1
|
Yeasmin T, Carroll SC, Hawtof DJ, Sutherland MC. Helicobacter pylori and Campylobacter jejuni bacterial holocytochrome c synthase structure-function analysis reveals conservation of heme binding. Commun Biol 2024; 7:984. [PMID: 39138305 PMCID: PMC11322641 DOI: 10.1038/s42003-024-06688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Heme trafficking is essential for cellular function, yet mechanisms of transport and/or heme interaction are not well defined. The System I and System II bacterial cytochrome c biogenesis pathways are developing into model systems for heme trafficking due to their functions in heme transport, heme stereospecific positioning, and mediation of heme attachment to apocytochrome c. Here we focus on the System II pathway, CcsBA, that is proposed to be a bi-functional heme transporter and holocytochrome c synthase. An extensive structure-function analysis of recombinantly expressed Helicobacter pylori and Campylobacter jejuni CcsBAs revealed key residues required for heme interaction and holocytochrome c synthase activity. Homologous residues were previously identified to be required for heme interaction in Helicobacter hepaticus CcsBA. This study provides direct, biochemical evidence that mechanisms of heme interaction are conserved, leading to the proposal that the CcsBA WWD heme-handling domain represents a novel target for therapeutics.
Collapse
Affiliation(s)
- Tania Yeasmin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Susan C Carroll
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - David J Hawtof
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Molly C Sutherland
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
2
|
Huynh JQ, Lowder EP, Kranz RG. Structural basis of membrane machines that traffick and attach heme to cytochromes. J Biol Chem 2023; 299:105332. [PMID: 37827288 PMCID: PMC10663686 DOI: 10.1016/j.jbc.2023.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
We evaluate cryoEM and crystal structures of two molecular machines that traffick heme and attach it to cytochrome c (cyt c), the second activity performed by a cyt c synthase. These integral membrane proteins, CcsBA and CcmF/H, both covalently attach heme to cyt c, but carry it out via different mechanisms. A CcsB-CcsA complex transports heme through a channel to its external active site, where it forms two thioethers between reduced (Fe+2) heme and CysXxxXxxCysHis in cyt c. The active site is formed by a periplasmic WWD sequence and two histidines (P-His1 and P-His2). We evaluate each proposed functional domain in CcsBA cryoEM densities, exploring their presence in other CcsB-CcsA proteins from a wide distribution of organisms (e.g., from Gram positive to Gram negative bacteria to chloroplasts.) Two conserved pockets, for the first and second cysteines of CXXCH, explain stereochemical heme attachment. In addition to other universal features, a conserved periplasmic beta stranded structure, called the beta cap, protects the active site when external heme is not present. Analysis of CcmF/H, here called an oxidoreductase and cyt c synthase, addresses mechanisms of heme access and attachment. We provide evidence that CcmF/H receives Fe+3 heme from holoCcmE via a periplasmic entry point in CcmF, whereby heme is inserted directly into a conserved WWD/P-His domain from above. Evidence suggests that CcmF acts as a heme reductase, reducing holoCcmE (to Fe+2) through a transmembrane electron transfer conduit, which initiates a complicated series of events at the active site.
Collapse
Affiliation(s)
- Jonathan Q Huynh
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Ethan P Lowder
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robert G Kranz
- Department of Biology, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Liao B, Wang C, Li X, Man Y, Ruan H, Zhao Y. Genome-wide analysis of the Populus trichocarpa laccase gene family and functional identification of PtrLAC23. FRONTIERS IN PLANT SCIENCE 2023; 13:1063813. [PMID: 36733583 PMCID: PMC9887407 DOI: 10.3389/fpls.2022.1063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Biofuel is a kind of sustainable, renewable and environment friendly energy. Lignocellulose from the stems of woody plants is the main raw material for "second generation biofuels". Lignin content limits fermentation yield and is therefore a major obstacle in biofuel production. Plant laccase plays an important role in the final step of lignin formation, which provides a new strategy for us to obtain ideal biofuels by regulating the expression of laccase genes to directly gain the desired lignin content or change the composition of lignin. METHODS Multiple sequence alignment and phylogenetic analysis were used to classify PtrLAC genes; sequence features of PtrLACs were revealed by gene structure and motif composition analysis; gene duplication, interspecific collinearity and Ka/Ks analysis were conducted to identify ancient PtrLACs; expression levels of PtrLAC genes were measured by RNA-Seq data and qRT-PCR; domain analysis combine with cis-acting elements prediction together showed the potential function of PtrLACs. Furthermore, Alphafold2 was used to simulate laccase 3D structures, proLAC23::LAC23-eGFP transgenic Populus stem transects were applied to fluorescence observation. RESULTS A comprehensive analysis of the P. trichocarpa laccase gene (PtLAC) family was performed. Some ancient PtrLAC genes such as PtrLAC25, PtrLAC19 and PtrLAC41 were identified. Gene structure and distribution of conserved motifs clearly showed sequence characteristics of each PtrLAC. Combining published RNA-Seq data and qRT-PCR analysis, we revealed the expression pattern of PtrLAC gene family. Prediction results of cis-acting elements show that PtrLAC gene regulation was closely related to light. Through above analyses, we selected 5 laccases and used Alphafold2 to simulate protein 3D structures, results showed that PtrLAC23 may be closely related to the lignification. Fluorescence observation of proLAC23::LAC23-eGFP transgenic Populus stem transects and qRT-PCR results confirmed our hypothesis again. DISCUSSION In this study, we fully analyzed the Populus trichocarpa laccase gene family and identified key laccase genes related to lignification. These findings not only provide new insights into the characteristics and functions of Populus laccase, but also give a new understanding of the broad prospects of plant laccase in lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Boyang Liao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chencan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Yi Man
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Hang Ruan
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S. Genome-wide transposon mutagenesis analysis of Burkholderia pseudomallei reveals essential genes for in vitro and in vivo survival. Front Cell Infect Microbiol 2022; 12:1062682. [PMID: 36619746 PMCID: PMC9816413 DOI: 10.3389/fcimb.2022.1062682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined. Methods We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen. Results Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice. Discussion The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.
