1
|
Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells. PLoS One 2022; 17:e0267804. [PMID: 35604954 PMCID: PMC9126400 DOI: 10.1371/journal.pone.0267804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is the only sugar modification for proteins present in the cytoplasm and nucleus and is thought to be involved in the regulation of protein function and localization. Currently, several methods are known for detecting O-GlcNAcylated proteins using monoclonal antibodies or wheat germ agglutinin, but these methods have some limitations in their sensitivity and quantitative comparison. We developed a new disaccharide-tag method to overcome these problems. This is a method in which a soluble GalNAc transferase is expressed intracellularly, extended to a disaccharide of GalNAc-GlcNAc, and detected using a Wisteria japonica agglutinin specific to this disaccharide. We verified the method using human c-Rel protein and also highly sensitively compared the difference in O-GlcNAc modification of intracellular proteins associated with differentiation from embryonic stem cell (ESC) to epiblast-like cells (EpiLC). As one example of such a modification, a novel O-GlcNAc modification was found in the transcription factor Sox2 at residue Ser263, and the modification site could be identified by nano liquid chromatography-mass spectrometry.
Collapse
|
2
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
3
|
Cristófalo AE, Cagnoni AJ, Uhrig ML. Synthesis of N-acetylglucosamine and N-acetylallosamine resorcinarene-based multivalent β-thio-glycoclusters: unexpected affinity of N-acetylallosamine ligands towards Wheat Germ Agglutinin. Org Biomol Chem 2020; 18:6853-6865. [PMID: 32856676 DOI: 10.1039/d0ob01498b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we report the synthesis of calix[4]resorcinarene-based multivalent ligands bearing β-S-GlcNAc and β-S-AllNAc recognition elements. A clickable β-S-AllNAc derivative was successfully prepared from a β-thioalkynyl GlcNAc precursor, making use of a 2,3-oxazoline intermediate, easily formed by intramolecular displacement of a triflate group located at the 3-position by the 2-N-acetate group. By reaction of these alkynyl-functionalized derivatives with an octaazido-calix[4]resorcinarene macrocycle having undecyl chains, two octavalent glycoclusters exposing the epimeric N-acetylhexosamines were obtained. In addition, a related calix[4]resorcinarene-based glycocluster having methyl groups instead of undecyl chains and β-S-GlcNAc residues was also synthesized. After an initial evaluation of the interaction of the undecyl-functionalized β-S-GlcNAc octavalent derivative with Wheat Germ Agglutinin (WGA) by a turbidimetry experiment, the interaction of the three synthesized glycoclusters towards WGA was studied by Isothermal Titration Calorimetry. The results showed a favorable effect due to the presence of the undecyl chains in terms of affinity. Surprisingly, the β-S-AllNAc octavalent compound showed the highest affinity among the evaluated glycoclusters, showing for the first time that WGA interacts with β-AllNAc-bearing ligands. Molecular docking studies of β-AllNAc with WGA in comparison with β-GlcNAc contributed to the understanding of the atomic interactions responsible for this unexpected affinity.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Intendente Güiraldes 2160 (C1428EHA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
4
|
Yang G, Huang M, Wang Y, Chen G, Zhao Y, Xu H. Streptavidin-exposed magnetic nanoparticles for lectin magnetic separation (LMS) of Staphylococcus aureus prior to three quantification strategies. Mikrochim Acta 2019; 186:813. [PMID: 31745666 DOI: 10.1007/s00604-019-3978-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
A lectin magnetic separation (LMS) method for Staphylococcus aureus (S. aureus) was developed with the aim to improve the efficiency of magnetic nanoparticles and to expand the scope of bacterial recognition. Poly(ethylene glycol) (PEG)-mediated magnetic nanoparticles modified with streptavidin (MNP-PEG-SA) were synthesized and then applied to a two-step LMS based on the use of wheat germ agglutinin (WGA). Three specific methods for S. aureus detection (suitable for different requirements including detection time and sensitivity) were designed. The new LMS has improved anchoring efficiency (compared to two-step LMS methods) and requires a reduced number of magnetic particles. The Baird-Parker (B-P) method can detect S. aureus with a detection limit of 3 × 100 CFU·mL-1 within 15 h; the polymerase chain reaction (PCR) method can be finished within 4 h, with the lowest detection limit (LOD) of 3 × 102 CFU·mL-1. The LOD of HRP-pig IgG-based colorimetric method is 3 × 105 CFU·mL-1, and the method only lasts for 2 h. If combined with specific detection methods, it meets different needs for rapid detection of S. aureus. Graphical abstractSchematic representation of lectin magnetic separation (LMS) based on biotin-wheat germ agglutinin (WGA) and poly (ethylene glycol) (PEG)-mediated streptavidin-modified magnetic nanoparticles (MNP-PEG-SA) and three different quantification strategies (including B-P culture assay, PCR assay, and colorimetric assay) for S. aureus.
