1
|
Abstract
Preventing the escape of hazardous genes from genetically modified organisms (GMOs) into the environment is one of the most important issues in biotechnology research. Various strategies were developed to create "genetic firewalls" that prevent the leakage of GMOs; however, they were not specially designed to prevent the escape of genes. To address this issue, we developed amino acid (AA)-swapped genetic codes orthogonal to the standard genetic code, namely SL (Ser and Leu were swapped) and SLA genetic codes (Ser, Leu, and Ala were swapped). From mRNAs encoded by the AA-swapped genetic codes, functional proteins were only synthesized in translation systems featuring the corresponding genetic codes. These results clearly demonstrated the orthogonality of the AA-swapped genetic codes against the standard genetic code and their potential to function as "genetic firewalls for genes". Furthermore, we propose "a codon-bypass strategy" to develop a GMO with an AA-swapped genetic code.
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Masahiro Tozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
2
|
The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action. Genetics 2017; 205:577-588. [DOI: 10.1534/genetics.116.196550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Abstract
While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants.
Collapse
|
3
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
4
|
p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish. Proc Natl Acad Sci U S A 2016; 113:8460-5. [PMID: 27402763 DOI: 10.1073/pnas.1608139113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis.
Collapse
|
5
|
Humayun MZ, Ayyappan V. Potential roles for DNA replication and repair functions in cell killing by streptomycin. Mutat Res 2013; 749:87-91. [PMID: 23958411 DOI: 10.1016/j.mrfmmm.2013.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The aminoglycoside streptomycin binds to ribosomes to promote mistranslation and eventual inhibition of translation. Streptomycin kills bacteria, whereas many other non-aminoglycoside inhibitors of translation do not. Because mistranslation is now known to affect DNA replication, we asked if hydroxyurea, a specific inhibitor of DNA synthesis, affects killing, and find that hydroxyurea significantly attenuates killing by streptomycin. We find that the hydroxyl radical scavengers d-mannitol and thiourea have either no effect or only a modest protective effect. The iron chelator 2,2'-dipyridyl eliminated killing by streptomycin, but further investigation revealed that it blocks streptomycin uptake. Prior treatment of cells with low-levels of methyl methanesulfonate to induce the adaptive response to alkylation leads to a significant attenuation of killing, which, together with the hydroxyurea effect, suggests roles for DNA replication and repair functions in cell killing by streptomycin.
Collapse
Affiliation(s)
- M Zafri Humayun
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, 225 Warren Street, Newark, NJ 07107, United States.
| | | |
Collapse
|
6
|
Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc Natl Acad Sci U S A 2013; 110:11079-84. [PMID: 23776239 DOI: 10.1073/pnas.1302094110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.
Collapse
|
7
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
8
|
Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Res 2012; 40:10576-84. [PMID: 22909996 PMCID: PMC3488234 DOI: 10.1093/nar/gks786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNAAla variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.
Collapse
Affiliation(s)
- Akio Kawahara-Kobayashi
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gautam S, Kalidindi R, Humayun MZ. SOS induction and mutagenesis by dnaQ missense alleles in wild type cells. Mutat Res 2012; 735:46-50. [PMID: 22677460 DOI: 10.1016/j.mrfmmm.2012.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/25/2012] [Indexed: 01/03/2023]
Abstract
Mistranslation leads to elevated mutagenesis and replication arrest, both of which are hypothesized to result from the presence of mixed populations of wild type and mistranslated versions of DNA polymerase III subunit proteins. Consistent with this possibility, expression of missense alleles of dnaQ (which codes for the proofreading subunit ɛ) in wild type (dnaQ+) cells is shown to lead to SOS induction as well as mutagenesis. Exposure to sublethal concentrations of streptomycin, an aminoglycoside antibiotic known to promote mistranslation, also leads to SOS induction.