Collapse
Affiliation(s)
- Yee-Chin Wong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Raeece Naeem
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Moataz Abd El Ghany
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia,School of Public Health, The University of Sydney, Sydney, NSW, Australia,Centre for Infectious Disease and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | | | - Arnab Pain
- Bioscience program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia,*Correspondence: Sheila Nathan,
| |
Collapse
|
5
|
|
6
|
Sutherland MC, Mendez DL, Babbitt SE, Tillman DE, Melnikov O, Tran NL, Prizant NT, Collier AL, Kranz RG. In vitro reconstitution reveals major differences between human and bacterial cytochrome c synthases. eLife 2021; 10:64891. [PMID: 33973521 PMCID: PMC8112865 DOI: 10.7554/elife.64891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Cytochromes c are ubiquitous heme proteins in mitochondria and bacteria, all possessing a CXXCH (CysXxxXxxCysHis) motif with covalently attached heme. We describe the first in vitro reconstitution of cytochrome c biogenesis using purified mitochondrial (HCCS) and bacterial (CcsBA) cytochrome c synthases. We employ apocytochrome c and peptide analogs containing CXXCH as substrates, examining recognition determinants, thioether attachment, and subsequent release and folding of cytochrome c. Peptide analogs reveal very different recognition requirements between HCCS and CcsBA. For HCCS, a minimal 16-mer peptide is required, comprised of CXXCH and adjacent alpha helix 1, yet neither thiol is critical for recognition. For bacterial CcsBA, both thiols and histidine are required, but not alpha helix 1. Heme attached peptide analogs are not released from the HCCS active site; thus, folding is important in the release mechanism. Peptide analogs behave as inhibitors of cytochrome c biogenesis, paving the way for targeted control. From tiny bacteria to the tallest trees, most life on Earth carries a protein called cytochrome c, which helps to create the energy that powers up cells. Cytochrome c does so thanks to its heme, a molecule that enables the chemical reactions required for the energy-creating process. Despite both relying on cytochrome c, animals and bacteria differ in the enzyme they use to attach the heme to the cytochrome. Spotting variations in how this ‘cytochrome c synthase’ works would help to find compounds that deactivate the enzyme in bacteria, but not in humans. However, studying cytochrome c synthase in living cells is challenging. To bypass this issue, Sutherland, Mendez, Babbitt et al. successfully reconstituted cytochrome c synthases from humans and bacteria in test tubes. This allowed them to examine in detail which structures the enzymes recognize to spot where to attach the heme onto their target. The experiments revealed that human and bacterial synthases actually rely on different parts of the cytochrome c to orient themselves. Different short compounds could also block either the human or bacterial enzyme. Variations between human and bacterial cytochrome c synthase could lead to new antibiotics which deactivate the cytochrome and kill bacteria while sparing patients. The next step is to identify molecules that specifically interfere with cytochrome c synthase in bacteria, and could be tested in clinical trials.
Collapse
Affiliation(s)
- Molly C Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, United States.,Department of Biological Sciences, University of Delaware, Newark, United States
| | - Deanna L Mendez
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Shalon E Babbitt
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Dustin E Tillman
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Olga Melnikov
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Nathan L Tran
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Noah T Prizant
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Andrea L Collier
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| | - Robert G Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
7
|
von Wachenfeldt C, Hallgren J, Hederstedt L. YtkA (CtaK) and YozB (CtaM) function in the biogenesis of cytochrome c oxidase in Bacillus subtilis. Mol Microbiol 2021; 116:184-199. [PMID: 33590545 DOI: 10.1111/mmi.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Cytochrome c oxidase in the respiratory chain of bacteria and mitochondria couples the reduction of molecular oxygen to form water with the generation of a transmembrane proton gradient. Bacillus subtilis has two heme A-containing heme-copper oxidases: the menaquinol oxidase cytochrome aa3 and the cytochrome c oxidase cytochrome caa3 . By screening three collections of mutants for defective cytochrome c oxidase, we found the genes for two, new membrane-bound assembly factors in B. subtilis: ytkA and yozB (renamed ctaK and ctaM, respectively). CtaK is a lipoprotein without sequence similarity to any protein of known function. We show that CtaK functions together with Sco1 (YpmQ) in a pathway, leading to the assembly of the CuA center in cytochrome caa3 and seems to be a functional analogue to proteins of the periplasmic CuA chaperone family (PCuA C). CtaM is required for the activity of both cytochrome caa3 and cytochrome aa3 and dispensable for the insertion of heme A into these oxidases. The orthologous Bacillus anthracis protein and the distantly related Staphylococcus aureus CtaM complemented CtaM deficiency in B. subtilis, establishing a common function of CtaM in these bacteria. As the overall result of our work, 12 different proteins are known to function in the biosynthesis of cytochrome c oxidase in B. subtilis.
