1
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
2
|
Choi B, Tafur Rangel A, Kerkhoven EJ, Nygård Y. Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass. Metab Eng 2024; 84:23-33. [PMID: 38788894 DOI: 10.1016/j.ymben.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bohyun Choi
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden; VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| |
Collapse
|
3
|
Kaplan K, Levkovich SA, DeRowe Y, Gazit E, Laor Bar-Yosef D. Mind your marker: the effect of common auxotrophic markers on complex traits in yeast. FEBS J 2024. [PMID: 38383986 DOI: 10.1111/febs.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.
Collapse
Affiliation(s)
- Keila Kaplan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Shon A Levkovich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Yasmin DeRowe
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Israel
| | - Dana Laor Bar-Yosef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| |
Collapse
|
4
|
Ren X, Wei Y, Zhao H, Shao J, Zeng F, Wang Z, Li L. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front Bioeng Biotechnol 2023; 11:1261832. [PMID: 38116200 PMCID: PMC10729320 DOI: 10.3389/fbioe.2023.1261832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
L-tryptophan and its derivatives are widely used in the chemical, pharmaceutical, food, and feed industries. Microbial fermentation is the most commonly used method to produce L-tryptophan, which calls for an effective cell factory. The mechanism of L-tryptophan biosynthesis in Escherichia coli, the widely used producer of L-tryptophan, is well understood. Saccharomyces cerevisiae also plays a significant role in the industrial production of biochemicals. Because of its robustness and safety, S. cerevisiae is favored for producing pharmaceuticals and food-grade biochemicals. However, the biosynthesis of L-tryptophan in S. cerevisiae has been rarely summarized. The synthetic pathways and engineering strategies of L-tryptophan in E. coli and S. cerevisiae have been reviewed and compared in this review. Furthermore, the information presented in this review pertains to the existing understanding of how L-tryptophan affects S. cerevisiae's stress fitness, which could aid in developing a novel plan to produce more resilient industrial yeast and E. coli cell factories.
Collapse
Affiliation(s)
- Xinru Ren
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yue Wei
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Honglu Zhao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Li Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
5
|
Guo Z, Li M, Guo Z, Zhu R, Xin Y, Gu Z, Zhang L. Trehalose metabolism targeting as a novel strategy to modulate acid tolerance of yeasts and its application in food industry. Food Microbiol 2023; 114:104300. [PMID: 37290876 DOI: 10.1016/j.fm.2023.104300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
Some spoilage yeasts are able to develop resistance to commonly used weak-acid preservatives. We studied the trehalose metabolism and its regulation in Saccharomyces cerevisiae in response to propionic acid stress. We show interruption of trehalose synthetic pathway caused the mutant hypersensitive to the acid stress, while its overexpression conferred acid-tolerance to yeast. Interestingly, this acid-tolerance phenotype was largely independent of trehalose but relied on the trehalose synthetic pathway. We demonstrate trehalose metabolism played a vital role in regulation of glycolysis flux and Pi/ATP homeostasis in yeast during acid-adaptation, and the PKA and TOR signaling pathways were involved in regulating trehalose synthesis at transcriptional level. This work confirmed the regulatory function of trehalose metabolism and improved our understanding of molecular mechanism of acid-adaptation of yeast. By exemplifying trehalose metabolism interruption limited the growth of S. cerevisiae exposed to weak acids, and trehalose pathway overexpression conferring acid-resistance to Yarrowia lipolytica enhanced citric acid production, this work provides new insights into the development of efficient preservation strategies and robust organic acid producers.
