1
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
The poly(ADP-ribose) polymerase inhibitor olaparib induces up-regulation of death receptors in primary acute myeloid leukemia blasts by NF-κB activation. Cancer Lett 2018. [PMID: 29526802 DOI: 10.1016/j.canlet.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olaparib is a potent orally bioavailable poly(ADP-ribose) polymerase inhibitor (PARPi), approved for BRCA-mutated ovarian and breast cancers. We recently showed that olaparib at clinically achievable concentrations exerts anti-proliferative and pro-apoptotic effects in vitro as monotherapy against primary acute myeloid leukemia (AML) blasts, while sparing normal bone marrow (BM) hematopoietic cells. Since AML expresses low levels of death receptors that may contribute to apoptosis resistance, in this study we investigated whether the anti-leukemia activity of olaparib involves modulation of FAS and TRAIL receptors DR5 and DR4. Our data show that the primary AML samples tested express FAS and DR5 transcripts at levels lower than normal BM. In this context, apoptosis triggered by olaparib is associated with a dose-dependent up-regulation of death receptors expression and caspase 8 activation. Olaparib-mediated FAS up-regulation requires NF-κB activation, as indicated by the increase of p65 phosphorylation and decrease of IκBα. Moreover, FAS up-regulation is abrogated by pretreatment of AML cells with two different NF-κB inhibitors. These results indicate that NF-κB activation and consequent induction of death receptor expression contribute to the anti-leukemia effect of olaparib in AML.
Collapse
|
3
|
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity. Int Immunol 2015; 27:521-30. [PMID: 25999597 DOI: 10.1093/intimm/dxv034] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in understanding of the immune microenvironment have highlighted the role of immunosuppressive T cell, myeloid, dendritic and monocytic sub-populations in inhibition of the anti-tumor immune response. The role of B cells in modulating the immune response to solid tumors as well as lymphoid malignancies is less well understood. Murine models of autoimmune disease have defined B regulatory cell (Breg) subsets with immune suppressive activity, including B cell subsets that express IL-10, and transforming growth factor-β, which can facilitate T regulatory cell recruitment and expansion. Multiple murine tumor models point to the existence of similar immune suppressive B cell sub-populations that can migrate into tumor deposits and acquire an immune suppressive phenotype, which then leads to attenuation of the local anti-tumor immune response. Other murine models of viral or chemically induced skin carcinogenesis have identified a pivotal role for B cells in promoting inflammation and carcinogenesis. While many human solid tumors demonstrate significant B cell infiltration and/or tertiary lymphoid structure formation, the functional properties of tumor-infiltrating B cells and their effects on immunity are poorly understood. Recent successes in early Phase I/II trials using anti-checkpoint inhibitor antibodies such as nivolumab or pidilizumab directed against PD-1 in the setting of Hodgkin's and non-Hodgkin's lymphomas validate the therapeutic utility of reversing B cell-mediated immune suppression. Further studies to define Breg subsets, and mechanisms of suppression, may provide new avenues for modulation of the immune response and meaningful therapeutic intervention in both lymphoid and solid tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Nicolas Gallastegui
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Joseph D Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
4
|
Tao H, Lu L, Xia Y, Dai F, Wang Y, Bao Y, Lundy SK, Ito F, Pan Q, Zhang X, Zheng F, Shu G, Fang B, Jiang J, Xia J, Huang S, Li Q, Chang AE. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur J Immunol 2015; 45:999-1009. [PMID: 25545618 PMCID: PMC4414939 DOI: 10.1002/eji.201444625] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022]
Abstract
We have previously reported that adoptive transfer of tumor-draining lymph node (TDLN) B cells confers tumor regression in a spontaneous pulmonary metastasis mouse model of breast cancer. In this study, we identified IL-10-producing cells within these B cells, and found that IL-10 removal, either by using IL-10(-/-) TDLN B cells or by systemic neutralization of IL-10, significantly augmented the therapeutic efficacy of adoptively transferred TDLN B cells. Depletion of IL-10 in B-cell adoptive transfers significantly increased CTLs and B-cell activity of PBMCs and splenic cells in the recipient. Activated TDLN B cells express Fas ligand, which was further enhanced by coculture of these TDLN B cells with 4T1 tumor cells. Effector B cells killed tumor cells directly in vitro in an antigen specific and Fas ligand-dependent manner. Trafficking of TDLN B cells in vivo suggested that they were recruited to the tumor and lung as well as secondary lymphoid organs. These findings further define the biological function of antitumor effector B cells, which may offer alternative cellular therapies to cancer.
