1
|
Payró de la Cruz E, Valencia Domínguez M, Ramos Reyes R, Tofilski A. Reexamination of honey bee Africanization in Mexico and other regions of the New World. Sci Rep 2025; 15:16267. [PMID: 40346142 PMCID: PMC12064644 DOI: 10.1038/s41598-025-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Honey bees (Apis mellifera) are not native to the New World. The initial introduction of the species to the Americas occurred from Europe, with subsequent introductions from Africa. The African bees hybridized with European bees and are now referred to as Africanized bees. A large feral population was established and subsequently colonized extensive areas of both the North and South American continents, including Mexico. The aim of this study was to conduct a morphometric analysis of geographic variation among Africanized bees. Recently acquired data from Southeastern Mexico were compared with existing datasets of Africanized bees and evolutionary lineages from the Old World. The forewing venation was described using 19 landmarks. The honey bees originating from southeastern Mexico exhibited significant differences from all other investigated populations. It is necessary to verify if the observed geographic variation within Africanized bees is related to natural selection or other factors, including hybridization or genetic drift. Furthermore, honey bees from populations in the USA and Argentina, which appear to have not been affected by Africanization, differed markedly from honey bees naturally occurring in Europe and can be classified as hybrids between evolutionary lineages.
Collapse
Affiliation(s)
| | | | | | - Adam Tofilski
- University of Agriculture in Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Alsharhi M, Al-Ghamdi A, Al-Garadi MA, Alburaki M. Genetic diversity and novel haplotypes of Apis mellifera jemenitica on the Arabian Peninsula: insights from mtDNA markers. Front Genet 2025; 16:1532988. [PMID: 40352792 PMCID: PMC12061672 DOI: 10.3389/fgene.2025.1532988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The genetic diversity of Apis mellifera jemenitica populations collected from the Arabian Peninsula (Saudi Arabia, Yemen, and Oman), Jordan, and Ethiopia, was examined using three mtDNA markers: 1- Cytochrome b (Cyt b), 2- Cytochrome c oxidase I (COI) and 3- The intergenic region located between the cytochrome c oxidase I & II (COI-COII). DNA was extracted from 44 samples, amplified for each region using classic PCR, and the resulting amplicons were sequenced using Sanger technology at both ends. Sequences were verified and aligned, and Maximum-Likelihood phylogenetic analyses were conducted with reference sequences from other subspecies. The in silico DraI mtDNA COI-COII (DmCC) test was applied to the COI-COII sequences to identify evolutionary lineages and haplotypes. Moreover, COI-COII haplotype network analyses were conducted to assess the intra- and inter-genetic relationships between samples and references. Based on the Cyt b marker, most samples cluster within the African lineage (A) near lamarckii and syriaca (Sub-lineage Z) subspecies. Few samples from Ethiopia and Yemen were closely related to simensis and scutellata clades. The COI gene separated jemenitica samples (Bootstrap = 97) from subspecies of other lineages (C and O). The DmCC test revealed a P0Q2 structure in the intergenic region for all samples, with a distinct 18 bp deletion in the P0 element observed in two Ethiopian and one Yemeni samples, suggesting litorea or simensis origin. A total of 13 COI-COII haplotypes were identified, among which 8 haplotypes were novel: Saudi Arabia (1), Yemen (3), Oman (1), and Ethiopia (3), with a haplotype diversity (H) of 0.980. Furthermore, molecular-variance parsimony in COI-COII confirmed a distant genetic relationship between Ethiopian samples versus samples of the Arabian Peninsula. The haplotype network analysis suggests a higher intra-jemenitica diversity than previously understood with a syriaca ancestry to this clade. These findings offer crucial insights into the conservation of A. m. jemenitica and its role in preserving biodiversity in arid ecosystems. Additionally, the data enhance our understanding of the genetic diversity of A. m. jemenitica and its evolutionary connections with other neighboring African subspecies.
Collapse
Affiliation(s)
- Mohammed Alsharhi
- Agriculture Department, College of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Ahmad Al-Ghamdi
- Chair of Engineer Abdullah Bugshan for Bee Research, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maged Ahmed Al-Garadi
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Alburaki
- United States Department of Agriculture Agricultural Research Service(USDA-ARS), Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
3
|
Biundo G, Calligaris M, Lo Pinto M, D'apolito D, Pasqua S, Vitale G, Gallo G, Palumbo Piccionello A, Scilabra SD. High-resolution proteomics and machine-learning identify protein classifiers of honey made by Sicilian black honeybees (Apis mellifera ssp. sicula). Food Res Int 2024; 194:114872. [PMID: 39232511 DOI: 10.1016/j.foodres.2024.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Apis mellifera ssp. sicula, also known as the Sicilian black honeybee, is a Slow Food Presidium that produces honey with outstanding nutraceutical properties, including high antioxidant capacity. In this study, we used high-resolution proteomics to profile the honey produced by sicula and identify protein classifiers that distinguish it from that made by the more common Italian honeybee (Apis mellifera ssp. ligustica). We profiled the honey proteome of genetically pure sicula and ligustica honeybees bred in the same geographical area, so that chemical differences in their honey only reflected the genetic background of the two subspecies, rather than botanical environment. Differentially abundant proteins were validated in sicula and ligustica honeys of different origin, by using the so-called "rectangular strategy", a proteomic approach commonly used for biomarker discovery in clinical proteomics. Then, machine learning was employed to identify which proteins were the most effective in distinguishing sicula and ligustica honeys. This strategy enabled the identification of two proteins, laccase-5 and venome serine protease 34 isoform X2, that were fully effective in predicting whether honey was made by sicula or ligustica honeybees. In conclusion, we profiled the proteome of sicula honey, identified two protein classifiers of sicula honey in respect to ligustica, and proved that the rectangular strategy can be applied to uncover biomarkers to ascertain food authenticity.
Collapse
Affiliation(s)
- Giulia Biundo
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; Department of Medicine (DMED), University of Udine, via Colugna 50, 33100, Udine, Italy
| | - Margot Lo Pinto
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy
| | - Danilo D'apolito
- Unità Prodotti Cellulari (GMP), Ri.MED Foundation, IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy
| | - Salvatore Pasqua
- Unità Prodotti Cellulari (GMP), Ri.MED Foundation, IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy
| | - Giulio Vitale
- Associazione Apistica Spazio Miele, Via Dell'Acquedotto 10, 91026 Mazara del Vallo, TP, Italy
| | - Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, V.le delle Scienze Ed.16, 90128 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, V.le delle Scienze Ed.17, 90128 Palermo, Italy
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy.
| |
Collapse
|
4
|
Taurisano V, Ribani A, Sami D, Nelson Johnson KE, Schiavo G, Utzeri VJ, Bovo S, Fontanesi L. Distribution of honey bee mitochondrial DNA haplotypes in an Italian region where a legislative act is protecting the Apis mellifera ligustica subspecies. Sci Rep 2024; 14:20583. [PMID: 39232026 PMCID: PMC11375103 DOI: 10.1038/s41598-024-71233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The conservation of the genetic integrity of Apis mellifera subspecies has emerged as an important objective. In 2019, the Emilia-Romagna region became the first Italian regional authority to issue a law specifically addressing the protection of the native Apis mellifera ligustica subspecies. In this study we analysed a highly informative portion of the mitochondrial DNA (mtDNA), widely used for assessing genetic diversity of honey bee populations. By analysing 1143 honey bees sampled after the introduction of this law, we provided a snapshot of the distribution of mtDNA haplotypes in this region. The two most frequent mtDNA haplotypes were C1 (characteristic of A. m. ligustica) and C2 (characteristic of A. m. carnica), reported in 86.5% and 11.0% of the analysed bees, respectively. About 1.3% and 1.1% of the analysed bees carried mtDNA haplotypes of the A and M lineages (haplotypes A1a, A1e, A4, A26, A65 and two novel ones, A2w and A6a; M3, M3a, M4 and M79). Continued genetic monitoring will be important to assess the impact of this regional law over the coming years. Based on the obtained results, we recommend a more stringent policy to prevent the erosion of the genetic integrity of the native subspecies A. m. ligustica.