Collapse
Affiliation(s)
- Zhongpeng Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| | - Moying Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
6
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
7
|
Zeng L, Si Z, Zhao X, Feng P, Huang J, Long X, Yi Y. Metabolome analysis of the response and tolerance mechanisms of Saccharomyces cerevisiae to formic acid stress. Int J Biochem Cell Biol 2022; 148:106236. [PMID: 35688405 DOI: 10.1016/j.biocel.2022.106236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 11/18/2022]
Abstract
Various inhibitors are produced during the hydrolysis of lignocellulosic biomass that can interfere with the growth of yeast cells and the production of bioethanol. Formic acid is a common weak acid inhibitor present in lignocellulosic hydrolysate that has toxic effects on yeast cells. However, the mechanism of the response of Saccharomyces cerevisiae to formic acid is not fully understood. In this study, liquid chromatography-mass spectrometry (LC-MS) was used to investigate the effects of formic acid treatment on cell metabolites of S. cerevisiae. Treatment with different concentrations of formic acid significantly inhibited the growth of yeast cells, reduced the yield of ethanol, prolonged the cell fermentation cycle, and increased the content of malondialdehyde. Principal component analysis and orthogonal partial least squares discriminant analysis showed that 55 metabolites were significantly altered in S. cerevisiae after formic acid treatment. The metabolic relevance of these compounds in the response of S. cerevisiae to formic acid stress was investigated. Formic acid can cause oxidative stress, inhibit protein synthesis, and damage DNA in S. cerevisiae, and these are possible reasons for the inhibition of S. cerevisiae cell growth. In addition, the levels of several aromatic amino acids identified in the cells of formic acid-treated yeast were increased; the biosynthesis of nucleotides was slowed, and energy consumption was reduced. These mechanisms may help to improve the tolerance of yeast cells to formic acid. The results described herein highlight our current understanding of the molecular mechanism of the response of S. cerevisiae to formic acid. The study will provide a theoretical basis for research on the tolerance mechanisms of S. cerevisiae.
Collapse
Affiliation(s)
- Lingjie Zeng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zaiyong Si
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xuemei Zhao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Pixue Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Jinxiang Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Xiufeng Long
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268, Donghuan Road, Liuzhou City 545006, China.
| |
Collapse
|
8
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
9
|
Pinheiro T, Lip KYF, García-Ríos E, Querol A, Teixeira J, van Gulik W, Guillamón JM, Domingues L. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions. Sci Rep 2020; 10:22329. [PMID: 33339840 PMCID: PMC7749138 DOI: 10.1038/s41598-020-77846-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
Elucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
Affiliation(s)
- Tânia Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Ka Ying Florence Lip
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Estéfani García-Ríos
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Amparo Querol
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - José Manuel Guillamón
- Food Biotechnology Department, Instituto de Agroquímica Y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
10
|
The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. mSphere 2020; 5:5/3/e00273-20. [PMID: 32461271 PMCID: PMC7253596 DOI: 10.1128/msphere.00273-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A small number (10 to 20) of yeast species cause major spoilage in foods. Spoilage yeasts of soft drinks are resistant to preservatives like sorbic acid, and they are highly fermentative, generating large amounts of carbon dioxide gas. Conversely, many yeast species derive energy from respiration only, and most of these are sorbic acid sensitive and so prevented from causing spoilage. This led us to hypothesize that sorbic acid may specifically inhibit respiration. Tests with respirofermentative yeasts showed that sorbic acid was more inhibitory to both Saccharomyces cerevisiae and Zygosaccharomyces bailii during respiration (of glycerol) than during fermentation (of glucose). The respiration-only species Rhodotorula glutinis was equally sensitive when growing on either carbon source, suggesting that ability to ferment glucose specifically enables sorbic acid-resistant growth. Sorbic acid inhibited the respiration process more strongly than fermentation. We present a data set supporting a correlation between the level of fermentation and sorbic acid resistance across 191 yeast species. Other weak acids, C2 to C8, inhibited respiration in accordance with their partition coefficients, suggesting that effects on mitochondrial respiration were related to membrane localization rather than cytosolic acidification. Supporting this, we present evidence that sorbic acid causes production of reactive oxygen species, the formation of petite (mitochondrion-defective) cells, and Fe-S cluster defects. This work rationalizes why yeasts that can grow in sorbic acid-preserved foods tend to be fermentative in nature. This may inform more-targeted approaches for tackling these spoilage organisms, particularly as the industry migrates to lower-sugar drinks, which could favor respiration over fermentation in many spoilage yeasts.IMPORTANCE Spoilage by yeasts and molds is a major contributor to food and drink waste, which undermines food security. Weak acid preservatives like sorbic acid help to stop spoilage, but some yeasts, commonly associated with spoilage, are resistant to sorbic acid. Different yeasts generate energy for growth by the processes of respiration and/or fermentation. Here, we show that sorbic acid targets the process of respiration, so fermenting yeasts are more resistant. Fermentative yeasts are also those usually found in spoilage incidents. This insight helps to explain the spoilage of sorbic acid-preserved foods by yeasts and can inform new strategies for effective control. This is timely as the sugar content of products like soft drinks is being lowered, which may favor respiration over fermentation in key spoilage yeasts.