Collapse
Affiliation(s)
- Guotai Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Min Huang
- GanSu Second Provincial People's Hospital, Lanzhou, 730000, People's Republic of China
| | - Yutong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Guanhua Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
5
|
Landim PGC, Correia TO, Silva FD, Nepomuceno DR, Costa HP, Pereira HM, Lobo MD, Moreno FB, Brandão-Neto J, Medeiros SC, Vasconcelos IM, Oliveira JT, Sousa BL, Barroso-Neto IL, Freire VN, Carvalho CP, Monteiro-Moreira AC, Grangeiro TB. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action. Biochimie 2017; 135:89-103. [DOI: 10.1016/j.biochi.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/27/2017] [Indexed: 02/02/2023]
|
6
|
Pérez-Victoria I, Boutureira O, Claridge TDW, Davis BG. Glycosyldiselenides as lectin ligands detectable by NMR in biofluids. Chem Commun (Camb) 2016; 51:12208-11. [PMID: 26134709 DOI: 10.1039/c5cc03952e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability of glycosyldiselenides to act as lectin ligands and their selective detection in plasma by (77)Se NMR is reported.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | | | | | | |
Collapse
|
7
|
Mishra SK, Calabró G, Loeffler HH, Michel J, Koča J. Evaluation of Selected Classical Force Fields for Alchemical Binding Free Energy Calculations of Protein-Carbohydrate Complexes. J Chem Theory Comput 2015; 11:3333-45. [PMID: 26575767 DOI: 10.1021/acs.jctc.5b00159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Protein-carbohydrate recognition is crucial in many vital biological processes including host-pathogen recognition, cell-signaling, and catalysis. Accordingly, computational prediction of protein-carbohydrate binding free energies is of enormous interest for drug design. However, the accuracy of current force fields (FFs) for predicting binding free energies of protein-carbohydrate complexes is not well understood owing to technical challenges such as the highly polar nature of the complexes, anomerization, and conformational flexibility of carbohydrates. The present study evaluated the performance of alchemical predictions of binding free energies with the GAFF1.7/AM1-BCC and GLYCAM06j force fields for modeling protein-carbohydrate complexes. Mean unsigned errors of 1.1 ± 0.06 (GLYCAM06j) and 2.6 ± 0.08 (GAFF1.7/AM1-BCC) kcal·mol(-1) are achieved for a large data set of monosaccharide ligands for Ralstonia solanacearum lectin (RSL). The level of accuracy provided by GLYCAM06j is sufficient to discriminate potent, moderate, and weak binders, a goal that has been difficult to achieve through other scoring approaches. Accordingly, the protocols presented here could find useful applications in carbohydrate-based drug and vaccine developments.