Collapse
Affiliation(s)
- Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Dalal Sami
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Kate Elise Nelson Johnson
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valerio Joe Utzeri
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
5
|
Alburaki M, Madella S, Lopez J, Bouga M, Chen Y, vanEngelsdorp D. Honey bee populations of the USA display restrictions in their mtDNA haplotype diversity. Front Genet 2023; 13:1092121. [PMID: 36685818 PMCID: PMC9845583 DOI: 10.3389/fgene.2022.1092121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
The genetic diversity of the USA honey bee (Apis mellifera L.) populations was examined through a molecular approach using two mitochondrial DNA (mtDNA) markers. A total of 1,063 samples were analyzed for the mtDNA intergenic region located between the cytochrome c oxidase I and II (COI-COII) and 401 samples were investigated for the NADH dehydrogenase 2 (ND2) coding gene. The samples represented 45 states, the District of Colombia and two territories of the USA. Nationwide, three maternal evolutionary lineages were identified: the North Mediterranean lineage C (93.79%), the West Mediterranean lineage M (3.2%) and the African lineage A (3.01%). A total of 27 haplotypes were identified, 13 of them (95.11%) were already reported and 14 others (4.87%) were found to be novel haplotypes exclusive to the USA. The number of haplotypes per state/territory ranged between two and eight and the haplotype diversity H ranged between 0.236-0.763, with a nationwide haplotype diversity of 0.597. Furthermore, the honey bee populations of the USA were shown to rely heavily (76.64%) on two single haplotypes (C1 = 38.76%, C2j = 37.62%) of the same lineage characterizing A. m. ligustica and A. m. carnica subspecies, respectively. Molecular-variance parsimony in COI-COII and ND2 confirmed this finding and underlined the central and ancestral position of C2d within the C lineage. Moreover, major haplotypes of A. m. mellifera (M3a, M7b, M7c) were recorded in six states (AL, AR, HI, MO, NM and WA). Four classic African haplotypes (A1e, A1v, A4, A4p) were also identified in nine states and Puerto Rico, with higher frequencies in southern states like LA, FL and TX. This data suggests the need to evaluate if a restricted mtDNA haplotype diversity in the US honey bee populations could have negative impacts on the beekeeping sustainability of this country.
Collapse
Affiliation(s)
| | - Shayne Madella
- USDA-ARS Bee Research Laboratory, Beltsville, MD, United States
| | - Jillian Lopez
- USDA-ARS Bee Research Laboratory, Beltsville, MD, United States
| | - Maria Bouga
- Agricultural University of Athens, Athens, Greece
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, United States
| | - Dennis vanEngelsdorp
- Department of Entomology, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
García CAY, Rodrigues PJ, Tofilski A, Elen D, McCormak GP, Oleksa A, Henriques D, Ilyasov R, Kartashev A, Bargain C, Fried B, Pinto MA. Using the Software DeepWings© to Classify Honey Bees across Europe through Wing Geometric Morphometrics. INSECTS 2022; 13:1132. [PMID: 36555043 PMCID: PMC9784756 DOI: 10.3390/insects13121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
DeepWings© is a software that uses machine learning to automatically classify honey bee subspecies by wing geometric morphometrics. Here, we tested the five subspecies classifier (A. m. carnica, Apis mellifera caucasia, A. m. iberiensis, Apis mellifera ligustica, and A. m. mellifera) of DeepWings© on 14,816 wing images with variable quality and acquired by different beekeepers and researchers. These images represented 2601 colonies from the native ranges of the M-lineage A. m. iberiensis and A. m. mellifera, and the C-lineage A. m. carnica. In the A. m. iberiensis range, 92.6% of the colonies matched this subspecies, with a high median probability (0.919). In the Azores, where the Iberian subspecies was historically introduced, a lower proportion (85.7%) and probability (0.842) were observed. In the A. m mellifera range, only 41.1 % of the colonies matched this subspecies, which is compatible with a history of C-derived introgression. Yet, these colonies were classified with the highest probability (0.994) of the three subspecies. In the A. m. carnica range, 88.3% of the colonies matched this subspecies, with a probability of 0.984. The association between wing and molecular markers, assessed for 1214 colonies from the M-lineage range, was highly significant but not strong (r = 0.31, p < 0.0001). The agreement between the markers was influenced by C-derived introgression, with the best results obtained for colonies with high genetic integrity. This study indicates the good performance of DeepWings© on a realistic wing image dataset.
Collapse
Affiliation(s)
- Carlos Ariel Yadró García
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Pedro João Rodrigues
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Dylan Elen
- Department of Molecular Ecology & Evolution, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
- Taskforce Research, ZwarteBij.org VZW, 9890 Gavere, Belgium
| | - Grace P McCormak
- Zoology, Earth and Life Sciences, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich, 85-090 Bydgoszcz, Poland
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rustem Ilyasov
- Transplantology and Genotyping, Department of the Progressive Technologies, Bashkir State Agrarian University, 450001 Ufa, Russia
| | | | - Christian Bargain
- Association pour la Sauvegarde de l'Abeillee Noire, 56069 Ile de Groix, France
| | - Balser Fried
- Swiss Association of Mellifera Bee Friends, mellifera.ch, Ahornstrasse 7, 9533 Kirchberg, Switzerland
| | - Maria Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Fontanesi L, Taurisano V, Ribani A, Utzeri VJ. A reply to the Letter to the Editor of Moškrič et al. entitled “A comment on the paper from Utzeri et al. (2022) “Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: Application to honey produced by A. m. ligustica and A. m. carnica, Food control, Volume 121, March 2021, 107626”. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Bovo S, Utzeri VJ, Ribani A, Taurisano V, Schiavo G, Fontanesi L. A genotyping by sequencing approach can disclose Apis mellifera population genomic information contained in honey environmental DNA. Sci Rep 2022; 12:19541. [PMID: 36379985 PMCID: PMC9666642 DOI: 10.1038/s41598-022-24101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Awareness has been raised over the last years on the genetic integrity of autochthonous honey bee subspecies. Genomic tools available in Apis mellifera can make it possible to measure this information by targeting individual honey bee DNA. Honey contains DNA traces from all organisms that contributed or were involved in its production steps, including the honey bees of the colony. In this study, we designed and tested a genotyping by sequencing (GBS) assay to analyse single nucleotide polymorphisms (SNPs) of A. mellifera nuclear genome using environmental DNA extracted from honey. A total of 121 SNPs (97 SNPs informative for honey bee subspecies identification and 24 SNPs associated with relevant traits of the colonies) were used in the assay to genotype honey DNA, which derives from thousands of honey bees. Results were integrated with information derived from previous studies and whole genome resequencing datasets. This GBS method is highly reliable in estimating honey bee SNP allele frequencies of the whole colony from which the honey derived. This assay can be used to identify the honey bee subspecies of the colony that produced the honey and, in turn, to authenticate the entomological origin of the honey.
Collapse
Affiliation(s)
- Samuele Bovo
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribani
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Valeria Taurisano
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Schiavo
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| | - Luca Fontanesi
- grid.6292.f0000 0004 1757 1758Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
9
|
Wragg D, Eynard SE, Basso B, Canale‐Tabet K, Labarthe E, Bouchez O, Bienefeld K, Bieńkowska M, Costa C, Gregorc A, Kryger P, Parejo M, Pinto MA, Bidanel J, Servin B, Le Conte Y, Vignal A. Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid drones. Mol Ecol Resour 2022; 22:3068-3086. [PMID: 35689802 PMCID: PMC9796960 DOI: 10.1111/1755-0998.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Honey bee subspecies originate from specific geographical areas in Africa, Europe and the Middle East, and beekeepers interested in specific phenotypes have imported genetic material to regions outside of the bees' original range for use either in pure lines or controlled crosses. Moreover, imported drones are present in the environment and mate naturally with queens from the local subspecies. The resulting admixture complicates population genetics analyses, and population stratification can be a major problem for association studies. To better understand Western European honey bee populations, we produced a whole genome sequence and single nucleotide polymorphism (SNP) genotype data set from 870 haploid drones and demonstrate its utility for the identification of nine genetic backgrounds and various degrees of admixture in a subset of 629 samples. Five backgrounds identified correspond to subspecies, two to isolated populations on islands and two to managed populations. We also highlight several large haplotype blocks, some of which coincide with the position of centromeres. The largest is 3.6 Mb long and represents 21% of chromosome 11, with two major haplotypes corresponding to the two dominant genetic backgrounds identified. This large naturally phased data set is available as a single vcf file that can now serve as a reference for subsequent populations genomics studies in the honey bee, such as (i) selecting individuals of verified homogeneous genetic backgrounds as references, (ii) imputing genotypes from a lower-density data set generated by an SNP-chip or by low-pass sequencing, or (iii) selecting SNPs compatible with the requirements of genotyping chips.