Collapse
Affiliation(s)
| | - Joel Hallgren
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Hederstedt L. Molecular Biology of Bacillus subtilis Cytochromes anno 2020. BIOCHEMISTRY (MOSCOW) 2021; 86:8-21. [DOI: 10.1134/s0006297921010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Abstract
The movement or trafficking of heme is critical for cellular functions (e.g., oxygen transport and energy production); however, intracellular heme is tightly regulated due to its inherent cytotoxicity. These factors, combined with the transient nature of transport, have resulted in a lack of direct knowledge on the mechanisms of heme binding and trafficking. Here, we used the cytochrome c biogenesis system II pathway as a model to study heme trafficking. System II is composed of two integral membrane proteins (CcsBA) which function to transport heme across the membrane and stereospecifically position it for covalent attachment to apocytochrome c. We mapped two heme binding domains in CcsBA and suggest a path for heme trafficking. These data, in combination with metagenomic coevolution data, are used to determine a structural model of CcsBA, leading to increased understanding of the mechanisms for heme transport and the cytochrome c synthetase function of CcsBA. Although intracellular heme trafficking must occur for heme protein assembly, only a few heme transporters have been unequivocally discovered and nothing is known about their structure or mechanisms. Cytochrome c biogenesis in prokaryotes requires the transport of heme from inside to outside for stereospecific attachment to cytochrome c via two thioether bonds (at CXXCH). The CcsBA integral membrane protein was shown to transport and attach heme (and thus is a cytochrome c synthetase), but the structure and mechanisms underlying these two activities are poorly understood. We employed a new cysteine/heme crosslinking tool that traps endogenous heme in heme binding sites. We combined these data with a comprehensive imidazole correction approach (for heme ligand interrogation) to map heme binding sites. Results illuminate the process of heme transfer through the membrane to an external binding site (called the WWD domain). Using meta-genomic data (GREMLIN) and Rosetta modeling programs, a structural model of the transmembrane (TM) regions in CcsBA were determined. The heme mapping data were then incorporated to model the TM heme binding site (with TM-His1 and TM-His2 as ligands) and the external heme binding WWD domain (with P-His1 and P-His2 as ligands). Other periplasmic structure/function studies facilitated modeling of the full CcsBA protein as a framework for understanding the mechanisms. Mechanisms are proposed for heme transport from TM-His to WWD/P-His and subsequent stereospecific attachment of heme. A ligand exchange of the P-His1 for histidine of CXXCH at the synthetase active site is suggested.
Collapse
|
10
|
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS One 2018; 13:e0195358. [PMID: 29677198 PMCID: PMC5909903 DOI: 10.1371/journal.pone.0195358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.
Collapse
|
11
|
Gabilly ST, Hamel PP. Maturation of Plastid c-type Cytochromes. FRONTIERS IN PLANT SCIENCE 2017; 8:1313. [PMID: 28798763 PMCID: PMC5526843 DOI: 10.3389/fpls.2017.01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/07/2023]
Abstract
Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.
Collapse
Affiliation(s)
- Stéphane T. Gabilly
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
12
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1306. [PMID: 28824661 PMCID: PMC5541062 DOI: 10.3389/fpls.2017.01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G. Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A. Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
13
|
Schmidt RM, Carter MM, Chu ML, Latario CJ, Stadler SK, Stauff DL. Heme sensing in Bacillus thuringiensis: a supplementary HssRS-regulated heme resistance system. FEMS Microbiol Lett 2016; 363:fnw076. [PMID: 27030728 DOI: 10.1093/femsle/fnw076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Several Gram-positive pathogens scavenge host-derived heme to satisfy their nutritional iron requirement. However, heme is a toxic molecule capable of damaging the bacterial cell. Gram-positive pathogens within the phylum Firmicutes overcome heme toxicity by sensing heme through HssRS, a two-component system that regulates the heme detoxification transporter HrtAB. Here we show that heme sensing by HssRS and heme detoxification by HrtAB occur in the insect pathogen Bacillus thuringiensis We find that in B. thuringiensis, HssRS directly regulates an operon, hrmXY, encoding hypothetical membrane proteins that are not found in other Firmicutes with characterized HssRS and HrtAB systems. This novel HssRS-regulated operon or its orthologs BMB171_c3178 and BMB171_c3330 are required for maximal heme resistance. Furthermore, the activity of HrmXY is not dependent on expression of HrtAB. These results suggest that B. thuringiensis senses heme through HssRS and induces expression of separate membrane-localized systems capable of overcoming different aspects of heme toxicity.
Collapse
Affiliation(s)
- Rachel M Schmidt
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| | - Micaela M Carter
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| | - Michelle L Chu
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| | - Casey J Latario
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| | - Sarah K Stadler
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| | - Devin L Stauff
- Department of Biology, Grove City College, 100 Campus Drive, Grove City, PA 16127, USA
| |
Collapse
|
14
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
15
|
Lewin A, Hederstedt L. Heme A synthase in bacteria depends on one pair of cysteinyls for activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:160-168. [PMID: 26592143 DOI: 10.1016/j.bbabio.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.
Collapse
Affiliation(s)
- Anna Lewin
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden.
| |
Collapse
|
16
|
Roszczenko P, Grzeszczuk M, Kobierecka P, Wywial E, Urbanowicz P, Wincek P, Nowak E, Jagusztyn-Krynicka EK. Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 2015; 15:135. [PMID: 26141380 PMCID: PMC4491210 DOI: 10.1186/s12866-015-0471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Magdalena Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Paweł Urbanowicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Piotr Wincek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | |
Collapse
|
17
|
Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579. J Bacteriol 2014; 197:626-35. [PMID: 25422307 DOI: 10.1128/jb.02125-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis.
Collapse
|
18
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
19
|
The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation. J Bacteriol 2013; 195:5242-9. [PMID: 24056109 DOI: 10.1128/jb.00917-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.
Collapse
|
20
|
Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. mBio 2013; 4:e00475-13. [PMID: 24045640 PMCID: PMC3781833 DOI: 10.1128/mbio.00475-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we named CcsX, is required for heme insertion in cytochrome c. Inactivation of CcsX resulted in loss of c-type heme absorbance, impaired growth and virulence of M. tuberculosis, and induced cytochrome bd oxidase. This suggests that the bioenergetically less efficient bd oxidase can compensate for deficient cytochrome c oxidase activity, highlighting the flexibility of the M. tuberculosis respiratory chain. A spontaneous mutation in the active site of vitamin K epoxide reductase (VKOR) suppressed phenotypes of the CcsX mutant and abrogated the activity of the disulfide bond-dependent alkaline phosphatase, which shows that VKOR is the major disulfide bond catalyzing protein in the periplasm of M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis requires oxygen for growth; however, the biogenesis of respiratory chain components in mycobacteria has not been explored. Here, we identified a periplasmic thioredoxin, CcsX, necessary for heme insertion into cytochrome c. We investigated the consequences of disrupting cytochrome c maturation (CCM) for growth and survival of M. tuberculosis in vitro and for its pathogenesis. Appearance of a second-site suppressor mutation in the periplasmic disulfide bond catalyzing protein VKOR indicates the strong selective pressure for a functional cytochrome c oxidase. The observation that M. tuberculosis is able to partially compensate for defective CCM by upregulation of the cytochrome bd oxidase exposes a functional role of this alternative terminal oxidase under normal aerobic conditions and during pathogenesis. This suggests that targeting both oxidases simultaneously might be required to effectively disrupt respiration in M. tuberculosis.