Collapse
Affiliation(s)
- Sushil K Mishra
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University , Kamenice-5, 625 00 Brno, Czech Republic
| | - Gaetano Calabró
- EaStCHEM School of Chemistry, Joseph Black Building , King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Hannes H Loeffler
- Scientific Computing Department, STFC Daresbury , Warrington, WA4 4AD, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, Joseph Black Building , King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University , Kamenice-5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Ma ZY, Skorobogatko Y, Vosseller K. Tandem lectin weak affinity chromatography for glycoprotein enrichment. Methods Mol Biol 2013; 951:21-31. [PMID: 23296521 DOI: 10.1007/978-1-62703-146-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this chapter we describe the application of lectin weak affinity chromatography (LWAC) for the enrichment of peptides modified by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a single carbohydrate moiety post-translational modification of intracellular proteins. The stoichiometry of the modification is low and identification of the sites of O-GlcNAc attachment is challenging. To map O-GlcNAc sites we use the approach where a protein sample of interest is digested with trypsin and subjected to LWAC, which employs weak interaction between lectin wheat germ agglutinin and O-GlcNAc. Obtained sample is enriched with O-GlcNAc-modified peptides, which can be identified by means of mass spectrometry.
Collapse
Affiliation(s)
- Zhi Yuan Ma
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA, USA
| | | | | |
Collapse
|
9
|
Monitoring lysin motif–ligand interactions via tryptophan analog fluorescence spectroscopy. Anal Biochem 2012; 428:111-8. [DOI: 10.1016/j.ab.2012.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/13/2012] [Accepted: 06/08/2012] [Indexed: 12/14/2022]
|
10
|
Abstract
Supramolecular chemistry has expanded dramatically in recent years both in terms of potential applications and in its relevance to analogous biological systems. The formation and function of supramolecular complexes occur through a multiplicity of often difficult to differentiate noncovalent forces. The aim of this Review is to describe the crucial interaction mechanisms in context, and thus classify the entire subject. In most cases, organic host-guest complexes have been selected as examples, but biologically relevant problems are also considered. An understanding and quantification of intermolecular interactions is of importance both for the rational planning of new supramolecular systems, including intelligent materials, as well as for developing new biologically active agents.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken, Deutschland.
| |
Collapse
|
11
|
|
12
|
Abstract
BACKGROUND Mimotopes are peptides mimicking protein, carbohydrates or lipid epitopes and can be generated by phage display technology. When selected by antibodies, they represent exclusively B-cell epitopes and are devoid of antigen/allergen-specific T-cell epitopes. Coupled to carriers or presented in a multiple antigenic peptide form mimotopes achieve immunogenicity and induce epitope-specific antibody responses upon vaccination. OBJECTIVE/METHODS In allergy IgG antibodies may block IgE binding to allergens, whereas other IgG antibody specificities enhance this and support the anaphylactic reaction. In cancer, inhibitory antibody specificities prevent growth signals derived from overexpressed oncogenes, whereas growth-promoting specificities enhance signalling and proliferation. Therefore, the mimotope concept is applicable to both fields for epitope-specific vaccination and analysis of conformational B-cell epitopes for the allergen/antigen. RESULTS/CONCLUSIONS Mimotope technology is a relatively young theme in allergology and oncology. Still, proof of concept studies testing allergen and tumour mimotope vaccines suggest that mimotopes are ready for clinical trials.