Collapse
Affiliation(s)
- David Wragg
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
- Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Sonia E. Eynard
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | | | | | | | | | | | - Cecilia Costa
- CREA Research Centre for Agriculture and EnvironmentBolognaItaly
| | - Aleš Gregorc
- Faculty of Agriculture and Life SciencesUniversity of MariborPivolaSlovenia
| | - Per Kryger
- Department of Agroecology, Science and TechnologyAarhus UniversitySlagelseDenmark
| | - Melanie Parejo
- Agroscope, Swiss Bee Research CentreBernSwitzerland
- Applied Genomics and Bioinformatics, Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioaSpain
| | - M. Alice Pinto
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de BragançaBragançaPortugal
| | | | - Bertrand Servin
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | - Alain Vignal
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| |
Collapse
|
10
|
Paolillo G, De Iorio MG, Filipe JFS, Riva F, Stella A, Gandini G, Pagnacco G, Lazzari B, Minozzi G. Analysis of Complementary Sex-Determiner (csd) Allele Diversity in Different Honeybee Subspecies from Italy Based on NGS Data. Genes (Basel) 2022; 13:genes13060991. [PMID: 35741752 PMCID: PMC9222915 DOI: 10.3390/genes13060991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sexual regulation in Apis mellifera is controlled by the complementary sex-determiner (csd) gene: females (queens and workers) are heterozygous at this locus and males (drones) are hemizygous. When homozygous diploid drones develop, they are eaten by worker bees. High csd allelic diversity in honeybee populations is a priority for colony survival. The focus of this study is to investigate csd variability in the genomic sequence of the hypervariable region (HVR) of the csd gene in honeybee subspecies sampled in Italy. During the summer of 2017 and 2018, worker bees belonging to 125 colonies were sampled. The honeybees belonged to seven different A. mellifera subspecies: A. m. ligustica, A. m. sicula, A. m cecropia, A. m. carnica, A. m. mellifera, Buckfast and hybrid Carnica. Illumina genomic resequencing of all samples was performed and used for the characterization of global variability among colonies. In this work, a pipeline using existing resequencing data to explore the csd gene allelic variants present in the subspecies collection, based on de novo assembly of sequences falling within the HVR region, is described. On the whole, 138 allelic sequences were successfully reconstructed. Among these, 88 different alleles were identified, 68 of which match with csd alleles present in the NCBI GenBank database.
Collapse
Affiliation(s)
- Gianluigi Paolillo
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Maria Grazia De Iorio
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Joel F. Soares Filipe
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Gustavo Gandini
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
| | | | - Barbara Lazzari
- IBBA-CNR, 20133 Milano, Italy; (A.S.); (G.P.)
- Correspondence: (B.L.); (G.M.)
| | - Giulietta Minozzi
- Dipartimento di Medicina Veterinaria (DIMEVET), University of Milan, 26900 Lodi, Italy; (G.P.); (M.G.D.I.); (J.F.S.F.); (F.R.); (G.G.)
- Correspondence: (B.L.); (G.M.)
| |
Collapse
|
11
|
Henriques D, Costa C, Rufino J, Pinto MA. The mitochondrial genome of Apis mellifera siciliana. Mitochondrial DNA B Resour 2022; 7:828-830. [PMID: 35573597 PMCID: PMC9103510 DOI: 10.1080/23802359.2022.2073844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We assembled the mitogenome of Apis mellifera siciliana, which was previously identified as African by the tRNA-leu-cox2 intergenic region. The mitogenome is 16,590 bp long. The gene content and organization are identical to other A. mellifera mitogenomes, containing 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Phylogenetic analysis showed a close mitochondrial relationship between A. m. siciliana and other African subspecies such as Apis mellifera sahariensis, Apis mellifera intermissa, and Apis mellifera ruttneri.
Collapse
Affiliation(s)
- Dora Henriques
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Cecília Costa
- Centro di Ricerca Agricoltura e Ambiente (CREA-AA), Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Bologna, Italy
| | - José Rufino
- Research Centre in Digitalization and Intelligent Robotics, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Maria Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
12
|
Utzeri VJ, Ribani A, Taurisano V, Fontanesi L. Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: Application to honey produced by A. m. ligustica and A. m. carnica. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Kusza S, Oleksa A, Stanisavljević L, Davidović S. Further Evidence of Population Admixture in the Serbian Honey Bee Population. INSECTS 2022; 13:180. [PMID: 35206752 PMCID: PMC8879341 DOI: 10.3390/insects13020180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023]
Abstract
Socioeconomic interests and beekeeper preferences have often taken precedence over the conservation of locally native honey bee subspecies, leading to the predominance of admixture populations in human-dominated areas. To assess the genetic diversity of contemporary managed Serbian honey bee colonies, we used 14 microsatellite loci and analyzed 237 worker bees from 46 apiaries in eight localities of northern and southern Serbia. Furthermore, we compared data for nine microsatellite loci with 338 individuals from Italy, Hungary, Poland, and Spain. The standard parameters of genetic diversity in Serbian honey bee populations were in line with other analyses, although somewhat smaller. STRUCTURE analysis showed the existence of two equally distributed genetic clusters and Analysis of molecular variances could not confirm the presence of a geographically discrete population but showed local differences. Discriminant analysis of principal components showed overlapping of worker bees from different parts of Serbia. Clear genetic differentiation can be observed when comparing all populations between geographical regions and their corresponding subspecies. The absence of the A. m. macedonica subspecies from its historical distribution range in southern Serbia as well as the lack of distinctive geographical groups suggest that selective breeding, queen import, and migratory beekeeping practices strongly influence the genetic structure and diversity of honey bees, leading to the genetic uniformization and creation of the admixture population.
Collapse
Affiliation(s)
- Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Milica Mihajlović
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Vanja Tanasić
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary;
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstanców Wielkopolskich 10, 85-090 Bydgoszcz, Poland;
| | | | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| |
Collapse
|
14
|
Chen C, Parejo M, Momeni J, Langa J, Nielsen RO, Shi W, SMARTBEES WP3 DIVERSITY CONTRIBUTORS, Vingborg R, Kryger P, Bouga M, Estonba A, Meixner M. Population Structure and Diversity in European Honey Bees ( Apismellifera L.)-An Empirical Comparison of Pool and Individual Whole-Genome Sequencing. Genes (Basel) 2022; 13:182. [PMID: 35205227 PMCID: PMC8872436 DOI: 10.3390/genes13020182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Whole-genome sequencing has become routine for population genetic studies. Sequencing of individuals provides maximal data but is rather expensive and fewer samples can be studied. In contrast, sequencing a pool of samples (pool-seq) can provide sufficient data, while presenting less of an economic challenge. Few studies have compared the two approaches to infer population genetic structure and diversity in real datasets. Here, we apply individual sequencing (ind-seq) and pool-seq to the study of Western honey bees (Apis mellifera). METHODS We collected honey bee workers that belonged to 14 populations, including 13 subspecies, totaling 1347 colonies, who were individually (139 individuals) and pool-sequenced (14 pools). We compared allele frequencies, genetic diversity estimates, and population structure as inferred by the two approaches. RESULTS Pool-seq and ind-seq revealed near identical population structure and genetic diversities, albeit at different costs. While pool-seq provides genome-wide polymorphism data at considerably lower costs, ind-seq can provide additional information, including the identification of population substructures, hybridization, or individual outliers. CONCLUSIONS If costs are not the limiting factor, we recommend using ind-seq, as population genetic structure can be inferred similarly well, with the advantage gained from individual genetic information. Not least, it also significantly reduces the effort required for the collection of numerous samples and their further processing in the laboratory.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Melanie Parejo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
- Swiss Bee Research Center, Agroscope, 3003 Bern, Switzerland
| | - Jamal Momeni
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Jorge Langa
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | | | - Rikke Vingborg
- Eurofins Genomics, 8200 Aarhus, Denmark; (J.M.); (R.O.N.); (R.V.)
| | - Per Kryger
- Department of Agroecology, Aarhus University, 4200 Slagelse, Denmark;
| | - Maria Bouga
- Lab of Agricultural Zoology and Entomology, Agricultural University of Athens, 11855 Athens, Greece;
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.L.); (A.E.)