Collapse
|
21
|
Goosens VJ, Mars RAT, Akeroyd M, Vente A, Dreisbach A, Denham EL, Kouwen TRHM, van Rij T, Olsthoorn M, van Dijl JM. Is proteomics a reliable tool to probe the oxidative folding of bacterial membrane proteins? Antioxid Redox Signal 2013; 18:1159-64. [PMID: 22540663 DOI: 10.1089/ars.2012.4664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oxidative folding of proteins involves disulfide bond formation, which is usually catalyzed by thiol-disulfide oxidoreductases (TDORs). In bacteria, this process takes place in the cytoplasmic membrane and other extracytoplasmic compartments. While it is relatively easy to study oxidative folding of water-soluble proteins on a proteome-wide scale, this has remained a major challenge for membrane proteins due to their high hydrophobicity. Here, we have assessed whether proteomic techniques can be applied to probe the oxidative folding of membrane proteins using the Gram-positive bacterium Bacillus subtilis as a model organism. Specifically, we investigated the membrane proteome of a B. subtilis bdbCD mutant strain, which lacks the primary TDOR pair BdbC and BdbD, by gel-free mass spectrometry. In total, 18 membrane-associated proteins showed differing behavior in the bdbCD mutant and the parental strain. These included the ProA protein involved in osmoprotection. Consistent with the absence of ProA, the bdbCD mutant was found to be sensitive to osmotic shock. We hypothesize that membrane proteomics is a potentially effective approach to profile oxidative folding of bacterial membrane proteins.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
23
|
Abstract
Organisms employ one of several different enzyme systems to mature cytochromes c. The biosynthetic process involves the periplasmic reduction of cysteine residues in the heme c attachment motif of the apocytochrome, transmembrane transport of heme b and stereospecific covalent heme attachment via thioether bonds. The biogenesis System II (or Ccs system) is employed by β-, δ- and ε-proteobacteria, Gram-positive bacteria, Aquificales and cyanobacteria, as well as by algal and plant chloroplasts. System II comprises four (sometimes only three) membrane-bound proteins: CcsA (or ResC) and CcsB (ResB) are the components of the cytochrome c synthase, whereas CcdA and CcsX (ResA) function in the generation of a reduced heme c attachment motif. Some ε-proteobacteria contain CcsBA fusion proteins constituting single polypeptide cytochrome c synthases especially amenable for functional studies. This minireview highlights the recent findings on the structure, function and specificity of individual System II components and outlines the future challenges that remain to our understanding of the fascinating post-translational protein maturation process in more detail.
Collapse
Affiliation(s)
- Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
24
|
Richard-Fogal CL, San Francisco B, Frawley ER, Kranz RG. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:911-9. [PMID: 21945855 DOI: 10.1016/j.bbabio.2011.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/01/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
Abstract
The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
25
|
Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J. RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol 2011; 81:1459-73. [DOI: 10.1111/j.1365-2958.2011.07777.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Sanders C, Turkarslan S, Lee DW, Daldal F. Cytochrome c biogenesis: the Ccm system. Trends Microbiol 2010; 18:266-74. [PMID: 20382024 PMCID: PMC2916975 DOI: 10.1016/j.tim.2010.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 11/15/2022]
Abstract
Cytochromes of c-type contain covalently attached hemes that are formed via thioether bonds between the vinyls of heme b and cysteines within C(1)XXC(2)H motifs of apocytochromes. In diverse organisms this post-translational modification relies on membrane-associated specific biogenesis proteins, referred to as cytochrome c maturation (Ccm) systems. A highly complex version of these systems, Ccm or System I, is found in Gram-negative bacteria, archaea and plant mitochondria. We describe emerging functional interactions between the Ccm components categorized into three conserved modules, and present a mechanistic view of the molecular basis of ubiquitous vinyl-2 approximately Cys(1) and vinyl-4 approximately Cys(2) heme b-apocytochrome thioether bonds in c-type cytochromes.
Collapse
Affiliation(s)
- Carsten Sanders
- Kutztown University, Department of Biology, Kutztown, PA 19530, USA
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | - Serdar Turkarslan
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | - Dong-Woo Lee
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | - Fevzi Daldal
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Siluvai GS, Nakano MM, Mayfield M, Nilges MJ, Blackburn NJ. H135A controls the redox activity of the Sco copper center. Kinetic and spectroscopic studies of the His135Ala variant of Bacillus subtilis Sco. Biochemistry 2010; 48:12133-44. [PMID: 19921776 DOI: 10.1021/bi901480g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sco-like proteins contain copper bound by two cysteines and a histidine residue. Although their function is still incompletely understood, there is a clear involvement with the assembly of cytochrome oxidases that contain the Cu(A) center in subunit 2, possibly mediating the transfer of copper into the Cu(A) binuclear site. We are investigating the reaction chemistry of BSco, the homologue from Bacillus subtilis. Our studies have revealed that BSco behaves more like a redox protein than a metallochaperone. The essential H135 residue that coordinates copper plays a role in stabilizing the Cu(II) rather than the Cu(I) form. When H135 is mutated to alanine, the oxidation rate of both hydrogen peroxide and one-electron outer-sphere reductants increases by 3 orders of magnitude, suggestive of a redox switch mechanism between the His-on and His-off conformational states of the protein. Imidazole binds to the H135A protein, restoring the N superhyperfine coupling in the EPR, but is unable to rescue the redox properties of wild-type Sco. These findings reveal a unique role for H135 in Sco function. We propose a hypothesis that electron transfer from Sco to the maturing oxidase may be essential for proper maturation and/or protection from oxidative damage during the assembly process. The findings also suggest that interaction of Sco with its protein partner(s) may perturb the Cu(II)-H135 interaction and thus induce a sensitive redox activity to the protein.