Collapse
Affiliation(s)
- Regina Knittelfelder
- Medical University of Vienna, Department of Pathophysiology; Center of Physiology, Pathophysiology and Immunology Waehringer Guertel 18-20, Vienna, Austria
| | - Angelika B Riemer
- Medical University of Vienna, Department of Dermatology, 1090 Vienna, Austria
| | - Erika Jensen-Jarolim
- Medical University of Vienna, Department of Pathophysiology; Center of Physiology, Pathophysiology and Immunology Waehringer Guertel 18-20, Vienna, Austria
| |
Collapse
|
13
|
Li HM, Sun L, Mittapalli O, Muir WM, Xie J, Wu J, Schemerhorn BJ, Sun W, Pittendrigh BR, Murdock LL. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut. INSECT MOLECULAR BIOLOGY 2009; 18:21-31. [PMID: 19196346 DOI: 10.1111/j.1365-2583.2008.00844.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One function of plant lectins such as wheat germ agglutinin is to serve as defences against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural and gene expression changes in the midguts of Drosophila melanogaster third instar larvae that were fed wheat germ agglutinin. Some of these changes were similar to those observed in the midguts of starved D. melanogaster. Dietary wheat germ agglutinin caused shortening, branching, swelling, distortion and in some cases disintegration of the midgut microvilli. Starvation was accompanied primarily by shortening of the microvilli. Microarray analyses revealed that dietary wheat germ agglutinin evoked differential expression of 61 transcripts; seven of these were also differentially expressed in starved D. melanogaster. The differentially transcribed gene clusters in wheat germ agglutinin-fed larvae were associated with (1) cytoskeleton organization; (2) digestive enzymes; (3) detoxification reactions; and (4) energy metabolism. Four possible transcription factor binding motifs were associated with the differentially expressed genes. One of these exhibited substantial similarity to MyoD, a transcription factor binding motif associated with cellular structures in mammals. These results are consistent with the hypothesis that wheat germ agglutinin caused a starvation-like effect and structural changes of midgut cells of D. melanogaster third-instar larvae.
Collapse
Affiliation(s)
- H-M Li
- Department of Entomology, Purdua University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V, Hrabárová E, Kogan G, Kožár T. Lectinomics. Biotechnol Adv 2009; 27:1-15. [DOI: 10.1016/j.biotechadv.2008.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 06/22/2008] [Accepted: 07/10/2008] [Indexed: 12/23/2022]
|
15
|
Konidala P, Niemeyer B. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics. Biophys Chem 2007; 128:215-30. [PMID: 17532552 DOI: 10.1016/j.bpc.2007.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/23/2022]
Abstract
The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.
Collapse
Affiliation(s)
- Praveen Konidala
- Institute of Thermodynamics, Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Holstenhofweg 85, D-22043 Hamburg, Germany
| | | |
Collapse
|
16
|
Neffe AT, Bilang M, Grüneberg I, Meyer B. Rational optimization of the binding affinity of CD4 targeting peptidomimetics with potential anti HIV activity. J Med Chem 2007; 50:3482-8. [PMID: 17602545 DOI: 10.1021/jm070206b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently reported the design and synthesis of a CD4 binding peptidomimetic with potential as HIV entry inhibitor. Variation of side chains and amino terminus provided first structure-activity relationships and confirmed the activity of the compounds as well as the correctness of our approach [Neffe, A. T.; Bilang, M.; Meyer, B. Org. Biomol. Chem. 2006, 4, 3259-3267]. Here we describe optimizations at the carboxy terminus of the peptidomimetic CD4 ligands resulting in the highest binding affinity of KD = 6 microM for compound 4 determined with surface plasmon resonance (SPR). Saturation transfer difference NMR experiments with two peptidomimetics give binding constants similar to the SPR experiments and verified the ligand binding epitope. The higher proteolytic stability of the peptidomimetics compared to the lead peptide is demonstrated in a pronase digestion assay. Comparison of modeling and analytical data shows good agreement of theoretical and practical experiments.
Collapse
Affiliation(s)
- Axel T Neffe
- Institute for Organic Chemistry, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|
17
|
Abstract
Trehalose, a naturally occurring osmolyte, is considered as a universal protein stabilizer. We investigated the effect of the disaccharides, trehalose and sucrose, on the thermal stability and conformation of bromelain. To our surprise, bromelain in the presence of 1 M trehalose/sucrose was destabilized under thermal stress. The average Tm values as determined by UV spectroscopy and CD spectropolarimetry decreased by 5 degrees and 7 degrees C for bromelain in 1 M sucrose or trehalose solutions, respectively. The enzyme was also found to inactivate faster at 60 degrees C in the presence of these osmolytes. The tertiary and secondary structure of bromelain undergoes small changes in the presence of sucrose/trehalose. Studies on the binding of these osmolytes with the native and the heat denatured enzyme revealed that sucrose/trehalose lead to preferential hydration of the denatured bromelain as compared to the native one, hence stabilizing more the denatured conformation. This is perhaps the first report on the destabilization of a protein by trehalose.