Collapse
|
11
|
Li B, Xie CY, Yang BX, Gou M, Xia ZY, Sun ZY, Tang YQ. The response mechanisms of industrial Saccharomyces cerevisiae to acetic acid and formic acid during mixed glucose and xylose fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Hu J, Dong Y, Wang W, Zhang W, Lou H, Chen Q. Deletion of Atg22 gene contributes to reduce programmed cell death induced by acetic acid stress in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:298. [PMID: 31890026 PMCID: PMC6933646 DOI: 10.1186/s13068-019-1638-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Programmed cell death (PCD) induced by acetic acid, the main by-product released during cellulosic hydrolysis, cast a cloud over lignocellulosic biofuel fermented by Saccharomyces cerevisiae and became a burning problem. Atg22p, an ignored integral membrane protein located in vacuole belongs to autophagy-related genes family; prior study recently reported that it is required for autophagic degradation and efflux of amino acids from vacuole to cytoplasm. It may alleviate the intracellular starvation of nutrition caused by Ac and increase cell tolerance. Therefore, we investigate the role of atg22 in cell death process induced by Ac in which attempt is made to discover new perspectives for better understanding of the mechanisms behind tolerance and more robust industrial strain construction. RESULTS In this study, we compared cell growth, physiological changes in the absence and presence of Atg22p under Ac exposure conditions. It is observed that disruption and overexpression of Atg22p delays and enhances acetic acid-induced PCD, respectively. The deletion of Atg22p in S. cerevisiae maintains cell wall integrity, and protects cytomembrane integrity, fluidity and permeability upon Ac stress by changing cytomembrane phospholipids, sterols and fatty acids. More interestingly, atg22 deletion increases intracellular amino acids to aid yeast cells for tackling amino acid starvation and intracellular acidification. Further, atg22 deletion upregulates series of stress response genes expression such as heat shock protein family, cell wall integrity and autophagy. CONCLUSIONS The findings show that Atg22p possessed the new function related to cell resistance to Ac. This may help us have a deeper understanding of PCD induced by Ac and provide a new strategy to improve Ac resistance in designing industrial yeast strains for bioethanol production during lignocellulosic biofuel fermentation.
Collapse
Affiliation(s)
- Jingjin Hu
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Yachen Dong
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Wei Wang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Wei Zhang
- Department of Cardiovascular & Metabolic Sciences, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Hanghang Lou
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qihe Chen
- Department of Food Science and Nutrition, Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
13
|
High cell density cultivation of Lipomyces starkeyi for achieving highly efficient lipid production from sugar under low C/N ratio. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Schroeder L, Ikui AE. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae. PLoS One 2019; 14:e0199484. [PMID: 30856175 PMCID: PMC6411118 DOI: 10.1371/journal.pone.0199484] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
Sodium dodecyl sulfate is a detergent that disrupts cell membranes, activates cell wall integrity signaling and restricts cell growth in Saccharomyces cerevisiae. However, the underlying mechanism of how sodium dodecyl sulfate inhibits cell growth is not fully understood. Previously, we have shown that deletion of the MCK1 gene leads to sensitivity to sodium dodecyl sulfate; thus, we implemented a suppressor gene screening revealing that the overexpression of TAT2 tryptophan permease rescues cell growth in sodium dodecyl sulfate-treated Δmck1 cells. Therefore, we questioned the involvement of tryptophan in the response to sodium dodecyl sulfate treatment. In this work, we show that trp1-1 cells have a disadvantage in the response to sodium dodecyl sulfate compared to auxotrophy for adenine, histidine, leucine or uracil when cells are grown on rich media. While also critical in the response to tea tree oil, TRP1 does not avert growth inhibition due to other cell wall/membrane perturbations that activate cell wall integrity signaling such as Calcofluor White, Congo Red or heat stress. This implicates a distinction from the cell wall integrity pathway and suggests specificity to membrane stress as opposed to cell wall stress. We discovered that tyrosine biosynthesis is also essential upon sodium dodecyl sulfate perturbation whereas phenylalanine biosynthesis appears dispensable. Finally, we observe enhanced tryptophan import within minutes upon exposure to sodium dodecyl sulfate indicating that these cells are not starved for tryptophan. In summary, we conclude that internal concentration of tryptophan and tyrosine makes cells more resistant to detergent such as sodium dodecyl sulfate.