| | | |
Collapse
|
15
|
Bianchi E, Agra MN, García C, Gennari G, Maldonado L, Rodríguez GA, Palacio MA, Scannapieco AC, Lanzavecchia SB. Defensive Behavior and Morphometric Variation in Apis mellifera Colonies From Two Different Agro-Ecological Zones of North-Western Argentina. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.590225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
European lineages of Apis mellifera were first introduced into America for beekeeping purposes. A subsequent introduction and accidental release of A. m. scutellata resulted in hybridization events that gave rise to Africanized populations that rapidly spread throughout the continent. In Argentina, Africanized honey bees (AHBs) have been mostly detected in northern regions of the territory, and represent a valuable genetic resource for the selection of stocks with advantageous characteristics for beekeeping. The objective of the present study was to profile honey bee colonies of wild origin with potential beneficial traits for apiculture using morphological, molecular and behavioral traits. Honey bee colonies chosen for evaluation were located in two different agro-ecological regions in north-western Argentina (Tucumán province): The Chaco Depressed Plain (Leales apiary) and the Piedmont (Famaillá apiary). Each apiary was surveyed three times during the 2017–2018 season (mid-season, wintertime, and early spring) for: brood population, phoretic Varroa level and defensive behavior (run, fly, sting, and hang). At the midpoint of the beekeeping season colonies were also characterized by morphometry (45 variables) and mitochondrial haplotypes (COI–COII intergenic region). Apiaries studied showed similar patterns throughout the beekeeping season, for most of the characteristics monitored. However, significant variation in defensive behavior parameters was found between apiaries at the different times of evaluation. Twelve of 45 morphometric variables also showed significant differences between apiaries. The mitochondrial haplotype analysis revealed a high representation of African A4 and A1 haplotypes (91%) in both apiaries. Haplotype variation was associated with morphometric and behavioral traits. Multivariate analyses [principal component analysis (PCA) and principal coordinate analysis (PCoA)] including morphometric and behavior variables explained 65.3% (PCA) and 48.1% (PCoA) of the variability observed between colonies in the first two components. Several morphometric parameters and “fly” behavior were mainly associated with the separation of the colonies. The results from this study point to a possible association between morphometric and behavioral variation and the adaptation of honey bee colonies to differential agro-ecological conditions. We discuss how the detected variation between apiaries can be used for the selection and preservation of honey bee ecotypes in regional breeding programs.
Collapse
|
16
|
Tanasković M, Erić P, Patenković A, Erić K, Mihajlović M, Tanasić V, Stanisavljević L, Davidović S. MtDNA Analysis Indicates Human-Induced Temporal Changes of Serbian Honey Bees Diversity. INSECTS 2021; 12:insects12090767. [PMID: 34564207 PMCID: PMC8472511 DOI: 10.3390/insects12090767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary The western honey bee is one of the most economically and ecologically important species currently facing serious challenges in its whole area of distribution. The honey bee is a highly diverse species with about 30 subspecies that are adapted to regional climate factors, vegetation, pests and pathogens. The local populations of honey bees are rapidly changing and their diversity is constantly manipulated by beekeepers through the import of foreign queens, selection and migratory beekeeping. This manipulation may lead to such changes that honey bees lose their ability to thrive in the areas that were previously suitable for their wellbeing. To see how this human interference changed the genetic variability of native honey bee populations from Serbia, we sequenced part of the mitochondrial genome and compared them with published sequences. Our results suggest that human influence significantly changes the natural composition of honey bees in Serbia and that the presence of some previously reported subspecies could not be confirmed. Abstract Local populations of Apis mellifera are rapidly changing by modern beekeeping through the introduction of nonnative queens, selection and migratory beekeeping. To assess the genetic diversity of contemporary managed honey bees in Serbia, we sequenced mitochondrial tRNAleu-cox2 intergenic region of 241 worker bees from 46 apiaries at eight localities. Nine haplotypes were observed in our samples, with C2d being the most common and widespread. To evaluate genetic diversity patterns, we compared our data with 1696 sequences from the NCBI GenBank from neighbouring countries and Serbia. All 32 detected haplotypes belonged to the Southeast Europe lineage C, with two newly described haplotypes from our sample. The most frequent haplotype was C2d, followed by C2c and C1a. To distinguish A. m. carnica from A. m. macedonica, both previously reported in Serbia, PCR-RFLP analysis on the COI gene segment of mtDNA was used, and the result showed only the presence of A.m. carnica subspecies. An MDS plot constructed on pairwise FST values showed significant geographical stratification. Our samples are grouped together, but distant from the Serbian dataset from the GenBank. This, with the absence of A. m. macedonica subspecies from its historic range of distribution in southern Serbia, indicates that honey bee populations are changing rapidly due to the anthropogenic influence.
Collapse
Affiliation(s)
- Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
- Correspondence:
| | - Pavle Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Katarina Erić
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| | - Milica Mihajlović
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Vanja Tanasić
- Center for Forensic and Applied Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (M.M.); (V.T.)
| | - Ljubiša Stanisavljević
- Center for Bee Research, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (P.E.); (A.P.); (K.E.); (S.D.)
| |
Collapse
|
17
|
Chávez-Galarza J, López-Montañez R, Jiménez A, Ferro-Mauricio R, Oré J, Medina S, Rea R, Vásquez H. Mitochondrial DNA Variation in Peruvian Honey Bee ( Apis mellifera L.) Populations Using the tRNA leu-cox2 Intergenic Region. INSECTS 2021; 12:insects12070641. [PMID: 34357301 PMCID: PMC8303314 DOI: 10.3390/insects12070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Currently, the genetic diversity of Peruvian honey bee populations is unknown. Only two studies were carried out and suggest that many regions of Peru present Africanized honey bee colonies and a varied degree of Africanization. To molecularly characterize and know more about the genetic background of Peruvian honey bees, the highly polymorphic tRNAleu-cox2 was used. This study analyzed 512 colonies in three regions of Peru: Lima, Piura, and Junín. The results indicated that 65% colonies correspond to lineage A (African), 33.8% colonies to lineage C (Eastern European), and 1.2% colonies to lineage M (Western European). A total of 24 haplotypes were identified: 16 haplotypes belong to lineage A (sub-lineage AI (13), sub-lineage AIII (03)), lineage C (06), and lineage M (02), and 15 of them are for the first time reported and represented by A1t, A1u, A1w, A4p, A4q, A4s, A4t, A4u, A4v, A4w, 30d, A30e, A65, M7b, and M7c. Piura and Lima presented higher proportions of African haplotypes and lower proportions of haplotypes from lineage C than Lima. Very few haplotypes of lineage M were identified, whose presence could be due to accidental purchases or traces of honey bee introductions from lineage M in the 19th century. Hence, studies about the diversity and genetic structure of Peruvian honey bee populations are necessary to promote adequate, sustainable management and establish conservation and breeding programs. Abstract Mitochondrial DNA variations of Peruvian honey bee populations were surveyed by using the tRNAleu-cox2 intergenic region. Only two studies have characterized these populations, indicating the presence of Africanized honey bee colonies in different regions of Peru and varied levels of Africanization, but the current status of its genetic diversity is unknown. A total of 512 honey bee colonies were sampled from three regions to characterize them. Our results revealed the presence of European and African haplotypes: the African haplotypes identified belong to sub-lineage AI (13) and sub-lineage AIII (03), and the European haplotypes to lineages C (06) and M (02). Of 24 haplotypes identified, 15 new sequences are reported here (11 sub-lineage AI, 2 sub-lineage AIII, and 2 lineage M). Peruvian honey bee populations presented a higher proportion from African than European haplotypes. High proportions of African haplotype were reported for Piura and Junín, unlike Lima, which showed more European haplotypes from lineage C. Few colonies belonging to lineage M would represent accidental purchase or traces of the introduction into Peru in the 19th century.
Collapse
|
18
|
Utzeri VJ, Ribani A, Taurisano V, Banqué CHI, Fontanesi L. Distribution of the Main Apis mellifera Mitochondrial DNA Lineages in Italy Assessed Using an Environmental DNA Approach. INSECTS 2021; 12:insects12070620. [PMID: 34357280 PMCID: PMC8304627 DOI: 10.3390/insects12070620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Growing interest has been emerging on the need to monitor the genetic integrity of the European Apis mellifera subspecies that could be threatened by the human-mediated dispersion of non-native populations and lines. Mitochondrial DNA (mtDNA) lineages can provide useful information for this purpose. In this study, we took advantage of the environmental DNA (eDNA) contained in the honey, which can be analyzed to detect the main groups of mitotypes of the honey bees that produced it. In this study, we applied this eDNA to produce a distribution map all over the Italian peninsula and the two major islands (Sicily and Sardinia) of the following three honey bee mtDNA lineages: A, C and M. A total of 607 georeferenced honey samples, produced in all Italian regions, was analyzed to detect these lineages. The A lineage was widespread in Sicily, as expected, considering that A. m. siciliana carries the African lineage. Surprisingly, this lineage was also reported in about 14% of all other samples produced in almost all continental regions, and in Sardinia. The applied method obtained an updated distribution map of honey bee mtDNA lineages that could be useful to design policies for the conservation of Italian honey bee genetic resources.
