1
|
Velázquez D, Albacar M, Zhang C, Calafí C, López-Malo M, Torres-Torronteras J, Martí R, Kovalchuk SI, Pinson B, Jensen ON, Daignan-Fornier B, Casamayor A, Ariño J. Yeast Ppz1 protein phosphatase toxicity involves the alteration of multiple cellular targets. Sci Rep 2020; 10:15613. [PMID: 32973189 PMCID: PMC7519054 DOI: 10.1038/s41598-020-72391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.
Collapse
Affiliation(s)
- Diego Velázquez
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marcel Albacar
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Chunyi Zhang
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Calafí
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - María López-Malo
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sergey I Kovalchuk
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Laboratory of Bioinformatic Approaches in Combinatorial Chemistry and Biology, Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Benoit Pinson
- Bordeaux University, IBGC CNRS UMR 5095, Bordeaux, France
- Service Analyses Metaboliques TBMcore CNRS UMS3427/INSERM US05, Université de Bordeaux, Bordeaux, France
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Arratia J, Aguirre J. Los factores de transcripción tipo Myb, una familia de reguladores de la diferenciación celular conservada en los organismos eucariontes. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3
|
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol 2006; 7:R37. [PMID: 16677396 PMCID: PMC1779513 DOI: 10.1186/gb-2006-7-5-r37] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/21/2005] [Accepted: 04/10/2006] [Indexed: 12/29/2022] Open
Abstract
'ReMoDiscovery' is an intuitive algorithm to correlate regulatory programs with regulators and corresponding motifs to a set of co-expressed genes. It exploits in a concurrent way three independent data sources: ChIP-chip data, motif information and gene expression profiles. When compared to published module discovery algorithms, ReMoDiscovery is fast and easily tunable. We evaluated our method on yeast data, where it was shown to generate biologically meaningful findings and allowed the prediction of potential novel roles of transcriptional regulators.
Collapse
Affiliation(s)
- Karen Lemmens
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Thomas Dhollander
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Tijl De Bie
- Research Group on Quantitative Psychology, Department of Psychology, KU Leuven, Tiensestraat, B-3000 Leuven, Belgium
| | - Pieter Monsieurs
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kristof Engelen
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart Smets
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Joris Winderickx
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart De Moor
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kathleen Marchal
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
- CMPG, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| |
Collapse
|
4
|
Mieczkowski PA, Dominska M, Buck MJ, Gerton JL, Lieb JD, Petes TD. Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:1014-27. [PMID: 16428454 PMCID: PMC1347019 DOI: 10.1128/mcb.26.3.1014-1027.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, certain genomic regions have very high levels of meiotic recombination (hot spots). The hot spot activity associated with the HIS4 gene requires the Bas1p transcription factor. To determine whether this relationship between transcription factor binding and hot spot activity is general, we used DNA microarrays to map all genomic Bas1p binding sites and to map the frequency of meiosis-specific double-strand DNA breaks (as an estimate of the recombination activity) of all genes in both wild-type and bas1 strains. We identified sites of Bas1p-DNA interactions upstream of 71 genes, many of which are involved in histidine and purine biosynthesis. Our analysis of recombination activity in wild-type and bas1 strains showed that the recombination activities of some genes with Bas1p binding sites were dependent on Bas1p (as observed for HIS4), whereas the activities of other genes with Bas1p binding sites were unaffected or were repressed by Bas1p. These data demonstrate that the effect of transcription factors on meiotic recombination activity is strongly context dependent. In wild-type and bas1 strains, meiotic recombination was strongly suppressed in large (25- to 150-kb) chromosomal regions near the telomeres and centromeres and in the region flanking the rRNA genes. These results argue that both local and regional factors affect the level of meiotic recombination.
Collapse
Affiliation(s)
- Piotr A Mieczkowski
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | | | |
Collapse
|
5
|
Gelling CL, Piper MDW, Hong SP, Kornfeld GD, Dawes IW. Identification of a novel one-carbon metabolism regulon in Saccharomyces cerevisiae. J Biol Chem 2003; 279:7072-81. [PMID: 14645232 DOI: 10.1074/jbc.m309178200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine specifically induces genes encoding subunits of the glycine decarboxylase complex (GCV1, GCV2, and GCV3), and this is mediated by a fall in cytoplasmic levels of 5,10-methylenetetrahydrofolate caused by inhibition of cytoplasmic serine hydroxymethyltransferase. Here it is shown that this control system extends to genes for other enzymes of one-carbon metabolism and de novo purine biosynthesis. Northern analysis of the response to glycine demonstrated that the induction of the GCV genes and the induction of other amino acid metabolism genes are temporally distinct. The genome-wide response to glycine revealed that several other genes are rapidly co-induced with the GCV genes, including SHM2, which encodes cytoplasmic serine hydroxymethyltransferase. These results were refined by examining transcript levels in an shm2Delta strain (in which cytoplasmic 5,10-methylenetetrahydrofolate levels are reduced) and a met13Delta strain, which lacks the main methylenetetrahydrofolate reductase activity of yeast and is effectively blocked at consumption of 5,10-methylene tetrahydrofolate for methionine synthesis. Glycine addition also caused a substantial transient disturbance to metabolism, including a sequence of changes in induction of amino acid biosynthesis and respiratory chain genes. Analysis of the glycine response in the shm2Delta strain demonstrated that apart from the one-carbon regulon, most of these transient responses were not contingent on a disturbance to one-carbon metabolism. The one-carbon response is distinct from the Bas1p purine biosynthesis regulon and thus represents the first example of transcriptional regulation in response to activated one-carbon status.
