiella S, Wang R, Webb C. Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiol 2004. [DOI: 10.1016/s0740-0020(03)00016-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 2003; 100:8957-62. [PMID: 12847288 PMCID: PMC166420 DOI: 10.1073/pnas.1332765100] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus acidophilus is a probiotic organism that displays the ability to use prebiotic compounds such as fructooligosaccharides (FOS), which stimulate the growth of beneficial commensals in the gastrointestinal tract. However, little is known about the mechanisms and genes involved in FOS utilization by Lactobacillus species. Analysis of the L. acidophilus NCFM genome revealed an msm locus composed of a transcriptional regulator of the LacI family, a four-component ATP-binding cassette (ABC) transport system, a fructosidase, and a sucrose phosphorylase. Transcriptional analysis of this operon demonstrated that gene expression was induced by sucrose and FOS but not by glucose or fructose, suggesting some specificity for nonreadily fermentable sugars. Additionally, expression was repressed by glucose but not by fructose, suggesting catabolite repression via two cre-like sequences identified in the promoter-operator region. Insertional inactivation of the genes encoding the ABC transporter substrate-binding protein and the fructosidase reduced the ability of the mutants to grow on FOS. Comparative analysis of gene architecture within this cluster revealed a high degree of synteny with operons in Streptococcus mutans and Streptococcus pneumoniae. However, the association between a fructosidase and an ABC transporter is unusual and may be specific to L. acidophilus. This is a description of a previously undescribed gene locus involved in transport and catabolism of FOS compounds, which can promote competition of beneficial microorganisms in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Rodolphe Barrangou
- Genomic Sciences Program and Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
27
|
Palframan RJ, Gibson GR, Rastall RA. Effect of pH and Dose on the Growth of Gut Bacteria on Prebiotic Carbohydrates in vitro. Anaerobe 2002; 8:287-92. [PMID: 16887671 DOI: 10.1006/anae.2002.0434] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 10/28/2002] [Indexed: 11/22/2022]
Abstract
The effect of pH and substrate dose on the fermentation profile of a number of commercial prebiotics was analysed in triplicate using stirred, pH and temperature controlled anaerobic batch culture fermentations, inoculated with a fresh faecal slurry from one of three healthy volunteers. Bacterial numbers were enumerated using fluorescence in situ hybridisation. The commercial prebiotics investigated were fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose. Two pH values were investigated, i.e. pH 6 and 6.8. Doses of 1% and 2% (w/v) were investigated, equivalent to approximately 4 and 8 g per day, respectively, in an adult diet. It was found that both pH and dose altered the bacterial composition. It was observed that FOS and inulin demonstrated the greatest bifidogenic effect at pH 6.8 and 1% (w/v) carbohydrate, whereas GOS, IMO and lactulose demonstrated their greatest bifidogenic effect at pH 6 and 2% (w/v) carbohydrate. From this we can conclude that various prebiotics demonstrate differing bifidogenic effects at different conditions in vitro.
Collapse
Affiliation(s)
- Richard J Palframan
- Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, 226, Whiteknights, Reading, RG6 6AP, UK.
| | | | | |
Collapse
|
28
|
Abstract
Recent research in the area of prebiotic oligosaccharides and synbiotic combinations with probiotics is leading towards a more targeted development of functional food ingredients. Improved molecular techniques for analysis of the gut microflora, new manufacturing biotechnologies, and increased understanding of the metabolism of oligosaccharides by probiotics are facilitating development. Such developments are leading us to the time when we will be able to rationally develop prebiotics and synbiotics for specific functional properties and health outcomes.
Collapse
Affiliation(s)
- Robert A Rastall
- School of Food Biosciences, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6AP, UK.
| | | |
Collapse
|