Collapse
Affiliation(s)
- Lea Schroeder
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| | - Amy E Ikui
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, The United States of America
| |
Collapse
|
15
|
Palakawong Na Ayutthaya P, Charoenrat T, Krusong W, Pornpukdeewattana S. Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech 2019; 9:76. [PMID: 30800587 PMCID: PMC6370576 DOI: 10.1007/s13205-019-1607-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Large amount of cassava pulp is produced as by-product of industrial tapioca production. The value-added process of this low-cost waste is to use it as a substrate for bioethanol production. However, during the pulp pretreatment by acidification combined with steam explosion, many yeast inhibitors including acetic acid, formic acid, levulinic acid, furfural and 5-hydroxymethylfurfural are generated and these compounds have negative effects on the subsequent fermentation step. Therefore, the objective of this study was to investigate whether the repeated cultures of Saccharomyces cerevisiae SC90 could alleviate this problem. To obtain the inhibitor tolerable cells, the repeated culture was performed by growing yeast cells to a specific growth rate (µ) of 0.22 h-1 or higher (80% of the µ in control) and then transferring them to progressively higher concentrations of hydrolysate ranging from 20 to 100% (v/v). The results showed a tendency of longer lag phase as well as time to reach maximum cell number (t maxc) with an increase in hydrolysate concentration. However, the repeated culture at the same hydrolysate concentration could shorten both lag period and t maxc. Interestingly, the growth and fermentation efficiency of adapted cells in 100% hydrolysate were significantly higher (p ≤ 0.05) than those of non-adapted cells by 38% and 27%, respectively.
Collapse
Affiliation(s)
- Pakathamon Palakawong Na Ayutthaya
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani, 12120 Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Soisuda Pornpukdeewattana
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| |
Collapse
|
16
|
Amano K, Ishii R, Mochizuki T, Takatsu S, Abe F. Hyperactive mutation occurs adjacent to the essential glutamate 286 for transport in the yeast tryptophan permease Tat2. Biochem Biophys Res Commun 2019; 509:1047-1052. [DOI: 10.1016/j.bbrc.2019.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 01/09/2023]
|
17
|
Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 17:4628041. [PMID: 29145596 DOI: 10.1093/femsyr/fox085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022] Open
Abstract
CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol g biomass-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Else-Jasmijn Hassing
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annabel Giezekamp
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
18
|
Baumann L, Rajkumar AS, Morrissey JP, Boles E, Oreb M. A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synth Biol 2018; 7:2640-2646. [PMID: 30338986 DOI: 10.1021/acssynbio.8b00309] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short- and medium-chain fatty acids (SMCFA) are important platform chemicals currently produced from nonsustainable resources. The engineering of microbial cells to produce SMCFA, however, lacks high-throughput methods to screen for best performing cells. Here, we present the development of a whole-cell biosensor for easy and rapid detection of SMCFA. The biosensor is based on a multicopy yeast plasmid containing the SMCFA-responsive PDR12 promoter coupled to GFP as the reporter gene. The sensor detected hexanoic, heptanoic and octanoic acid over a linear range up to 2, 1.5, and 0.75 mM, respectively, but did not show a linear response to decanoic and dodecanoic acid. We validated the functionality of the biosensor with culture supernatants of a previously engineered Saccharomyces cerevisiae octanoic acid producer strain and derivatives thereof. The biosensor signal correlated strongly with the octanoic acid concentrations as determined by gas chromatography. Thus, this biosensor enables the high-throughput screening of SMCFA producers and has the potential to drastically speed up the engineering of diverse SMCFA producing cell factories.