Collapse
Affiliation(s)
- Gnana S Siluvai
- Department of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
28
|
Goddard AD, Stevens JM, Rondelet A, Nomerotskaia E, Allen JWA, Ferguson SJ. Comparing the substrate specificities of cytochrome c biogenesis Systems I and II. FEBS J 2009; 277:726-37. [DOI: 10.1111/j.1742-4658.2009.07517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
30
|
Kern M, Eisel F, Scheithauer J, Kranz RG, Simon J. Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes: unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1. Mol Microbiol 2009; 75:122-37. [PMID: 19919672 DOI: 10.1111/j.1365-2958.2009.06965.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial c-type cytochrome maturation is dependent on a complex enzymic machinery. The key reaction is catalysed by cytochrome c haem lyase (CCHL) that usually forms two thioether bonds to attach haem b to the cysteine residues of a haem c binding motif (HBM) which is, in most cases, a CX(2)CH sequence. Here, the HBM specificity of three distinct CCHL isoenzymes (NrfI, CcsA1 and CcsA2) from the Epsilonproteobacterium Wolinella succinogenes was investigated using either W. succinogenes or Escherichia coli as host organism. Several reporter c-type cytochromes were employed including cytochrome c nitrite reductases (NrfA) from E. coli and Campylobacter jejuni that differ in their active-site HBMs (CX(2)CK or CX(2)CH). W. succinogenes CcsA2 was found to attach haem to standard CX(2)CH motifs in various cytochromes whereas other HBMs were not recognized. NrfI was able to attach haem c to the active-site CX(2)CK motif of both W. succinogenes and E. coli NrfA, but not to NrfA from C. jejuni. Different apo-cytochrome variants carrying the CX(15)CH motif, assumed to be recognized by CcsA1 during maturation of the octahaem cytochrome MccA, were not processed by CcsA1 in either W. succinogenes or E. coli. It is concluded that the dedicated CCHLs NrfI and CcsA1 attach haem to non-standard HBMs only in the presence of further, as yet uncharacterized structural features. Interestingly, it proved impossible to delete the ccsA2 gene from the W. succinogenes genome, a finding that is discussed in the light of the available genomic, proteomic and functional data on W. succinogenes c-type cytochromes.
Collapse
Affiliation(s)
- Melanie Kern
- Institute of Microbiology and Genetics, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
31
|
Liu Y, Carlsson Möller M, Petersen L, Söderberg CAG, Hederstedt L. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores. Mol Microbiol 2009; 75:46-60. [PMID: 19919673 DOI: 10.1111/j.1365-2958.2009.06964.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial endospore is a dormant and heat-resistant form of life. StoA (SpoIVH) in Bacillus subtilis is a membrane-bound thioredoxin-like protein involved in endospore cortex synthesis. It is proposed to reduce disulphide bonds in hitherto unknown proteins in the intermembrane compartment of developing forespores. Starting with a bioinformatic analysis combined with mutant studies we identified the sporulation-specific, high-molecular-weight, class B penicillin-binding protein SpoVD as a putative target for StoA. We then demonstrate that SpoVD is a membrane-bound protein with two exposed redox-active cysteine residues. Structural modelling of SpoVD, based on the well characterized orthologue PBP2x of Streptococcus pneumoniae, confirmed that a disulphide bond can form close to the active site of the penicillin-binding domain restricting access of enzyme substrate or functional association with other cortex biogenic proteins. Finally, by exploiting combinations of mutations in the spoVD, stoA and ccdA genes in B. subtilis cells, we present strong in vivo evidence that supports the conclusion that StoA functions to specifically break the disulphide bond in the SpoVD protein in the forespore envelope. The findings contribute to our understanding of endospore biogenesis and open a new angle to regulation of cell wall synthesis and penicillin-binding protein activity.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Cell & Organism Biology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Ahuja U, Kjelgaard P, Schulz BL, Thöny-Meyer L, Hederstedt L. Haem-delivery proteins in cytochrome c maturation System II. Mol Microbiol 2009; 73:1058-71. [PMID: 19682263 DOI: 10.1111/j.1365-2958.2009.06833.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cytochromes of the c-type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacter CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
33
|
CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc Natl Acad Sci U S A 2009; 106:10201-6. [PMID: 19509336 DOI: 10.1073/pnas.0903132106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about trafficking of heme from its sites of synthesis to sites of heme-protein assembly. We describe an integral membrane protein that allows trapping of endogenous heme to elucidate trafficking mechanisms. We show that CcsBA, a representative of a superfamily of integral membrane proteins involved in cytochrome c biosynthesis, exports and protects heme from oxidation. CcsBA has 10 transmembrane domains (TMDs) and reconstitutes cytochrome c synthesis in the Escherichia coli periplasm; thus, CcsBA is a cytochrome c synthetase. Purified CcsBA contains heme in an "external heme binding domain" for which two external histidines are shown to serve as axial ligands that protect the heme iron from oxidation. This is likely the active site of the synthetase. Furthermore, two conserved histidines in TMDs are required for heme to travel to the external heme binding domain. Remarkably, the function of CcsBA with mutations in these TMD histidines is corrected by exogenous imidazole, a result analogous to correction of heme binding by myoglobin when its proximal histidine is mutated. These data suggest that CcsBA has a heme binding site within the bilayer and that CcsBA is a heme channel.