Collapse
Affiliation(s)
- Huimin Tao
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Xia
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fu Dai
- The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Wang
- The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyi Bao
- The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Steven K. Lundy
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fumito Ito
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Qin Pan
- Wuhan University School of Medicine, Wuhan, China
| | | | - Fang Zheng
- Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoshun Shu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Second Xiangya Hospital, Changsha, China
| | - Bingmu Fang
- Lishui People’s Hospital of Zhejiang Province, China
| | - Jinhong Jiang
- Lishui People’s Hospital of Zhejiang Province, China
| | - Jianchuang Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shiang Huang
- Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Alfred E. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Lundy SK, Klinker MW, Fox DA. Killer B lymphocytes and their fas ligand positive exosomes as inducers of immune tolerance. Front Immunol 2015; 6:122. [PMID: 25852690 PMCID: PMC4367442 DOI: 10.3389/fimmu.2015.00122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/04/2015] [Indexed: 01/31/2023] Open
Abstract
Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL), and their ability to kill T helper (TH) lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV) consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed major histocompatibility complex (MHC) class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes.
Collapse
Affiliation(s)
- Steven K Lundy
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School , Ann Arbor, MI , USA ; Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - Matthew W Klinker
- Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - David A Fox
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School , Ann Arbor, MI , USA ; Graduate Training Program in Immunology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
6
|
Koncz G, Hueber AO. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells. Front Immunol 2012; 3:207. [PMID: 22848207 PMCID: PMC3404404 DOI: 10.3389/fimmu.2012.00207] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/30/2012] [Indexed: 12/13/2022] Open
Abstract
Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins.
Collapse
Affiliation(s)
- Gabor Koncz
- Immunology Research Group of the Hungarian Academy of Sciences, University Eötvös Lorand Budapest, Hungary
| | | |
Collapse
|
7
|
Lundy SK. Killer B lymphocytes: the evidence and the potential. Inflamm Res 2009; 58:345-57. [PMID: 19262989 DOI: 10.1007/s00011-009-0014-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/04/2008] [Indexed: 12/12/2022] Open
Abstract
Immune regulation plays a critical role in controlling potentially dangerous inflammation and maintaining health. The Fas ligand/Fas receptor axis has been studied extensively as a mechanism of killing T cells and other cells during infections, autoimmunity, and cancer. FasL expression has been primarily attributed to activated T cells and NK cells. Evidence has emerged that B lymphocytes can express FasL and other death-inducing ligands, and can mediate cell death under many circumstances. Among B cell subsets, the expression of both Fas ligand and IL-10 is highest on the CD5(+) B cell population, suggesting that CD5(+) B cells may have a specialized regulatory function. The relevance of killer B cells to normal immune regulation, disease pathogenesis, and inflammation is discussed.
Collapse
Affiliation(s)
- Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
8
|
Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, Dave S, Hurt EM, Tan B, Zhao H, Stephens O, Santra M, Williams DR, Dang L, Barlogie B, Shaughnessy JD, Kuehl WM, Staudt LM. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12:115-30. [PMID: 17692804 PMCID: PMC2730509 DOI: 10.1016/j.ccr.2007.07.004] [Citation(s) in RCA: 781] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 05/04/2007] [Accepted: 07/18/2007] [Indexed: 12/15/2022]
Abstract
Mechanisms of constitutive NF-kappaB signaling in multiple myeloma are unknown. An inhibitor of IkappaB kinase beta (IKKbeta) targeting the classical NF-kappaB pathway was lethal to many myeloma cell lines. Several cell lines had elevated expression of NIK due to genomic alterations or protein stabilization, while others had inactivating mutations of TRAF3; both kinds of abnormality triggered the classical and alternative NF-kappaB pathways. A majority of primary myeloma patient samples and cell lines had elevated NF-kappaB target gene expression, often associated with genetic or epigenetic alteration of NIK, TRAF3, CYLD, BIRC2/BIRC3, CD40, NFKB1, or NFKB2. These data demonstrate that addiction to the NF-kappaB pathway is frequent in myeloma and suggest that IKKbeta inhibitors hold promise for the treatment of this disease.