Collapse
Affiliation(s)
- Leonie Baumann
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Arun S. Rajkumar
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - John P. Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Mislav Oreb
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Acton E, Lee AHY, Zhao PJ, Flibotte S, Neira M, Sinha S, Chiang J, Flaherty P, Nislow C, Giaever G. Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress. Open Biol 2018; 7:rsob.160330. [PMID: 28592509 PMCID: PMC5493772 DOI: 10.1098/rsob.160330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.
Collapse
Affiliation(s)
- Erica Acton
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Genome Science and Technology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pei Jun Zhao
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephane Flibotte
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mauricio Neira
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Chiang
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Guo ZP, Khoomrung S, Nielsen J, Olsson L. Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:297. [PMID: 30450126 PMCID: PMC6206931 DOI: 10.1186/s13068-018-1295-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae plays an essential role in the fermentation of lignocellulosic hydrolysates. Weak organic acids in lignocellulosic hydrolysate can hamper the use of this renewable resource for fuel and chemical production. Plasma-membrane remodeling has recently been found to be involved in acquiring tolerance to organic acids, but the mechanisms responsible remain largely unknown. Therefore, it is essential to understand the underlying mechanisms of acid tolerance of S. cerevisiae for developing robust industrial strains. RESULTS We have performed a comparative analysis of lipids and fatty acids in S. cerevisiae grown in the presence of four different weak acids. The general response of the yeast to acid stress was found to be the accumulation of triacylglycerols and the degradation of steryl esters. In addition, a decrease in phosphatidic acid, phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine, and an increase in phosphatidylinositol were observed. Loss of cardiolipin in the mitochondria membrane may be responsible for the dysfunction of mitochondria and the dramatic decrease in the rate of respiration of S. cerevisiae under acid stress. Interestingly, the accumulation of ergosterol was found to be a protective mechanism of yeast exposed to organic acids, and the ERG1 gene in ergosterol biosynthesis played a key in ergosterol-mediated acid tolerance, as perturbing the expression of this gene caused rapid loss of viability. Interestingly, overexpressing OLE1 resulted in the increased levels of oleic acid (18:1n-9) and an increase in the unsaturation index of fatty acids in the plasma membrane, resulting in higher tolerance to acetic, formic and levulinic acid, while this change was found to be detrimental to cells exposed to lipophilic cinnamic acid. CONCLUSIONS Comparison of lipid profiles revealed different remodeling of lipids, FAs and the unsaturation index of the FAs in the cell membrane in response of S. cerevisiae to acetic, formic, levulinic and cinnamic acid, depending on the properties of the acid. In future work, it will be necessary to combine lipidome and transcriptome analysis to gain a better understanding of the underlying regulation network and interactions between central carbon metabolism (e.g., glycolysis, TCA cycle) and lipid biosynthesis.