Collapse
|
34
|
Abstract
Regulated expression of the genes for anthrax toxin proteins is essential for the virulence of the pathogenic bacterium Bacillus anthracis. Induction of toxin gene expression depends on several factors, including temperature, bicarbonate levels, and metabolic state of the cell. To identify factors that regulate toxin expression, transposon mutagenesis was performed under non-inducing conditions and mutants were isolated that untimely expressed high levels of toxin. A number of these mutations clustered in the haem biosynthetic and cytochrome c maturation pathways. Genetic analysis revealed that two haem-dependent, small c-type cytochromes, CccA and CccB, located on the extracellular surface of the cytoplasmic membrane, regulate toxin gene expression by affecting the expression of the master virulence regulator AtxA. Deregulated AtxA expression in early exponential phase resulted in increased expression of toxin genes in response to loss of the CccA-CccB signalling pathway. This is the first function identified for these two small c-type cytochromes of Bacillus species. Extension of the transposon screen identified a previously uncharacterized protein, BAS3568, highly conserved across many bacterial and archeal species, as involved in cytochrome c activity and virulence regulation. These findings are significant not only to virulence regulation in B. anthracis, but also to analysis of virulence regulation in many pathogenic bacteria and to the study of cytochrome c activity in Gram-positive bacteria.
Collapse
Affiliation(s)
- Adam C. Wilson
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - James A. Hoch
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Marta Perego
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
35
|
|
36
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
37
|
Stevens JM, Ferguson SJ. Cytochrome c Biogenesis. EcoSal Plus 2008; 3. [PMID: 26443743 DOI: 10.1128/ecosalplus.3.6.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Indexed: 06/05/2023]
Abstract
Escherichia coli employs several c-type cytochromes, which are found in the periplasm or on the periplasmic side of the cytoplasmic membrane; they are used for respiration under different growth conditions. All E. colic-type cytochromes are multiheme cytochromes; E. coli does not have a monoheme cytochrome c of the kind found in mitochondria. The attachment of heme to cytochromes c occurs in the periplasm, and so the apoprotein must be transported across the cytoplasmic membrane; this step is mediated by the Sec system, which transports unfolded proteins across the membrane. The protein CcmE has been found to bind heme covalently via a single bond and then transfer the heme to apocytochromes. It should be mentioned that far less complex systems for cytochrome c biogenesis exist in other organisms and that enterobacteria do not function as a representative model system for the process in general, although plant mitochondria use the Ccm system found in E. coli. The variety and distribution of cytochromes and their biogenesis systems reflect their significance and centrality in cellular bioenergetics, though the necessity for and origin of the diverse biogenesis systems are enigmatic.
Collapse
|
38
|
Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA. Biochem J 2008; 414:81-91. [DOI: 10.1042/bj20080356] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The thiol–disulfide oxidoreductase ResA from Bacillus subtilis fulfils a reductive role in cytochrome c maturation. The pKa values for the CEPC (one-letter code) active-site cysteine residues of ResA are unusual for thioredoxin-like proteins in that they are both high (>8) and within 0.5 unit of each other. To determine the contribution of the inter-cysteine dipeptide of ResA to its redox and acid–base properties, three variants (CPPC, CEHC and CPHC) were generated representing a stepwise conversion into the active-site sequence of the high-potential DsbA protein from Escherichia coli. The substitutions resulted in large decreases in the pKa values of both the active-site cysteine residues: in CPHC (DsbA-type) ResA, ΔpKa values of −2.5 were measured for both cysteine residues. Increases in midpoint reduction potentials were also observed, although these were comparatively small: CPHC (DsbA-type) ResA exhibited an increase of +40 mV compared with the wild-type protein. Unfolding studies revealed that, despite the observed differences in the properties of the reduced proteins, changes in stability were largely confined to the oxidized state. High-resolution structures of two of the variants (CEHC and CPHC ResA) in their reduced states were determined and are discussed in terms of the observed changes in properties. Finally, the in vivo functional properties of CEHC ResA are shown to be significantly affected compared with those of the wild-type protein.
Collapse
|
39
|
Virulence gene expression is independent of ResDE-regulated respiration control in Bacillus anthracis. J Bacteriol 2008; 190:5522-5. [PMID: 18539743 DOI: 10.1128/jb.00312-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ResDE two-component system regulates the synthesis of several components of the aerobic and anaerobic respiratory pathways in bacilli. The ResD response regulator transcription factor has been implicated in the regulation of virulence factors in a number of gram-positive species, including Bacillus anthracis. The precise deletions of resD and resE in B. anthracis that retained the classical respiratory phenotypes did not affect the expression of the gene for the protective antigen of the anthrax toxin, pagA, or that of the toxin regulator, atxA. The results indicate that the loss of ResDE-controlled respiratory capacity does not affect the synthesis of anthrax toxin.
Collapse
|
40
|
The active-site cysteinyls and hydrophobic cavity residues of ResA are important for cytochrome c maturation in Bacillus subtilis. J Bacteriol 2008; 190:4697-705. [PMID: 18456809 DOI: 10.1128/jb.00145-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ResA is an extracytoplasmic membrane-bound thiol-disulfide oxidoreductase required for cytochrome c maturation in Bacillus subtilis. Previous biochemical and structural studies have revealed that the active-site cysteinyls cycle between oxidized and reduced states with a low reduction potential and that, upon reduction, a hydrophobic cavity forms close to the active site. Here we report in vivo studies of ResA-deficient B. subtilis complemented with a series of ResA variants. Using a range of methods to analyze the cellular cytochrome c content, we demonstrated (i) that the N-terminal transmembrane segment of ResA serves principally to anchor the protein to the cytoplasmic membrane but also plays a role in mediating the activity of the protein; (ii) that the active-site cysteines are important for cytochrome c maturation activity; (iii) that Pro141, which forms part of the hydrophobic cavity and which adopts a cis conformation, plays an important role in protein stability; (iv) that Glu80, which lies at the base of the hydrophobic cavity, is important for cytochrome c maturation activity; and, finally, (v) that Pro141 and Glu80 ResA mutant variants promote selective maturation of low levels of one c-type cytochrome, subunit II of the cytochrome c oxidase caa(3), indicating that this apocytochrome is distinct from the other three endogenous c-type cytochromes of B. subtilis.