Collapse
|
19
|
Ilyasov RA, Han GY, Lee ML, Kim KW, Park JH, Takahashi JI, Kwon HW, Nikolenko AG. Phylogenetic Relationships among Honey Bee Subspecies Apis mellifera caucasia and Apis mellifera
carpathica Based on the Sequences of the Mitochondrial Genome. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Whole-Genome Sequence Analysis of Italian Honeybees ( Apis mellifera). Animals (Basel) 2021; 11:ani11051311. [PMID: 34063244 PMCID: PMC8147450 DOI: 10.3390/ani11051311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary The purpose of this study was to (i) explore the population structure of the A.m. ligustica which is widely distributed along the entire Italian peninsula, (ii) quantify the introgression of A.m. carnica, Buckfast, and A.m. mellifera bees in the two autochthonous Italian subspecies A.m. ligustica and A.m. sicula, and to (iii) to propose conservation strategies for the two autochthonous subspecies. Whole-genome sequencing was performed by Illumina technology obtaining a total of 4,380,004 single nucleotide polymorphisms (SNPs). Results of the analysis of the patterns of genetic variation allowed us to identify and subgroup bees according to their type. Morphometric analysis of 5800 worker bees was in agreement with genomic data. The investigation revealed the genetic originality of the Sicula, and in A.m. ligustica limited genetic introgression from the other breeds. Abstract At the end of the last glaciation, Apis mellifera was established in northern Europe. In Italy, Apis melliferaligustica adapted to the mild climate and to the rich floristic biodiversity. Today, with the spread of Varroa destructor and with the increasing use of pesticides in agriculture, the Ligustica subspecies is increasingly dependent on human action for its survival. In addition, the effects of globalization of bee keeping favored the spread in Italy of other honeybee stocks of A. mellifera, in particular the Buckfast bee. The purpose of this study was to characterize the Italian honeybee’s population by sequencing the whole genome of 124 honeybees. Whole genome sequencing was performed by Illumina technology, obtaining a total coverage of 3720.89X, with a mean sample coverage of 29.77X. A total of 4,380,004 SNP variants, mapping on Amel_HAv3.1 chromosomes, were detected. Results of the analysis of the patterns of genetic variation allowed us to identify and subgroup bees according to their type. The investigation revealed the genetic originality of the Sicula, and in A.m. ligustica limited genetic introgression from the other breeds. Morphometric analysis of 5800 worker bees was in agreement with genomic data.
Collapse
|
21
|
Mitochondrial DNA Suggests the Introduction of Honeybees of African Ancestry to East-Central Europe. INSECTS 2021; 12:insects12050410. [PMID: 34063321 PMCID: PMC8147603 DOI: 10.3390/insects12050410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In Europe, a well-known threat to the conservation of honeybee diversity is the loss of genetic uniqueness of local populations due to beekeepers’ preference for a few genetic lineages. However, due to climate change and large-scale ongoing movement of breeding individuals, the expansion of bees of African origin could represent another threat. This issue has not yet been recognised in detail, although bees bearing African mitochondrial DNA occur in South-West and South Europe due to natural gene flow. Here, we determine the diversity of mitochondrial DNA in honey bees from East-Central Europe. We sequenced the COI-COII region in 427 bees sampled along two 900 km transects (17.5° N and 23° E). We found that 1.64% of bees (95% CI: 0.66–3.35%) had African mitochondrial DNA. It is unlikely that their presence in the area resulted from natural migration but instead human-driven introductions of hybrids of African ancestry. This expansion deserves more attention, as it may contribute to the dissemination of undesirable traits, parasites and diseases. Abstract In Europe, protecting the genetic diversity of Apis mellifera is usually perceived in the context of limiting the spread of the evolutionary C-lineage within the original range of the M-lineage. However, due to climate change and large-scale ongoing movement of breeding individuals, the expansion of bees from the African A-lineage could represent another threat. This issue has not yet been investigated in detail, although A-mitotypes occur in South-West and South Europe due to natural gene flow. Here, we determine the diversity of mtDNA in honey bees from East-Central Europe. We sequenced the COI-COII region in 427 bees sampled along two 900 km transects (17.5° N and 23° E). We found that 1.64% of bees (95% CI: 0.66–3.35 %) had A-mitotypes. It is unlikely that their presence in the area resulted from natural migration but instead human driven introductions of hybrids of African ancestry. This expansion deserves more attention, as it may contribute to the dissemination of undesirable traits, parasites and diseases.
Collapse
|
22
|
Momeni J, Parejo M, Nielsen RO, Langa J, Montes I, Papoutsis L, Farajzadeh L, Bendixen C, Căuia E, Charrière JD, Coffey MF, Costa C, Dall'Olio R, De la Rúa P, Drazic MM, Filipi J, Galea T, Golubovski M, Gregorc A, Grigoryan K, Hatjina F, Ilyasov R, Ivanova E, Janashia I, Kandemir I, Karatasou A, Kekecoglu M, Kezic N, Matray ES, Mifsud D, Moosbeckhofer R, Nikolenko AG, Papachristoforou A, Petrov P, Pinto MA, Poskryakov AV, Sharipov AY, Siceanu A, Soysal MI, Uzunov A, Zammit-Mangion M, Vingborg R, Bouga M, Kryger P, Meixner MD, Estonba A. Authoritative subspecies diagnosis tool for European honey bees based on ancestry informative SNPs. BMC Genomics 2021; 22:101. [PMID: 33535965 PMCID: PMC7860026 DOI: 10.1186/s12864-021-07379-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. RESULTS Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. CONCLUSIONS The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees.
Collapse
Affiliation(s)
- Jamal Momeni
- Eurofins Genomics Europe Genotyping A/S (EFEG), (Former GenoSkan A/S), Aarhus, Denmark.
| | - Melanie Parejo
- Laboratory Genetics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain.,Swiss Bee Research Center, Agroscope, Bern, Switzerland
| | - Rasmus O Nielsen
- Eurofins Genomics Europe Genotyping A/S (EFEG), (Former GenoSkan A/S), Aarhus, Denmark
| | - Jorge Langa
- Laboratory Genetics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Iratxe Montes
- Laboratory Genetics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Laetitia Papoutsis
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Athens, Greece
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Eliza Căuia
- Institutul de Cercetare Dezvoltare pentru Apicultura SA, Bucharest, Romania
| | | | | | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | | - Janja Filipi
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | | | | | - Ales Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Maribor, Slovenia
| | | | - Fani Hatjina
- Department of Apiculture, Agricultural Organization 'DEMETER', Thessaloniki, Greece
| | - Rustem Ilyasov
- Division of Life Sciences, Major of Biological Sciences, and Convergence Research Center for Insect Vectors, Incheon National University, Incheon, Korea.,Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | | | | | | | | | | | | | | | - David Mifsud
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, Msida, Malta
| | - Rudolf Moosbeckhofer
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Wien, Austria
| | - Alexei G Nikolenko
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | | | - Plamen Petrov
- Agricultural University of Plovdiv, Plovdiv, Bulgaria
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Aleksandr V Poskryakov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | | | - Adrian Siceanu
- Institutul de Cercetare Dezvoltare pentru Apicultura SA, Bucharest, Romania
| | | | - Aleksandar Uzunov
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Kirchhain, Germany.,Faculty of Agricultural Sciences and Food, University Ss. Cyril and Methodius, Skopje, Republic of Macedonia
| | | | - Rikke Vingborg
- Eurofins Genomics Europe Genotyping A/S (EFEG), (Former GenoSkan A/S), Aarhus, Denmark
| | - Maria Bouga
- Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Athens, Greece
| | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Marina D Meixner
- Landesbetrieb Landwirtschaft Hessen, Bee Institute Kirchhain, Kirchhain, Germany
| | - Andone Estonba
- Laboratory Genetics, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain.