Collapse
Affiliation(s)
- Zhong-peng Guo
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Present Address: LISBP, INSA, INRA, CNRS, Université de Toulouse, Toulouse, France
| | - Sakda Khoomrung
- Department of Biochemistry and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
21
|
Nwuche CO, Murata Y, Nweze JE, Ndubuisi IA, Ohmae H, Saito M, Ogbonna JC. Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Sardi M, Paithane V, Place M, Robinson DE, Hose J, Wohlbach DJ, Gasch AP. Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 2018; 14:e1007217. [PMID: 29474395 PMCID: PMC5849340 DOI: 10.1371/journal.pgen.1007217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/13/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cellulosic plant biomass is a promising sustainable resource for generating alternative biofuels and biochemicals with microbial factories. But a remaining bottleneck is engineering microbes that are tolerant of toxins generated during biomass processing, because mechanisms of toxin defense are only beginning to emerge. Here, we exploited natural diversity in 165 Saccharomyces cerevisiae strains isolated from diverse geographical and ecological niches, to identify mechanisms of hydrolysate-toxin tolerance. We performed genome-wide association (GWA) analysis to identify genetic variants underlying toxin tolerance, and gene knockouts and allele-swap experiments to validate the involvement of implicated genes. In the process of this work, we uncovered a surprising difference in genetic architecture depending on strain background: in all but one case, knockout of implicated genes had a significant effect on toxin tolerance in one strain, but no significant effect in another strain. In fact, whether or not the gene was involved in tolerance in each strain background had a bigger contribution to strain-specific variation than allelic differences. Our results suggest a major difference in the underlying network of causal genes in different strains, suggesting that mechanisms of hydrolysate tolerance are very dependent on the genetic background. These results could have significant implications for interpreting GWA results and raise important considerations for engineering strategies for industrial strain improvement. Understanding the genetic architecture of complex traits is important for elucidating the genotype-phenotype relationship. Many studies have sought genetic variants that underlie phenotypic variation across individuals, both to implicate causal variants and to inform on architecture. Here we used genome-wide association analysis to identify genes and processes involved in tolerance of toxins found in plant-biomass hydrolysate, an important substrate for sustainable biofuel production. We found substantial variation in whether or not individual genes were important for tolerance across genetic backgrounds. Whether or not a gene was important in a given strain background explained more variation than the alleleic differences in the gene. These results suggest substantial variation in gene contributions, and perhaps underlying mechanisms, of toxin tolerance.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vaishnavi Paithane
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - De Elegant Robinson
- Microbiology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana J Wohlbach
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Inokuma K, Iwamoto R, Bamba T, Hasunuma T, Kondo A. Improvement of Xylose Fermentation Ability under Heat and Acid Co-Stress in Saccharomyces cerevisiae Using Genome Shuffling Technique. Front Bioeng Biotechnol 2017; 5:81. [PMID: 29326929 PMCID: PMC5742482 DOI: 10.3389/fbioe.2017.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022] Open
Abstract
Xylose-assimilating yeasts with tolerance to both fermentation inhibitors (such as weak organic acids) and high temperature are required for cost-effective simultaneous saccharification and cofermentation (SSCF) of lignocellulosic materials. Here, we demonstrate the construction of a novel xylose-utilizing Saccharomyces cerevisiae strain with improved fermentation ability under heat and acid co-stress using the drug resistance marker-aided genome shuffling technique. The mutagenized genome pools derived from xylose-utilizing diploid yeasts with thermotolerance or acid tolerance were shuffled by sporulation and mating. The shuffled strains were then subjected to screening under co-stress conditions of heat and acids, and the hybrid strain Hyb-8 was isolated. The hybrid strain displayed enhanced xylose fermentation ability in comparison to both parental strains under co-stress conditions of heat and acids. Hyb-8 consumed 33.1 ± 0.6 g/L xylose and produced 11.1 ± 0.4 g/L ethanol after 72 h of fermentation at 38°C with 20 mM acetic acid and 15 mM formic acid. We also performed transcriptomic analysis of the hybrid strain and its parental strains to screen for key genes for multiple stress tolerances. We found that 13 genes, including 5 associated with cellular transition metal ion homeostasis, were significantly upregulated in Hyb-8 compared to levels in both parental strains under co-stress conditions. The hybrid strain Hyb-8 has strong potential for cost-effective SSCF of lignocellulosic materials. Moreover, the transcriptome data gathered in this study will be useful for understanding the mechanisms of multiple tolerance to high temperature and acids in yeast and facilitate the development of robust yeast strains for SSCF.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ryo Iwamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Takahiro Bamba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Biomass Engineering Program, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