Collapse
|
41
|
Lewin A, Hederstedt L. Promoted evolution of a shortened variant of heme A synthase in the membrane of Bacillus subtilis. FEBS Lett 2008; 582:1330-4. [PMID: 18358840 DOI: 10.1016/j.febslet.2008.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis heme A synthase is a membrane protein with 8 transmembrane segments. By using a two-step mutagenesis approach we have generated and selected a fully functional enzyme protein variant with a seven residue internal deletion. The biochemical properties of the shortened variant are similar to those of the normal enzyme. This could indicate that residue H209 in the mutant protein substitutes for the missing H216 as an axial ligand to the heme iron. Our results provide insight in routes of membrane protein evolution and the structure of heme A synthases.
Collapse
Affiliation(s)
- Anna Lewin
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE 22362 Lund, Sweden
| | | |
Collapse
|
42
|
Lee JH, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2164-81. [PMID: 17706591 DOI: 10.1016/j.bbamem.2007.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 03/22/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022]
Abstract
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
43
|
Day WA, Rasmussen SL, Carpenter BM, Peterson SN, Friedlander AM. Microarray analysis of transposon insertion mutations in Bacillus anthracis: global identification of genes required for sporulation and germination. J Bacteriol 2007; 189:3296-301. [PMID: 17277068 PMCID: PMC1855828 DOI: 10.1128/jb.01860-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
A transposon site hybridization (TraSH) assay was developed for functional analysis of the Bacillus anthracis genome using a mini-Tn10 transposon which permitted analysis of 82% of this pathogen's genes. The system, used to identify genes required for generation of infectious anthrax spores, spore germination, and optimal growth on rich medium, was predictive of the contributions of two conserved hypothetical genes for the phenotypes examined.
Collapse
Affiliation(s)
- William A Day
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
44
|
Yurgel SN, Berrocal J, Wilson C, Kahn ML. Pleiotropic effects of mutations that alter the Sinorhizobium meliloti cytochrome c respiratory system. MICROBIOLOGY-SGM 2007; 153:399-410. [PMID: 17259611 DOI: 10.1099/mic.0.2006/002634-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using transposon mutagenesis, mutations have been isolated in several genes (ccdA, cycM, ccmC, ccmB and senC) that play a role in Sinorhizobium meliloti cytochrome metabolism. As in other bacteria, mutations in the S. meliloti ccdA, ccmB and ccmC genes resulted in the absence of all c-type cytochromes. However, the S. meliloti ccdA mutant also lacked cytochrome oxidase aa(3), a defect that does not appear to have been reported for other bacteria. The aa(3)-type cytochromes were also missing from a mutant strain with an insertion into the gene encoding the haem-containing subunit (SU)I of aa(3) cytochrome c oxidase, but not in mutants unable to make SUII or SUIII, indicating that CcdA probably plays a role in assembling SUI. The cytochrome-deficient mutants also had other free-living phenotypes, including a significant decrease in growth rate on rich media and increased motility on minimal media. A senC mutant also had significantly decreased motility, but the motility and growth properties of the cycM mutant were unchanged. Unlike similar mutants in Bradyrhizobium japonicum and Rhizobium leguminosarum, an S. meliloti Rm1021 cycM mutant contained cytochrome oxidase aa(3). Cytochrome maturation in strain Rm1021 appeared to be similar to maturation in other rhizobia, but there were some differences in the cytochrome composition of the strain, and respiration chain function and assembly.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | - Jhoanna Berrocal
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, USA
| | - Cynthia Wilson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, USA
| | - Michael L Kahn
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
45
|
Geng H, Zhu Y, Mullen K, Zuber CS, Nakano MM. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis. J Bacteriol 2006; 189:1745-55. [PMID: 17189364 PMCID: PMC1855754 DOI: 10.1128/jb.01502-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system is required for transcription of genes involved in aerobic and anaerobic respiration in Bacillus subtilis. Phosphorylated ResD (ResD approximately P) interacts with target DNA to activate transcription. A strong sequence similarity was detected in promoter regions of some ResD-controlled genes including fnr and resA. Single-base substitutions in the fnr and resA promoters were performed to determine a ResD-binding sequence. DNase I footprinting analysis indicated that ResD approximately P itself does not bind to fnr, but interaction of ResD approximately P with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase (RNAP) facilitates cooperative binding of ResD approximately P and RNAP, thereby increasing fnr transcription initiation. Consistent with this result, amino acid substitutions in alphaCTD, such as Y263A, K267A, A269I, or N290A, sharply reduced fnr transcription in vivo, and the K267A alphaCTD protein, unlike the wild-type protein, did not increase ResD approximately P binding to the fnr promoter. Amino acid residues of alphaCTD required for ResD-dependent fnr transcription, with the exception of N290, which may interact with DNA, constitute a distinct surface, suggesting that these residues likely interact with ResD approximately P.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
46
|
Larsen MH, Kallipolitis BH, Christiansen JK, Olsen JE, Ingmer H. The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes. Mol Microbiol 2006; 61:1622-35. [PMID: 16968229 DOI: 10.1111/j.1365-2958.2006.05328.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Listeria monocytogenes is a versatile bacterial pathogen that is able to accommodate to diverse environmental and host conditions. Presently, we have identified a L. monocytogenes two-component response regulator, ResD that is required for the repression of virulence gene expression known to occur in the presence of easily fermentable carbohydrates not found inside host organisms. Structurally and functionally, ResD resembles the respiration regulator ResD in Bacillus subtilis as deletion of the L. monocytogenes resD reduces respiration and expression of cydA, encoding a subunit of cytochrome bd. The resD mutation also reduces expression of mptA encoding the EIIABman component of a mannose/glucose-specific PTS system, indicating that ResD controls sugar uptake. This notion was supported by the poor growth of resD mutant cells that was alleviated by excess of selected carbohydrates. Despite the growth deficient phenotype of the mutant in vitro the mutation did not affect intracellular multiplication in epithelial or macrophage cell lines. When examining virulence gene expression we observed traditional induction by charcoal in both mutant and wild-type cells whereas the repression observed in wild-type cells by fermentable carbohydrates did not occur in resD mutant cells. Thus, ResD is a central regulator of L. monocytogenes when present in the external environment.