Collapse
Affiliation(s)
- Christina M. Annunziata
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - R. Eric Davis
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Yulia Demchenko
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - William Bellamy
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Ana Gabrea
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Fenghuang Zhan
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Georg Lenz
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Ichiro Hanamura
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - George Wright
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892
| | - Wenming Xiao
- Bioinformatics and Molecular Analysis Section, Computational Bioscience and Engineering Laboratory, CIT, National Institutes of Health, Bethesda, MD 20892
| | - Sandeep Dave
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Elaine M. Hurt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Bruce Tan
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Hong Zhao
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Owen Stephens
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Madhumita Santra
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - David R. Williams
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - Lenny Dang
- Millennium Pharmaceuticals, Cambridge, MA 02139
| | - Bart Barlogie
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - John D. Shaughnessy
- Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock AR 72205
| | - W. Michael Kuehl
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Louis M. Staudt
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
9
|
Uzarski RL, Islam Z, Pestka JJ. Potentiation of trichothecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation. Chem Biol Interact 2003; 146:105-19. [PMID: 14597125 DOI: 10.1016/s0009-2797(03)00088-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trichothecene mycotoxins cause immunosuppression by inducing apoptosis in lymphoid tissue. Trichothecene-induced leukocyte apoptosis can be augmented by bacterial lipopolysaccharide (LPS) but the mechanisms involved in this potentiating effect are not completely understood. The objective of this study was to test the hypothesis that the trichothecene deoxynivalenol (DON, vomitoxin) can interact with LPS directly and other mediators or agonists associated with immune/inflammatory responses to induce apoptosis in primary murine leukocyte cultures. Primary leukocyte suspensions were prepared from murine thymus (TH), spleen (SP), bone marrow (BM) and Peyer's patches (PP) and then cultured with DON in the absence or presence of LPS, prostaglandin E2 (PGE2), anti-immunoglobulin (as antigen mimic), dexamethasone, Fas ligand, or TNF-alpha. Cytotoxicity and apoptosis were evaluated by MTT assay and morphologic assays, respectively. DON was found to inhibit LPS-induced proliferation and dexamethasone-induced apoptosis in SP cultures. In contrast, potentiation of DON-induced apoptosis and cytotoxicity was observed in BM cultures treated with anti-Fas and in TH cultures treated with TNF-alpha. When potentiation of DON-induced apoptosis by TNF-alpha was assessed using pharmacological inhibitors, generation of ROS, intracellular Ca2+, p38/SAPK, and caspase-3 activation were found to play roles. Taken together, these data demonstrate that LPS and its downstream mediators can interact with trichothecenes to modulate proliferative, cytotoxic and apoptotic outcomes in leukocytes in a tissue-specific manner.
Collapse
Affiliation(s)
- Rebecca L Uzarski
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
10
|
Abstract
Regulation of apoptosis in the B cell lineage has implications for homeostasis, quality control of the antibody response, and tolerance. In this chapter we examine the different checkpoints that control life and death decisions of B cells during the antigen-independent and antigen-dependent phases of their development. We discuss the cell death mechanism involved in elimination of unwanted B cells at different stages of their development as well as the signals that trigger or repress the apoptotic process. At the steady state, before or after development of an immune response, B cell apoptosis ensures that the antigen receptor (BCR) on newly produced B cells is functional and does not recognize self-antigens with high avidity. It also ensures that the size of the peripheral B cell compartment remains constant in spite of the continuous input of B cells from the bone marrow. All these processes are controlled by the mitochondrial death pathway and are thus perturbed by overexpression of the antiapoptotic members of the bcl-2 gene family. By contrast, the death receptor pathway plays a prominent role during the antigen-dependent phase of B cell development. Three sets of membrane molecules stand as crucial regulators of B cell survival. First, the BCR which plays a central but ambiguous role. On the one hand, it triggers death of B cells that recognize self-antigens or have been exposed to repeated antigenic stimulations. On the other hand, it promotes survival of the peripheral mature B cell pool and protects activated B cells from CD95-induced killing. Second, the death receptor Fas/CD95 which is instrumental in censoring B cells activated in a bystander fashion at the initiation of the response to T-dependent antigens. It also drives elimination of low-affinity and self-reactive B cell clones that arise through the process of somatic mutations during the germinal center reaction. As such, it contributes to the affinity maturation of the antibody response. Finally, three membrane receptors (TACI, BCMA, and BAFF-R) which bind a newly discovered member of the tumor necrosis factor family named BAFF. BAFF acts specifically on peripheral B cells but its cellular targets seem to be restricted to two splenic B cell populations: (i) transitional immature B cells and (ii) marginal zone B cells, known to be responsible for the response to thymus-independent type 2 antigens. This suggests its possible implication in positive selection of peripheral B cells and in the antibacterial B cell responses.