| |
Collapse
|
23
|
Saelao P, Simone-Finstrom M, Avalos A, Bilodeau L, Danka R, de Guzman L, Rinkevich F, Tokarz P. Genome-wide patterns of differentiation within and among U.S. commercial honey bee stocks. BMC Genomics 2020; 21:704. [PMID: 33032523 PMCID: PMC7545854 DOI: 10.1186/s12864-020-07111-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The population genetics of U.S. honey bee stocks remain poorly characterized despite the agricultural importance of Apis mellifera as the major crop pollinator. Commercial and research-based breeding programs have made significant improvements of favorable genetic traits (e.g. production and disease resistance). The variety of bees produced by artificial selection provides an opportunity to characterize the genetic diversity and regions of the genome undergoing selection in commonly managed stocks. RESULTS Pooled sequencing of eight honey bee stocks found strong genetic similarity among six of the stocks. Two stocks, Pol-line and Hilo, showed significant differentiation likely due to their intense and largely closed breeding for resistance to the parasitic Varroa mite. Few variants were identified as being specific to any one stock, indicating potential admixture among the sequenced stocks. Juxtaposing the underlying genetic variation of stocks selected for disease- and parasite-resistance behavior, we identified genes and candidate regions putatively associated with resistance regulated by hygienic behavior. CONCLUSION This study provides important insights into the distinct genetic characteristics and population diversity of honey bee stocks used in the United States, and provides further evidence of high levels of admixture in commercially managed honey bee stocks. Furthermore, breeding efforts to enhance parasite resistance in honey bees may have created unique genetic profiles. Genomic regions of interest have been highlighted for potential future work related to developing genetic markers for selection of disease and parasite resistance traits. Due to the vast genomic similarities found among stocks in general, our findings suggest that additional data regarding gene expression, epigenetic and regulatory information are needed to more fully determine how stock phenotypic diversity is regulated.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
- Present Address: USDA-ARS Knipling-Bushland U.S. Livestock Arthropod Pests Research Unit, Kerrville, TX 78028 USA
| | | | - Arian Avalos
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Lelania Bilodeau
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Robert Danka
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Lilia de Guzman
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Frank Rinkevich
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| | - Philip Tokarz
- USDA-ARS, Honey Bee Breeding, Genetics and Physiology Laboratory, Baton Rouge, LA 70820 USA
| |
Collapse
|
24
|
Tihelka E, Cai C, Pisani D, Donoghue PCJ. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Sci Rep 2020; 10:14515. [PMID: 32884034 PMCID: PMC7471700 DOI: 10.1038/s41598-020-71393-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Western honey bees (Apis mellifera) are one of the most important pollinators of agricultural crops and wild plants. Despite the growth in the availability of sequence data for honey bees, the phylogeny of the species remains a subject of controversy. Most notably, the geographic origin of honey bees is uncertain, as are the relationships among its constituent lineages and subspecies. We aim to infer the evolutionary and biogeographical history of the honey bee from mitochondrial genomes. Here we analyse the full mitochondrial genomes of 18 A. mellifera subspecies, belonging to all major lineages, using a range of gene sampling strategies and inference models to identify factors that may have contributed to the recovery of incongruent results in previous studies. Our analyses support a northern African or Middle Eastern origin of A. mellifera. We show that the previously suggested European and Afrotropical cradles of honey bees are the result of phylogenetic error. Monophyly of the M, C, and O lineages is strongly supported, but the A lineage appears paraphyletic. A. mellifera colonised Europe through at least two pathways, across the Strait of Gibraltar and via Asia Minor.
Collapse
Affiliation(s)
- Erik Tihelka
- Department of Animal Science, Hartpury College, Hartpury, GL19 3BE, UK.
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, 210008, China.
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
25
|
Parejo M, Wragg D, Henriques D, Charrière JD, Estonba A. Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biol Evol 2020; 12:2535-2551. [PMID: 32877519 PMCID: PMC7720081 DOI: 10.1093/gbe/evaa188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Historical specimens in museum collections provide opportunities to gain insights into the genomic past. For the Western honey bee, Apis mellifera L., this is particularly important because its populations are currently under threat worldwide and have experienced many changes in management and environment over the last century. Using Swiss Apis mellifera mellifera as a case study, our research provides important insights into the genetic diversity of native honey bees prior to the industrial-scale introductions and trade of non-native stocks during the 20th century—the onset of intensive commercial breeding and the decline of wild honey bees following the arrival of Varroa destructor. We sequenced whole-genomes of 22 honey bees from the Natural History Museum in Bern collected in Switzerland, including the oldest A. mellifera sample ever sequenced. We identify both, a historic and a recent migrant, natural or human-mediated, which corroborates with the population history of honey bees in Switzerland. Contrary to what we expected, we find no evidence for a significant genetic bottleneck in Swiss honey bees, and find that genetic diversity is not only maintained, but even slightly increased, most probably due to modern apicultural practices. Finally, we identify signals of selection between historic and modern honey bee populations associated with genes enriched in functions linked to xenobiotics, suggesting a possible selective pressure from the increasing use and diversity of chemicals used in agriculture and apiculture over the last century.
Collapse
Affiliation(s)
- Melanie Parejo
- Agroscope, Swiss Bee Research Center, Bern, Switzerland.,Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - David Wragg
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dora Henriques
- Instituto Politécnico de Bragança, Centro de Investigação de Montanha (CIMO), Bragança, Portugal
| | | | - Andone Estonba
- Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
26
|
Rizwan M, Liang P, Ali H, Li Z, Nie H, Ahmed Saqib HS, Fiaz S, Raza MF, Hassanyar AK, Niu Q, Su S. Population genomics of honey bees reveals a selection signature indispensable for royal jelly production. Mol Cell Probes 2020; 52:101542. [PMID: 32105702 DOI: 10.1016/j.mcp.2020.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 02/03/2023]
Abstract
In order to interpret the molecular mechanisms that modulating the organism variations and selection signatures to drive adaptive evolutionary changes are indispensable goals in the new evolutionary ecological genetics. Here, we identified the gene locus associated to royal jelly production through whole-genome sequencing of the DNA from eight populations of honeybees. The analysis of the samples was composed of 120 individuals and each pointed extremely opposite trait values for a given phenotype. We identified functional single nucleotide polymorphisms (SNPs) candidate that might be essential in regulating the phenotypic traits of honeybee populations. Moreover, selection signatures were investigated using pooling sequencing of eight distinct honeybee populations, and the results provided the evidence of signatures of recent selection among populations under different selection objectives. Furthermore, gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that selected genes were potentially involved in several biological processes and molecular functioning, which could directly or indirectly influence the production of royal jelly. Our findings can be used to understand the genomic signatures, as well as implicate a profound glance on genomic regions that control the production trait of royal jelly in honey bees.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Pingping Liang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Habib Ali
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pkhtunkhwa, Pakistan; Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Sajid Fiaz
- Department of Entomology, University of Agriculture Faisalabad, Depalpur Campus, Okara, Pakistan
| | - Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Aqai Kalan Hassanyar
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
27
|
Juhel AS, Barbu CM, Valantin-Morison M, Gauffre B, Leblois R, Olivares J, Franck P. Limited genetic structure and demographic expansion of the Brassicogethes aeneus populations in France and in Europe. PEST MANAGEMENT SCIENCE 2019; 75:667-675. [PMID: 30105772 DOI: 10.1002/ps.5162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The pollen beetle, Brassicogethes aeneus (Fabricius, 1775), is one of the most significant pests of oilseed rape. To shed light on past and current pollen beetle demography (dispersal, population size), 12 microsatellite markers were developed, and population genetic diversity and structure were analysed at different spatial scales in France and in Europe from 433 individuals collected in 18 winter oilseed rape fields. RESULTS Genetic differentiation among the population samples was low but was significant between the Estonian sample and the rest of Europe. Isolation by distance was significant only at the European scale. Genetic variability was similar among the 18 population samples. Demographic inferences suggested a recent expansion of B. aeneus population size over Europe, possibly corresponding to an increase in oilseed rape crop area during past decades. CONCLUSION Current population size and dispersal are not straightforward to estimate from the distribution of genetic variability in B. aeneus over Europe because of the complexity of the demographic history of this pest. Nevertheless, because gene flow was important enough to prevent strong genetic differentiation at large geographical scales, the management of pollen beetle populations should likely be thought of at a continental Europe level. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Amandine S Juhel
- UMR210 Agronomie, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Corentin M Barbu
- UMR210 Agronomie, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | - Bertrand Gauffre
- UR1115 Plantes et Systèmes de culture Horticoles, INRA, Avignon, France
| | - Raphaël Leblois
- CBGP UMR 1062, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
- Institut de Biologie Computationnelle, Univ. Montpellier, Montpelier, France
| | - Jérôme Olivares
- UR1115 Plantes et Systèmes de culture Horticoles, INRA, Avignon, France
| | - Pierre Franck
- UR1115 Plantes et Systèmes de culture Horticoles, INRA, Avignon, France
| |
Collapse
|
28
|
Wragg D, Techer MA, Canale-Tabet K, Basso B, Bidanel JP, Labarthe E, Bouchez O, Le Conte Y, Clémencet J, Delatte H, Vignal A. Autosomal and Mitochondrial Adaptation Following Admixture: A Case Study on the Honeybees of Reunion Island. Genome Biol Evol 2018; 10:220-238. [PMID: 29202174 PMCID: PMC5814903 DOI: 10.1093/gbe/evx247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations.