Collapse
Affiliation(s)
- Satyendra Gautam
- University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Department of Microbiology and Molecular Genetics, 225 Warren Street, ICPH-E450V, Newark NJ 07101-1709, United States
| | | | | |
Collapse
|
10
|
Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Curr Opin Microbiol 2009; 12:631-7. [PMID: 19853500 DOI: 10.1016/j.mib.2009.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 01/21/2023]
Abstract
Translation of the genome into the proteome is a highly accurate biological process. However, the molecular mechanisms involved in protein synthesis are not error free and downstream protein quality control systems are needed to counteract the negative effects of translational errors (mistranslation) on proteome and cell homeostasis. This plus human and mice diseases caused by translational error generalized the idea that codon ambiguity is detrimental to life. Here we depart from this classical view of deleterious translational error and highlight how codon ambiguity can play important roles in the evolution of novel proteins. We also explain how tRNA mischarging can be relevant for the synthesis of functional proteomes, how codon ambiguity generates phenotypic and genetic diversity and how advantageous phenotypes can be selected, fixed, and inherited. A brief introduction to the molecular nature of translational error is provided; however, detailed information on the mechanistic aspects of mistranslation or comprehensive literature reviews of this topic should be obtained elsewhere.
Collapse
|
11
|
Abstract
When challenged with unfavorable conditions, microorganisms can develop a stress response that allows them to adapt to or survive in the new environment. A common feature of the numerous specific stress response pathways that have been described in a wide range of bacteria is that they are energy demanding and therefore often transient. In addition, stress responses may come too late or be insufficient to protect the cell or the population against very sudden or severe stresses. However, it seems that microorganisms can also enhance their chances of survival under stress by increasing the generation of diversity at the population level. This can be achieved either by creating genetic diversity by a variety of mechanisms involving for example constitutive or transient mutators and contingency loci, or by revealing phenotypic diversity that remained dormant due to a mechanism called genetic buffering. This review gives an overview of these emerging diversity-generating mechanisms, which seem to play an important role in the ability of microbial populations to overcome stress challenges.
Collapse
Affiliation(s)
- Abram Aertsen
- Laboratory of Food Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | |
Collapse
|
12
|
Miranda I, Rocha R, Santos MC, Mateus DD, Moura GR, Carreto L, Santos MAS. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans. PLoS One 2007; 2:e996. [PMID: 17912373 PMCID: PMC1991585 DOI: 10.1371/journal.pone.0000996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG)(Ser)). We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.
Collapse
Affiliation(s)
- Isabel Miranda
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rita Rocha
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Maria C. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Denisa D. Mateus
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Laura Carreto
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| | - Manuel A. S. Santos
- Department of Biology, Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Al Mamun AAM, Gautam S, Humayun MZ. Hypermutagenesis in mutA cells is mediated by mistranslational corruption of polymerase, and is accompanied by replication fork collapse. Mol Microbiol 2007; 62:1752-63. [PMID: 17427291 DOI: 10.1111/j.1365-2958.2006.05490.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated mistranslation induces a mutator response termed translational stress-induced mutagenesis (TSM) that is mediated by an unidentified modification of DNA polymerase III. Here we address two questions: (i) does TSM result from direct polymerase corruption, or from an indirect pathway triggered by increased protein turnover? (ii) Why are homologous recombination functions required for the expression of TSM under certain conditions, but not others? We show that replication of bacteriophage T4 in cells expressing the mutA allele of the glyVtRNA gene (Asp-Gly mistranslation), leads to both increased mutagenesis, and to an altered mutational specificity, results that strongly support mistranslational corruption of