24
|
da Rocha Curvelo JA, Reis de Sá LF, Moraes DC, Soares RM, Ferreira-Pereira A. Histatin-5 induces the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisae. J Mycol Med 2017; 28:137-142. [PMID: 29217144 DOI: 10.1016/j.mycmed.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/23/2017] [Accepted: 11/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Candidiasis is a major opportunistic fungal infection in humans. The low number of antifungal drugs available to treat Candida infections and the increasing incidence of multidrug resistant (MDR) strains point to an urgent need of identifying new therapeutic options. The role of salivary components can provide insights for the development of new methodologies of control. OBJECTIVE The aim of this study was to evaluate the ability of histatin-5, a constitutive immunological peptide present in saliva, in reversing fungal MDR phenotype, using a resistant Saccharomyces cerevisiae strain as model of study. RESULTS A total of 2.5μg and 5μg of histatin-5 revealed to be able to chemosensitize (to revert antifungal resistance) a MDR strain to fluconazole impairing its intrinsic resistance. The presence of histatin-5 decreased the strain growth when associated to fluconazole, and also assisted in the retention of rhodamine 6G within cell cytoplasm. The ATPase activity of Pdr5p, an ABC efflux transporter, was significantly reduced up to 65% within physiological concentration of the peptide. CONCLUSION Results revealed that histatin-5 is able to revert MDR phenotype and may be considered a potential alternative MDR inhibitor. Since Pdr5p is homologous to Candida albicans CaCdr1p and CaCdr2p, data obtained might be extrapolated to these transporters, inferring that associating fluconazole and histatin-5 may be a useful tool to circumvent failure treatments of infections caused by Candida MDR strains.
Collapse
Affiliation(s)
- J A da Rocha Curvelo
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I-44, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - L F Reis de Sá
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I-44, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - D C Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I-44, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - R M Soares
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I-44, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - A Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco I-44, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:96. [PMID: 28428821 PMCID: PMC5395885 DOI: 10.1186/s13068-017-0781-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries. RESULTS This study was performed to identify, at a genome-wide scale, genes whose expression confers protection or susceptibility to formic acid, based on the screening of a haploid deletion mutant collection to search for these phenotypes in the presence of 60, 70 and 80 mM of this acid, at pH 4.5. This chemogenomic analysis allowed the identification of 172 determinants of tolerance and 41 determinants of susceptibility to formic acid. Clustering of genes required for maximal tolerance to this weak acid, based on their biological function, indicates an enrichment of those involved in intracellular trafficking and protein synthesis, cell wall and cytoskeleton organization, carbohydrate metabolism, lipid, amino acid and vitamin metabolism, response to stress, chromatin remodelling, transcription and internal pH homeostasis. Among these genes is HAA1 encoding the main transcriptional regulator of yeast transcriptome reprograming in response to acetic acid and genes of the Haa1-regulon; all demonstrated determinants of acetic acid tolerance. Among the genes that when deleted lead to increased tolerance to formic acid, TRK1, encoding the high-affinity potassium transporter and a determinant of resistance to acetic acid, was surprisingly found. Consistently, genes encoding positive regulators of Trk1 activity were also identified as formic acid susceptibility determinants, while a negative regulator confers protection. At a saturating K+ concentration of 20 mM, the deletion mutant trk1Δ was found to exhibit a much higher tolerance compared with the parental strain. Given that trk1Δ accumulates lower levels of radiolabelled formic acid, compared to the parental strain, it is hypothesized that Trk1 facilitates formic acid uptake into the yeast cell. CONCLUSIONS The list of genes resulting from this study shows a few marked differences from the list of genes conferring protection to acetic acid and provides potentially valuable information to guide improvement programmes for the development of more robust strains against formic acid.