Collapse
Affiliation(s)
- S Habib
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh,
| | | | | |
Collapse
|
18
|
Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network. BMC STRUCTURAL BIOLOGY 2007; 7:1. [PMID: 17201922 PMCID: PMC1780050 DOI: 10.1186/1472-6807-7-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/03/2007] [Indexed: 12/27/2022]
Abstract
Background Protein-Carbohydrate interactions are crucial in many biological processes with implications to drug targeting and gene expression. Nature of protein-carbohydrate interactions may be studied at individual residue level by analyzing local sequence and structure environments in binding regions in comparison to non-binding regions, which provide an inherent control for such analyses. With an ultimate aim of predicting binding sites from sequence and structure, overall statistics of binding regions needs to be compiled. Sequence-based predictions of binding sites have been successfully applied to DNA-binding proteins in our earlier works. We aim to apply similar analysis to carbohydrate binding proteins. However, due to a relatively much smaller region of proteins taking part in such interactions, the methodology and results are significantly different. A comparison of protein-carbohydrate complexes has also been made with other protein-ligand complexes. Results We have compiled statistics of amino acid compositions in binding versus non-binding regions- general as well as in each different secondary structure conformation. Binding propensities of each of the 20 residue types and their structure features such as solvent accessibility, packing density and secondary structure have been calculated to assess their predisposition to carbohydrate interactions. Finally, evolutionary profiles of amino acid sequences have been used to predict binding sites using a neural network. Another set of neural networks was trained using information from single sequences and the prediction performance from the evolutionary profiles and single sequences were compared. Best of the neural network based prediction could achieve an 87% sensitivity of prediction at 23% specificity for all carbohydrate-binding sites, using evolutionary information. Single sequences gave 68% sensitivity and 55% specificity for the same data set. Sensitivity and specificity for a limited galactose binding data set were obtained as 63% and 79% respectively for evolutionary information and 62% and 68% sensitivity and specificity for single sequences. Propensity and other sequence and structural features of carbohydrate binding sites have also been compared with our similar extensive studies on DNA-binding proteins and also with protein-ligand complexes. Conclusion Carbohydrates typically show a preference to bind aromatic residues and most prominently tryptophan. Higher exposed surface area of binding sites indicates a role of hydrophobic interactions. Neural networks give a moderate success of prediction, which is expected to improve when structures of more protein-carbohydrate complexes become available in future.
Collapse
|
19
|
Fujimura F, Horikawa Y, Morita T, Sugiyama J, Kimura S. Double Assembly Composed of Lectin Association with Columnar Molecular Assembly of Cyclic Tri-β-peptide Having Sugar Units. Biomacromolecules 2006; 8:611-6. [PMID: 17291084 DOI: 10.1021/bm060862d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel double assembly was prepared by association between a columnar molecular assembly of cyclic tri-beta-peptides having sugar units and lectins. The NMR, FT-IR, and circular dichroism (CD) spectroscopy as well as computational calculations revealed that this compound took a flat and C3 symmetrical conformation and that the amide N-H and C=O groups protruded vertically to the ring plane. This disk-shaped molecule stacked one by one to form a columnar structure via intermolecular hydrogen bonds between the amide groups. WGA lectin moderately bound to this columnar assembly to form a double assembly. Another lectin (Con A) disturbed the columnar structure upon strong binding, and RCA lectin showed no binding. Fluorescence spectroscopy revealed that the association between WGA lectin and columnar assembly of cyclic glycopeptide could be achieved due to the high density of the hydroxyl groups on the assembly surface (cluster effects). Interestingly, after cross-linking the lectins bound to the columnar assembly (the double assembly) by glutaraldehyde, the core column of cyclic tri-beta-peptides could be washed away to leave the protein nanotube.