Collapse
|
11
|
Zuñiga E, Motran CC, Montes CL, Yagita H, Gruppi A. Trypanosoma cruzi infection selectively renders parasite-specific IgG+ B lymphocytes susceptible to Fas/Fas ligand-mediated fratricide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3965-73. [PMID: 11937553 DOI: 10.4049/jimmunol.168.8.3965] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The control of B cell expansion has been thought to be solely regulated by T lymphocytes. We show in this study that Trypanosoma cruzi infection induces up-regulation of both Fas and Fas ligand (FasL) molecules on B cells and renders them susceptible to B cell-B cell killing (referred to as fratricide throughout this paper) mediated via Fas/FasL. Moreover, by in vivo administration of anti-FasL blocking mAb we demonstrate that Fas-mediated B cell apoptosis is an ongoing process during this parasitic infection. We also provide evidence that B cells that have switched to IgG isotype are the preferential targets of B cell fratricide. More strikingly, this death pathway selectively affects IgG(+) B cells reactive to parasite but not self Ags. Parasite-specific but not self-reactive B cells triggered during this response are rescued after either in vitro or in vivo FasL blockade. Fratricide among parasite-specific IgG(+) B lymphocytes could impair the immune control of T. cruzi and possibly other chronic protozoan parasites. Our results raise the possibility that the blockade of Fas/FasL interaction in the B cell compartment of T. cruzi-infected mice may provide a means for enhancing antiparasitic humoral immune response without affecting host tolerance.
Collapse
Affiliation(s)
- Elina Zuñiga
- Department of Clinical Biochemistry, Faculty of Chemical Science, National University of Cordoba, Cordoba, Argentina
| | | | | | | | | |
Collapse
|
12
|
Lundy SK, Lerman SP, Boros DL. Soluble egg antigen-stimulated T helper lymphocyte apoptosis and evidence for cell death mediated by FasL(+) T and B cells during murine Schistosoma mansoni infection. Infect Immun 2001; 69:271-80. [PMID: 11119515 PMCID: PMC97881 DOI: 10.1128/iai.69.1.271-280.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granuloma formation around schistosomal eggs is induced by soluble egg antigens (SEA) and mediated by the activity of CD4(+) Th lymphocytes and their cytokines. Regulation of the inflammatory Th cell response during infection is still insufficiently understood. The hypothesis of this study was that activation-induced cell death (AICD) of CD4(+) T cells is involved in the immune inflammatory response. This study investigated the dynamics of splenic and granuloma CD4(+) Th cell apoptosis and Fas ligand (FasL) expression during the acute and chronic stages of murine schistosomal infection. Enhanced apoptosis of freshly isolated CD4(+) Th lymphocytes commenced after egg deposition and persisted during the peak and modulated phases of granuloma formation. After oviposition, CD4(+), CD8(+), and CD19(+) splenocytes and granuloma cells expressed elevated levels of FasL but FasL expression declined during the downmodulated stage of infection. In culture, SEA induced splenic and granuloma CD4(+) T-cell apoptosis and stimulated expression of FasL on splenic but not granuloma CD4(+) T cells, CD8(+) T cells, and CD19(+) B cells. SEA-stimulated splenocytes and granuloma cells preferentially lysed a Fas-transfected target cell line. Depletion of B cells from SEA-stimulated splenic cultures decreased CD4(+) T cell apoptosis. Coculture of purified splenic B cells with CD4(+) T cells and adoptive transfer of purified B cells indicated that antigen-stimulated B cells can kill CD4(+) Th cells. However, CD4(+) T cells were the dominant mediators of apoptosis in the granuloma. This study indicates that AICD is involved in the apoptosis of CD4(+) T cells during schistosomal infection.
Collapse
Affiliation(s)
- S K Lundy
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|