Collapse
Affiliation(s)
- David Wragg
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France.,The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Maéva Angélique Techer
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France.,UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France.,Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADE, Avignon, France
| | | | - Emmanuelle Labarthe
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, UMT PrADE, Avignon, France
| | - Johanna Clémencet
- UMR PVBMT, Université de La Réunion, Saint Pierre, La Réunion, France
| | | | - Alain Vignal
- GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
| |
Collapse
|
29
|
Utzeri VJ, Ribani A, Fontanesi L. Authentication of honey based on a DNA method to differentiate Apis mellifera subspecies: Application to Sicilian honey bee ( A. m. siciliana ) and Iberian honey bee ( A. m. iberiensis ) honeys. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Cridland JM, Tsutsui ND, Ramírez SR. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera. Genome Biol Evol 2018; 9:457-472. [PMID: 28164223 PMCID: PMC5381634 DOI: 10.1093/gbe/evx009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/29/2022] Open
Abstract
The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis
| | - Neil D Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley
| | | |
Collapse
|
31
|
Okuyama H, Hill J, Martin SJ, Takahashi JI. The complete mitochondrial genome of a Buckfast bee, Apis mellifera (Insecta: Hymenoptera: Apidae) in Northern Ireland. Mitochondrial DNA B Resour 2018; 3:338-339. [PMID: 33490507 PMCID: PMC7800400 DOI: 10.1080/23802359.2018.1450660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
We analyzed the complete mitochondrial genome of the 'Buckfast bee', Apis mellifera, collected from North Ireland, UK. It consisted of a circular molecule of 16,353 bp. The genome contained 13 protein-coding, 22 tRNA, and 2 rRNA genes, along with one A + T-rich control region. The average AT content was 84.9%. The genes ATP8 and ATP6 shared 19 nucleotides. A phylogenetic analysis, suggested that the matriline 'Buckfast bee' has remained most closely related to the A. mellifera ligustica race from which it originated in 1917, despite being cross-bred with many other A. mellifera races over the past 100 years.
Collapse
Affiliation(s)
- Hisashi Okuyama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - John Hill
- Randalstown and District Beekeepers’ Association, Crumlin Co Antrim, UK
| | - Stephen John Martin
- School of Environment and Life Sciences, University of Salford, Manchester, UK
| | | |
Collapse
|
32
|
Abstract
At least 30 subspecies of the honeybee Apis mellifera L. were formed allopatrically during the evolution, which spreaded throughout all Africa, Europe and West Asia. The dark forest bee Apis mellifera mellifera is the only and most valuable subspecies for the Northern and Western Europe countries, adapted to productive living in the hard-continental climate of Eurasia. In the past 100 years, natural geographical isolation of subspecies has been disrupted as a result of a human activities. Mass transportations of honeybee colonies beyond the boundaries of their area have been threatened of loss the identity of gene pool of subspecies as a result of hybridization. Preservation of the gene pool of subspecies is possible only when controlling the transportation of honeybee colonies using the methods of identification of taxonomic affiliation of honeybee colonies. Now, dozens of methods have been developed to identify the taxonomic affiliation of honeybee's colony, which are based on the variability of body parts, allozyme loci, mitochondrial DNA loci, microsatellite nuclear loci, sites of single nucleotide polymorphism (SNP). The variability of microsatellite loci and the single nucleotide polymorphism sites have shown the greatest informativeness in identification of the taxonomic affiliation of honeybee's colony.
Collapse
|
33
|
Techer MA, Clémencet J, Simiand C, Preeaduth S, Azali HA, Reynaud B, Hélène D. Large-scale mitochondrial DNA analysis of native honey bee Apis mellifera populations reveals a new African subgroup private to the South West Indian Ocean islands. BMC Genet 2017; 18:53. [PMID: 28577537 PMCID: PMC5457595 DOI: 10.1186/s12863-017-0520-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The South West Indian Ocean (SWIO) archipelagos and Madagascar constitute a hotspot of biodiversity with a high rate of endemism. In this area, the endemic subspecies A. m. unicolor has been described in Madagascar. It belongs to the African lineage, one of the four described evolutionary lineages in honey bees. Despite a long beekeeping tradition and several recorded European introductions, few studies have been carried out on the diversity and proportion of honey bee subspecies. In order to identify and define which evolutionary lineages and potential sub-lineages are present in the SWIO, the COI-COII intergenic region and the ND2 gene of the mtDNA were sequenced in honey bee colonies from three archipelagos. An extensive sampling (n = 1184 colonies) was done in the Mascarene (La Réunion, Mauritius, Rodrigues), Seychelles (Mahé, Praslin, La Digue) and Comoros (Grande Comore, Mohéli, Anjouan, Mayotte) archipelagos. Islands genetic diversity was compared to newly sampled populations from Madagascar, continental African and European populations. RESULTS African lineage haplotypes were found in all islands (except for Rodrigues). Madagascar, Comoros and Seychelles had 100% of A lineage, 95.5% in La Réunion and 56.1% in Mauritius. Among all African colonies detected in the SWIO, 98.1% (n = 633) of COI-COII haplotypes described the presence of the subspecies A. M. unicolor. Both genetic markers revealed i) a new private AI mitochondrial group shared by the SWIO archipelagos and Madagascar distant from continental populations; ii) the private African haplotypes for each island suggested diversity radiation in the archipelagos; iii) the detection of the Comoros archipelago as a possible contact area between insular and continental African populations. The exotic European C and M lineages were only detected in the Mascarene archipelago, but striking differences of proportion were observed among islands. Merely 4.6% of European colonies were found in La Réunion whereas Mauritius cumulated 44%. Here, among the 84 observed COI-COII haplotypes, 50 were newly described including 13 which were private to the SWIO archipelagos and Madagascar. Similarly, 24 of the 34 found ND2 haplotypes were novel which included six haplotypes particular to the SWIO populations. CONCLUSION A new African subgroup was described in the SWIO region with mitochondrial genetic evidence that A. m. unicolor is the indigenous subspecies of the archipelagos surrounding Madagascar.
Collapse
Affiliation(s)
- Maéva Angélique Techer
- UMR PVBMT, Université de La Réunion, F-97715 Saint Denis cedex 9, La Réunion, France
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, 97410 Saint Pierre, La Réunion France
- Current Address: Okinawa Institute of Science and Technology Graduate University, Ecology and Evolution unit, 1919-1 Tancha Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan
| | - Johanna Clémencet
- UMR PVBMT, Université de La Réunion, F-97715 Saint Denis cedex 9, La Réunion, France
| | - Christophe Simiand
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, 97410 Saint Pierre, La Réunion France
| | - Sookar Preeaduth
- Ministry of Agro Industry and Food Security, Entomology Division, Reduit, Republic of Mauritius
| | - Hamza Abdou Azali
- Université des Comores, Route de la Corniche, BP 2585, Mkazi, Comoros
| | - Bernard Reynaud
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, 97410 Saint Pierre, La Réunion France
| | - Delatte Hélène
- CIRAD, UMR PVBMT, 7 chemin de l’Irat, Ligne Paradis, 97410 Saint Pierre, La Réunion France
| |
Collapse
|
34
|
Parejo M, Wragg D, Gauthier L, Vignal A, Neumann P, Neuditschko M. Using Whole-Genome Sequence Information to Foster Conservation Efforts for the European Dark Honey Bee, Apis mellifera mellifera. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly. Sci Rep 2016; 6:27168. [PMID: 27255426 PMCID: PMC4891733 DOI: 10.1038/srep27168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/13/2016] [Indexed: 01/14/2023] Open
Abstract
Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.