Collapse
Affiliation(s)
- Futoshi Fujimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
20
|
Babál P, Janega P, Cerná A, Kholová I, Brabencová E. Neoplastic transformation of the thyroid gland is accompanied by changes in cellular sialylation. Acta Histochem 2006; 108:133-40. [PMID: 16720036 DOI: 10.1016/j.acthis.2006.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/27/2006] [Accepted: 03/07/2006] [Indexed: 11/30/2022]
Abstract
Cancer of the thyroid gland is one of the most common endocrine diseases. Histological evaluation is often complicated by difficulty in distinguishing between benign and malignant lesions. Abnormal glycosylation of cell structures, including changes in sialylation, is a feature of the neoplastic transformation process. The aim of this study was to evaluate associations between neoplastic changes in the thyroid gland and changes in sialylation, with reference to its terminal linkage type. Lectin histochemistry using three sialic acid-binding lectins: Tritrichomonas mobilensis lectin (TML), which recognizes sialic acid without linkage preference; Maackia amurensis leukoagglutinin (MAL), which preferentially binds alpha-2,3-linked sialic acid; and Sambucus nigra agglutinin (SNA), which preferentially binds alpha-2,6-linked sialic acid, were used for detection of sialylated glycoconjugates in 50 human thyroid gland specimens. These included papillary, follicular, oncocytic, medullary and anaplastic carcinomas, follicular adenomas and benign follicular and parenchymatous goiter. The luminal surface of follicular cells in normal thyroid glands, adenomas and goiters showed weak or absent labelling for sialic acid. Malignant transformation of the gland was accompanied by an increase of sialic acid positivity on follicular epithelial cells, especially of alpha-2,3-linked sialic acid. Strong luminal positivity for sialic acid was found in papillary carcinomas, whereas moderate positivity was seen in follicular carcinomas. Inconsistent, weak positivity for sialic acid was documented in medullary and anaplastic carcinomas. Increased membrane sialic acid on thyroid gland cells may be an important diagnostic pathological finding, that could be useful in distinction of malignant from benign thyroid lesions, especially with respect to aspiration cytology diagnostics.
Collapse
Affiliation(s)
- Pavel Babál
- Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Sasinkova 4, 81372 Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
21
|
Jiménez-Barbero J, Javier Cañada F, Asensio JL, Aboitiz N, Vidal P, Canales A, Groves P, Gabius HJ, Siebert HC. Hevein Domains: An Attractive Model to Study Carbohydrate–Protein Interactions at Atomic Resolution. Adv Carbohydr Chem Biochem 2006; 60:303-54. [PMID: 16750446 DOI: 10.1016/s0065-2318(06)60007-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Neumann D, Lehr CM, Lenhof HP, Kohlbacher O. Computational modeling of the sugar-lectin interaction. Adv Drug Deliv Rev 2004; 56:437-57. [PMID: 14969752 DOI: 10.1016/j.addr.2003.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
In the last few years numerous experimental studies have shed light onto the details of the lectin-carbohydrate interaction. X-ray crystallography and NMR spectroscopy have been used to elucidate the structures of lectins, sugars, and their complexes. In addition, an increasing number of experimental methods has been employed to determine the thermodynamic and kinetic parameters of the binding process. Based on this experimental data, computational methods have been developed to model and predict these interactions. A plethora of techniques from Molecular Modeling and Computational Chemistry have been applied to the problem and current models achieve high-quality predictions. These successes are based on both new theoretical approaches and reliable experimental data. The aim of the present article is to outline the most relevant computational and experimental methods applied in the field of lectin-carbohydrate interaction and to give an overview of the current state of the art in the modeling of these interactions with a focus on plant lectins.
Collapse
Affiliation(s)
- Dirk Neumann
- Center for Bioinformatics Saar, Bldg. 36.1, Saarland University, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|