DNA polymerase. We also show that expression of mutA, which confers a recA-dependent mutator phenotype, leads to increased lambdoid prophage induction (selectable in vivo expression technology assay), suggesting that replication fork collapse occurs more frequently in mutA cells relative to control cells. No such increase in prophage induction is seen in cells expressing alaVGlu tRNA (Glu-->Ala mistranslation), in which the mutator phenotype is recA-independent. We propose that replication fork collapse accompanies episodic hypermutagenic replication cycles in mutA cells, requiring homologous recombination functions for fork recovery, and therefore, for mutation recovery. These findings highlight hitherto under-appreciated links among translation, replication and recombination, and suggest that translational fidelity, which is affected by genetic and environmental signals, is a key modulator of replication fidelity.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | | | |
Collapse
|
14
|
Al Mamun AAM. Elevated expression of DNA polymerase II increases spontaneous mutagenesis in Escherichia coli. Mutat Res 2007; 625:29-39. [PMID: 17586534 DOI: 10.1016/j.mrfmmm.2007.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/26/2007] [Accepted: 05/08/2007] [Indexed: 11/17/2022]
Abstract
Escherichia coli DNA polymerase II (Pol-II), encoded by the SOS-regulated polB gene, belongs to the highly conserved group B (alpha-like) family of "high-fidelity" DNA polymerases. Elevated expression of polB gene was recently shown to result in a significant elevation of translesion DNA synthesis at 3, N(4)-ethenocytosine lesion with concomitant increase in mutagenesis. Here, I show that elevated expression of Pol-II leads to an approximately 100-fold increase in spontaneous mutagenesis in a manner that is independent of SOS, umuDC, dinB, recA, uvrA and mutS functions. Cells grow slowly and filament with elevated expression of Pol-II. Introduction of carboxy terminus ("beta interaction domain") mutations in polB eliminates elevated spontaneous mutagenesis, as well as defects in cell growth and morphology, suggesting that these abilities require the interaction of Pol-II with the beta processivity subunit of DNA polymerase III. Introduction of a mutation in the proofreading exo motif of polB elevates mutagenesis by a further 180-fold, suggesting that Pol-II can effectively compete with DNA polymerase III for DNA synthesis. Thus, Pol-II can contribute to spontaneous mutagenesis when its expression is elevated.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, 225 Warren Street, Newark, NJ 07101-1709, United States.
| |
Collapse
|
15
|
de Weert S, Dekkers LC, Kuiper I, Bloemberg GV, Lugtenberg BJJ. Generation of enhanced competitive root-tip-colonizing Pseudomonas bacteria through accelerated evolution. J Bacteriol 2004; 186:3153-9. [PMID: 15126477 PMCID: PMC400599 DOI: 10.1128/jb.186.10.3153-3159.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recently published procedure to enrich for efficient competitive root tip colonizers (I. Kuiper, G. V. Bloemberg, and B. J. J. Lugtenberg, Mol. Plant-Microbe Interact. 14:1197-1205) after bacterization of seeds was applied to isolate efficient competitive root tip colonizers for both the dicotyledenous plant tomato and the monocotyledenous plant grass from a random Tn5luxAB mutant bank of the good root colonizer Pseudomonas fluorescens WCS365. Unexpectedly, the best-colonizing mutant, strain PCL1286, showed a strongly enhanced competitive root-tip-colonizing phenotype. Sequence analyses of the Tn5luxAB flanking regions showed that the transposon had inserted in a mutY homolog. This gene is involved in the repair of A. G mismatches caused by spontaneous oxidation of guanine. We hypothesized that, since the mutant is defective in repairing its mismatches, its cells harbor an increased number of mutations and therefore can adapt faster to the environment of the root system. To test this hypothesis, we constructed another mutY mutant and analyzed its competitive root tip colonization behavior prior to and after enrichment. As a control, a nonmutated wild type was subjected to the enrichment procedure. The results of these analyses showed (i) that the enrichment procedure did not alter the colonization ability of the wild type, (ii) that the new mutY mutant was strongly impaired in its colonization ability, but (iii) that after three enrichment cycles it colonized significantly better than its wild type. Therefore it is concluded that both the mutY mutation and the selection procedure are required to obtain an enhanced root-tip-colonizing mutant.