Collapse
|
36
|
Ilyasov RA, Poskryakov AV, Petukhov AV, Nikolenko AG. New approach to the mitotype classification in black honeybee Apis mellifera mellifera and Iberian honeybee Apis mellifera iberiensis. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Moritz RFA, Härtel S, Neumann P. Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. ECOSCIENCE 2016. [DOI: 10.2980/i1195-6860-12-3-289.1] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Lehébel-Péron A, Travier D, Renaux A, Dounias E, Schatz B. De la ruche-tronc à la ruche à cadres : ethnoécologie historique de l’apiculture en Cévennes. REVUE D'ETHNOÉCOLOGIE 2016. [DOI: 10.4000/ethnoecologie.2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Péntek‐Zakar E, Oleksa A, Borowik T, Kusza S. Population structure of honey bees in the Carpathian Basin (Hungary) confirms introgression from surrounding subspecies. Ecol Evol 2015; 5:5456-67. [PMID: 27069597 PMCID: PMC4813114 DOI: 10.1002/ece3.1781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/10/2015] [Accepted: 09/20/2015] [Indexed: 11/12/2022] Open
Abstract
Carniolan honey bees (Apis mellifera carnica) are considered as an indigenous subspecies in Hungary adapted to most of the ecological and climatic conditions in this area. However, during the last decades Hungarian beekeepers have recognized morphological signs of the Italian honey bee (Apis mellifera ligustica). As the natural distribution of the honey bee subspecies can be affected by the importation of honey bee queens or by natural gene flow, we aimed at determining the genetic structure and characteristics of the local honey bee population using molecular markers. All together, 48 Hungarian and 84 foreign (Italian, Polish, Spanish, Liberian) pupae and/or workers were used for mitochondrial DNA analysis. Additionally, 53 sequences corresponding to 10 subspecies and the Buckfast hybrid were downloaded from GenBank. For the nuclear analysis, 236 Hungarian and 106 foreign honey bees were genotyped using nine microsatellites. Heterozygosity values, population-specific alleles, FST values, principal coordinate analysis, assignment tests, structure analysis, and dendrograms were calculated. Haplotype and nucleotide diversity values showed moderate values. We found that one haplotype (H9) was dominant in Hungary. The presence of the black honey bee (Apis mellifera mellifera) was negligible, but a few individuals resembling other subspecies were identified. We proved that the Hungarian honey bee population is nearly homogeneous but also demonstrated introgression from the foreign subspecies. Both mitochondrial DNA and microsatellite analyses corroborated the observations of the beekeepers. Molecular analyses suggested that Carniolan honey bee in Hungary is slightly affected by Italian and black honey bee introgression. Genetic differences were detected between Polish and Hungarian Carniolan honey bee populations, suggesting the existence of at least two different gene pools within A. m. carnica.
Collapse
Affiliation(s)
- Erika Péntek‐Zakar
- Institute of Animal ScienceBiotechnology and Nature ConservationUniversity of Debrecen4032DebrecenHungary
| | - Andrzej Oleksa
- Department of GeneticsKazimierz Wielki University85‐064BydgoszczPoland
| | - Tomasz Borowik
- Mammal Research InstitutePolish Academy of Sciences17‐230BialowiezaPoland
| | - Szilvia Kusza
- Institute of Animal ScienceBiotechnology and Nature ConservationUniversity of Debrecen4032DebrecenHungary
| |
Collapse
|
40
|
Chávez-Galarza J, Henriques D, Johnston JS, Carneiro M, Rufino J, Patton JC, Pinto MA. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol Ecol 2015; 24:2973-92. [PMID: 25930679 DOI: 10.1111/mec.13223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity.
Collapse
Affiliation(s)
- Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Dora Henriques
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - José Rufino
- Polytechnic Institute of Bragança, 5301-857, Bragança, Portugal
| | - John C Patton
- Department of Forestry and Natural Resources, Purdue University, 715 W State St., West Lafayette, IN, 4797-2061, USA
| | - M Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| |
Collapse
|
41
|
Mannina L, Sobolev AP, Di Lorenzo A, Vista S, Tenore GC, Daglia M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5864-5874. [PMID: 25730368 DOI: 10.1021/jf506192s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.
Collapse
Affiliation(s)
- Luisa Mannina
- †Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- §Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, I-00015 Monterotondo, Rome, Italy
| | - Anatoly P Sobolev
- §Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, I-00015 Monterotondo, Rome, Italy
| | - Arianna Di Lorenzo
- #Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Vista
- †Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Gian Carlo Tenore
- ⊥Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- #Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
42
|
Bertrand B, Alburaki M, Legout H, Moulin S, Mougel F, Garnery L. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres. Mol Ecol Resour 2014; 15:673-83. [PMID: 25335970 DOI: 10.1111/1755-0998.12339] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
Abstract
Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations.
Collapse
Affiliation(s)
- Bénédicte Bertrand
- Laboratoire Evolution Génomes et Spéciation, CNRS, UPR 9034, 91198, Gif-sur-Yvette, France; Université Paris-Sud XI, 91405, Orsay, France
| | | | | | | | | | | |
Collapse
|
43
|
Coroian CO, Muñoz I, Schlüns EA, Paniti-Teleky OR, Erler S, Furdui EM, Mărghitaş LA, Dezmirean DS, Schlüns H, de la Rúa P, Moritz RFA. Climate rather than geography separates two European honeybee subspecies. Mol Ecol 2014; 23:2353-61. [PMID: 24650190 DOI: 10.1111/mec.12731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
Both climatic and geographical factors play an important role for the biogeographical distribution of species. The Carpathian mountain ridge has been suggested as a natural geographical divide between the two honeybee subspecies Apis mellifera carnica and A. m. macedonica. We sampled one worker from one colony each at 138 traditional apiaries located across the Carpathians spanning from the Hungarian plains to the Danube delta. All samples were sequenced at the mitochondrial tRNA(Leu)-cox2 intergenic region and genotyped at twelve microsatellite loci. The Carpathians had only limited impact on the biogeography because both subspecies were abundant on either side of the mountain ridge. In contrast, subspecies differentiation strongly correlated with the various temperature zones in Romania. A. m. carnica is more abundant in regions with the mean average temperature below 9 °C, whereas A. m. macedonica honeybees are more frequent in regions with mean temperatures above 9 °C. This range selection may have impact on the future biogeography in the light of anticipated global climatic changes.
Collapse
Affiliation(s)
- Cristian O Coroian
- Department of Apiculture and Sericulture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Presence of Nosema ceranae associated with honeybee queen introductions. INFECTION GENETICS AND EVOLUTION 2014; 23:161-8. [DOI: 10.1016/j.meegid.2014.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
|
45
|
Coupling impoverishment analysis and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. ORG DIVERS EVOL 2013. [DOI: 10.1007/s13127-013-0161-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Harpur BA, Minaei S, Kent CF, Zayed A. Admixture increases diversity in managed honey bees: reply to De la Rúa et al. (2013). Mol Ecol 2013; 22:3211-5. [PMID: 24433573 DOI: 10.1111/mec.12332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
Abstract
De la Rúa et al. (2013) express some concerns about the conclusions of our recent study showing that management increases genetic diversity of honey bees (Apis mellifera) by promoting admixture (Harpur et al. 2012). We provide a brief review of the literature on the population genetics of A. mellifera and show that we utilized appropriate sampling methods to estimate genetic diversity in the focal populations. Our finding of higher genetic diversity in two managed A. mellifera populations on two different continents is expected to be the norm given the large number of studies documenting admixture in honey bees. Our study focused on elucidating how management affects genetic diversity in honey bees, not on how to best manage bee colonies. We do not endorse the intentional admixture of honey bee populations, and we agree with De la Rúa et al. (2013) that native honey bee subspecies should be conserved.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology, York University, 4700 Keele Street, Toronto, M3J 1P3, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food Chem Toxicol 2012; 50:1955-61. [DOI: 10.1016/j.fct.2012.03.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/22/2022]
|
48
|
Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera). CONSERV GENET RESOUR 2010. [DOI: 10.1007/s12686-010-9351-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Shaibi T, Moritz RFA. 10,000 years in isolation? Honeybees (Apis mellifera) in Saharan oases. CONSERV GENET 2010. [DOI: 10.1007/s10592-010-0088-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Stevanovic J, Stanimirovic Z, Radakovic M, Kovacevic SR. Biogeographic study of the honey bee (Apis mellifera L.) from Serbia, Bosnia and Herzegovina and Republic of Macedonia Based on mitochondrial DNA analyses. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410050145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|