Collapse
Affiliation(s)
- Cristy L Gelling
- Ramaciotti Centre for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | |
Collapse
|
6
|
Bhoite LT, Allen JM, Garcia E, Thomas LR, Gregory ID, Voth WP, Whelihan K, Rolfes RJ, Stillman DJ. Mutations in the pho2 (bas2) transcription factor that differentially affect activation with its partner proteins bas1, pho4, and swi5. J Biol Chem 2002; 277:37612-8. [PMID: 12145299 DOI: 10.1074/jbc.m206125200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast PHO2 gene encodes a homeodomain protein that exemplifies combinatorial control in transcriptional activation. Pho2 alone binds DNA in vitro with low affinity, but in vivo it activates transcription with at least three disparate DNA-binding proteins: the zinc finger protein Swi5, the helix-loop-helix factor Pho4, and Bas1, an myb-like activator. Pho2 + Swi5 activates HO, Pho2 + Pho4 activates PHO5, and Pho2 + Bas1 activates genes in the purine and histidine biosynthesis pathways. We have conducted a genetic screen and identified 23 single amino acid substitutions in Pho2 that differentially affect its ability to activate its specific target genes. Analysis of the mutations suggests that the central portion of Pho2 serves as protein-protein interactive surface, with a requirement for distinct amino acids for each partner protein.
Collapse
Affiliation(s)
- Leena T Bhoite
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lupetti A, Paulusma-Annema A, Senesi S, Campa M, Van Dissel JT, Nibbering PH. Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother 2002; 46:1634-9. [PMID: 12019068 PMCID: PMC127236 DOI: 10.1128/aac.46.6.1634-1639.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that the energized mitochondrion and extracellular ATP are essential for the candidacidal activity of the N-terminal peptide of human lactoferrin, subsequently referred to as hLF(1-11). The present study focuses on the involvement of internal thiols and reactive oxygen species (ROS) in the candidacidal activity exerted by hLF(1-11). Our results reveal that hLF(1-11) reduced the internal thiol level of Candida albicans by 20%. In agreement, N-acetyl-L-cysteine (NAC), which is a precursor of glutathione and an ROS scavenger, inhibited the candidacidal activity of hLF(1-11). In addition, azodicarboxylic acid bis(N,N-dimethylamide) (diamide), which oxidizes internal thiols, was candidacidal. Furthermore, hLF(1-11) increased the level of ROS production by C. albicans in a dose-dependent manner, and a correlation between ROS production and candidacidal activity was found. 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), which is an ROS scavenger, partially inhibited the hLF(1-11)-induced, but not the diamide-triggered, candidacidal activity. It is of interest that hLF(1-11) and diamide acted synergistically in killing C. albicans and in ROS production. In agreement, oxidized ATP, an irreversible inhibitor of extracellular ATP receptors, partially blocked the hLF(1-11)-induced, but not the diamide-triggered, candidacidal activity. Finally, the hLF(1-11)-induced activation of mitochondria was inhibited by NAC, indicating that internal thiols and ROS affect mitochondrial activity. Therefore, the candidacidal activity of hLF(1-11) involves both generation of ROS and reduction of internal thiols.
Collapse
Affiliation(s)
- Antonella Lupetti
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
8
|
Pinson B, Brendeford EM, Gabrielsen OS, Daignan-Fornier B. Highly conserved features of DNA binding between two divergent members of the Myb family of transcription factors. Nucleic Acids Res 2001; 29:527-35. [PMID: 11139623 PMCID: PMC29659 DOI: 10.1093/nar/29.2.527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bas1p, a divergent yeast member of the Myb family of transcription factors, shares with the proteins of this family a highly conserved cysteine residue proposed to play a role in redox regulation. Substitutions of this residue in Bas1p (C153) allowed us to establish that, despite its very high conservation, it is not strictly required for Bas1p function: its substitution with a small hydrophobic residue led to a fully functional protein in vitro and in vivo. C153 was accessible to an alkylating agent in the free protein but was protected by prior exposure to DNA. The reactivity of cysteines in the first and third repeats was much lower than in the second repeat, suggesting a more accessible conformation of repeat 2. Proteolysis protection, fluorescence quenching and circular dichroism experiments further indicated that DNA binding induces structural changes making Bas1p less accessible to modifying agents. Altogether, our results strongly suggest that the second repeat of the DNA-binding domain of Bas1p behaves similarly to its Myb counterpart, i.e. a DNA-induced conformational change in the second repeat leads to formation of a full helix-turn-helix-related motif with the cysteine packed in the hydrophobic core of the repeat.
Collapse
Affiliation(s)
- B Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 1 Rue Camille Saint-Saëns, F-33077 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|