Collapse
Affiliation(s)
- Sandra de Weert
- Clusius Laboratory, Institute of Biology, Leiden University, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Balashov S, Humayun MZ. Specificity of spontaneous mutations induced in mutA mutator cells. Mutat Res 2004; 548:9-18. [PMID: 15063131 DOI: 10.1016/j.mrfmmm.2003.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 12/16/2003] [Accepted: 12/17/2003] [Indexed: 04/29/2023]
Abstract
Escherichia coli cells expressing the mutA allele of a glyV (glycine tRNA) gene express a strong mutator phenotype. The mutA allele differs from the wild type glyV gene by a base substitution in the anticodon such that the resulting tRNA misreads certain aspartate codons as glycine, resulting in random, low-level Asp-->Gly substitutions in proteins. Subsequent work showed that many types of mistranslation can lead to a very similar phenotype, named TSM for translational stress-induced mutagenesis. Here, we have determined the specificity of forward mutations occurring in the lacI gene in mutA cells as well as in wild type cells. Our results show that in comparison to wild type cells, base substitutions are elevated 23-fold in mutA cells, as against a eight-fold increase in insertions and a five-fold increase in deletions. Among base substitutions, transitions are elevated 13-fold, with both G:C-->A:T and A:T-->G:C mutations showing roughly similar increases. Transversions are elevated 35-fold, with G:C-->T:A, G:C-->C:G and A:T-->C:G elevated 28-, 13- and 27-fold, respectively. A:T-->T:A mutations increase a striking 348-fold over parental cells, with most occurring at two hotspot sequences that share the G:C-rich sequence 5'-CCGCGTGG. The increase in transversion mutations is similar to that observed in cells defective for dnaQ, the gene encoding the proofreading function of DNA polymerase III. In particular, the relative proportions and sites of occurrence of A:T-->T:A transversions are similar in mutA and mutD5 (an allele of dnaQ) cells. Interestingly, transversions are also the predominant base substitutions induced in dnaE173 cells in which a missense mutation in the alpha subunit of polymerase III abolishes proofreading without affecting the 3'-->5' exonuclease activity of the epsilon subunit.
Collapse
Affiliation(s)
- Sergey Balashov
- Department of Microbiology and Molecular Genetics, International Center for Public Health, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07101-1709, USA
| | | |
Collapse
|
17
|
Abstract
Many mutator genes have been characterized in E. coli, but the realization that mutA, the most recent mutator pathway described, encodes for a missense suppressor glycine tRNA caused a real surprise. The connection between expression of mutA and a 10 times increase in the spontaneous mutation rate is not readily explainable. The first attempt to describe the mechanism of action suggested a direct mistranslation of one subunit of polymerase III (PolIII) and the ideal candidate was the epsilon subunit carrying the 3'-->5' exonuclease activity. This subunit increases PolIII accuracy about 100 times. However, such direct mistranslation of epsilon was later ruled out when it became clear that all mutA cells express an error-prone form of PolIII. This result could not be reconciled with the very low level of mistranslation (1%) caused by mutA. But there is no need to invoke amino acid misincorporation in epsilon to destroy its activity. On the contrary, I suggest a new way to regulate epsilon amount, based on the reinterpretation of the mutA pathway through the new and puzzling observation that several tRNAs (including mutA which encodes for a glycine missense suppressor tRNA) are complementary to the 5' end of dnaQ mRNA. Accordingly, I propose that uncharged tRNAs can act as antisense RNAs, decreasing translation of dnaQ and possibly other genes. This could represent a new regulatory function for tRNAs and of course gives a direct and unrecognized link between starvation and mutation rate.
Collapse
|
18
|
Balashov S, Humayun MZ. Escherichia coli cells bearing a ribosomal ambiguity mutation in rpsD have a mutator phenotype that correlates with increased mistranslation. J Bacteriol 2003; 185:5015-8. [PMID: 12897024 PMCID: PMC166475 DOI: 10.1128/jb.185.16.5015-5018.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells bearing certain mutations in rpsD (coding for the 30S ribosomal protein S4) show a ribosomal ambiguity (Ram) phenotype characterized by increased translational error rates. Here we show that spontaneous mutagenesis increases in Ram cells bearing the rpsD14 allele, suggesting that the recently described translational stress-induced mutagenesis pathway is activated in Ram cells.
Collapse
Affiliation(s)
- Sergey Balashov
- University of Medicine and Dentistry of New Jersey--New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, New Jersey 07101-1709, USA
| | | |
Collapse
|