Collapse
Affiliation(s)
- Marianne H Larsen
- Department of Veterinary Pathobiology, The Royal Veterinary and Agricultural University, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
47
|
Choi SK, Saier MH. Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis. J Mol Microbiol Biotechnol 2006; 11:104-10. [PMID: 16825793 DOI: 10.1159/000092822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The resABCDE operon of Bacillus subtilis encodes a three-protein complex involved in cytochrome c biogenesis as well as the ResE sensor kinase and the ResD response regulator that control electron transfer and other functions in response to oxygen availability. We have investigated the mechanism of CcpA-mediated control of res operon expression which occurs maximally in the stationary phase of growth. Two CcpA-binding (CRE) sites were found in the res operon, one (CRE1) in the control region in front of the resA promoter, the other (CRE2) in the resB structural gene. Both CRE sites proved to be essential for full CcpA-mediated glucose repression of res operon expression. We propose that both looping and road block mechanisms are involved in res operon control by CcpA.
Collapse
Affiliation(s)
- Soo-Keun Choi
- Division of Biological Sciences, University of California at San Diego, La Jolla, Calif., USA
| | | |
Collapse
|
48
|
Lewin A, Crow A, Oubrie A, Le Brun NE. Molecular basis for specificity of the extracytoplasmic thioredoxin ResA. J Biol Chem 2006; 281:35467-77. [PMID: 16971393 DOI: 10.1074/jbc.m607047200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ResA, an extracytoplasmic thioredoxin from Bacillus subtilis, acts in cytochrome c maturation by reducing the disulfide bond present in apocytochromes prior to covalent attachment of heme. This reaction is (and has to be) specific, as broad substrate specificity would result in unproductive shortcircuiting with the general oxidizing thioredoxin(s) present in the same compartment. Using mutational analysis and subsequent biochemical and structural characterization of active site variants, we show that reduced ResA displays unusually low reactivity at neutral pH, consistent with the observed high pKa values>8 for both active site cysteines. Residue Glu80 is shown to play a key role in controlling the acid-base properties of the active site. A model in which substrate binding dramatically enhances the reactivity of the active site cysteines is proposed to account for the specificity of the protein. Such a substratemediated activation mechanism is likely to have wide relevance for extracytoplasmic thioredoxins.
Collapse
Affiliation(s)
- Allison Lewin
- School of Chemical Sciences and Pharmacy, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
49
|
Richard-Fogal CL, Frawley ER, Feissner RE, Kranz RG. Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 2006; 189:455-63. [PMID: 17085564 PMCID: PMC1797374 DOI: 10.1128/jb.01388-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E. coli strains that produced recombinant system I (from E. coli) or system II (from Helicobacter) facilitated studies of the heme concentration dependence of each system. Using this exogenous porphyrin approach, it was shown that in system I the levels of heme used are at least fivefold lower than the levels used in system II, providing an important advantage for system I. Neither system could assemble holocytochromes c with other metal porphyrins, suggesting that the attachment mechanism is specific for Fe protoporphyrin. Surprisingly, Zn and Sn protoporphyrins are potent inhibitors of the pathways, and exogenous heme competes with this inhibition. We propose that the targets are the heme binding proteins in the pathways (CcmC, CcmE, and CcmF for system I and CcsA for system II).
Collapse
|
50
|
Haveman SA, Holmes DE, Ding YHR, Ward JE, Didonato RJ, Lovley DR. c-Type cytochromes in Pelobacter carbinolicus. Appl Environ Microbiol 2006; 72:6980-5. [PMID: 16936056 PMCID: PMC1636167 DOI: 10.1128/aem.01128-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies failed to detect c-type cytochromes in Pelobacter species despite the fact that other close relatives in the Geobacteraceae, such as Geobacter and Desulfuromonas species, have abundant c-type cytochromes. Analysis of the recently completed genome sequence of Pelobacter carbinolicus revealed 14 open reading frames that could encode c-type cytochromes. Transcripts for all but one of these open reading frames were detected in acetoin-fermenting and/or Fe(III)-reducing cells. Three putative c-type cytochrome genes were expressed specifically during Fe(III) reduction, suggesting that the encoded proteins may participate in electron transfer to Fe(III). One of these proteins was a periplasmic triheme cytochrome with a high level of similarity to PpcA, which has a role in Fe(III) reduction in Geobacter sulfurreducens. Genes for heme biosynthesis and system II cytochrome c biogenesis were identified in the genome and shown to be expressed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of protein extracted from acetoin-fermenting P. carbinolicus cells contained three heme-staining bands which were confirmed by mass spectrometry to be among the 14 predicted c-type cytochromes. The number of cytochrome genes, the predicted amount of heme c per protein, and the ratio of heme-stained protein to total protein were much smaller in P. carbinolicus than in G. sulfurreducens. Furthermore, many of the c-type cytochromes that genetic studies have indicated are required for optimal Fe(III) reduction in G. sulfurreducens were not present in the P. carbinolicus genome. These results suggest that further evaluation of the functions of c-type cytochromes in the Geobacteraceae is warranted.
Collapse
Affiliation(s)
- Shelley A Haveman
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|