Collapse
Affiliation(s)
- Sílvia F. Henriques
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno P. Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
26
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
27
|
van Beilen J, Blohmke CJ, Folkerts H, de Boer R, Zakrzewska A, Kulik W, Vaz FM, Brul S, Ter Beek A. RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress. Front Microbiol 2016; 7:1633. [PMID: 27818647 PMCID: PMC5073135 DOI: 10.3389/fmicb.2016.01633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM) gene were found to be hypersensitive to the lipophilic weak organic acid. RodZ is involved in determining the cell's rod-shape and believed to interact with the bacterial actin-like MreB cytoskeleton. Since rodZ lies upstream in the genome of the essential gene pgsA (phosphatidylglycerol phosphate synthase) we hypothesized that expression of the latter might also be affected in rodZ mutants and hence contribute to the phenotype observed. We show that both genes are co-transcribed and that both the rodZ::mini-Tn10 mutant and a conditional pgsA mutant, under conditions of minimal pgsA expression, were sensitive to sorbic and acetic acid. Both strains displayed a severely altered membrane composition. Compared to the wild-type strain, phosphatidylglycerol and cardiolipin levels were lowered and the average acyl chain length was elongated. Induction of rodZ expression from a plasmid in our transposon mutant led to no recovery of weak acid susceptibility comparable to wild-type levels. However, pgsA overexpression in the same mutant partly restored sorbic acid susceptibility and fully restored acetic acid sensitivity. A construct containing both rodZ and pgsA as on the genome led to some restored growth as well. We propose that RodZ and PgsA play intertwined roles in membrane homeostasis and tolerance to weak organic acid stress.
Collapse
Affiliation(s)
- Johan van Beilen
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Christoph J. Blohmke
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Hendrik Folkerts
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Richard de Boer
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Anna Zakrzewska
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Wim Kulik
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Fred M. Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Alexander Ter Beek
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
28
|
Guo ZP, Olsson L. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density. FEMS Yeast Res 2016; 16:fow072. [PMID: 27620460 PMCID: PMC5094285 DOI: 10.1093/femsyr/fow072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state.
Collapse
Affiliation(s)
- Zhong-Peng Guo
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
29
|
Nislow C, Wong LH, Lee AHY, Giaever G. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.prot088039. [PMID: 27587776 DOI: 10.1101/pdb.prot088039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure.
Collapse
Affiliation(s)
- Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lai Hong Wong
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amy Huei-Yi Lee
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
30
|
Guo W, Chen Y, Wei N, Feng X. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. PLoS One 2016; 11:e0161448. [PMID: 27532329 PMCID: PMC4988770 DOI: 10.1371/journal.pone.0161448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The fermentation inhibitors from the pretreatment of lignocellulosic materials, e.g., acetic acid and furfural, are notorious due to their negative effects on the cell growth and chemical production. However, the metabolic reprogramming of the cells under these stress conditions, especially metabolic response for resistance to mixed inhibitors, has not been systematically investigated and remains mysterious. Therefore, in this study, 13C metabolic flux analysis (13C-MFA), a powerful tool to elucidate the intracellular carbon flux distributions, has been applied to two Saccharomyces cerevisiae strains with different tolerances to the inhibitors under acetic acid, furfural, and mixed (i.e., acetic acid and furfural) stress conditions to unravel the key metabolic responses. By analyzing the intracellular carbon fluxes as well as the energy and cofactor utilization under different conditions, we uncovered varied metabolic responses to different inhibitors. Under acetate stress, ATP and NADH production was slightly impaired, while NADPH tended towards overproduction. Under furfural stress, ATP and cofactors (including both NADH and NADPH) tended to be overproduced. However, under dual-stress condition, production of ATP and cofactors was severely impaired due to synergistic stress caused by the simultaneous addition of two fermentation inhibitors. Such phenomenon indicated the pivotal role of the energy and cofactor utilization in resisting the mixed inhibitors of acetic acid and furfural. Based on the discoveries, valuable insights are provided to improve the tolerance of S. cerevisiae strain and further enhance lignocellulosic fermentation.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Yingying Chen
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
- * E-mail: (NW); (XF)
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
- * E-mail: (NW); (XF)
| |
Collapse
|
31
|
Sequencing-based screening of functional microorganism to decrease the formation of biogenic amines in Chinese rice wine. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:200. [PMID: 27679668 PMCID: PMC5029107 DOI: 10.1186/s13068-016-0614-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Lignocellulosic biomass continues to be investigated as a viable source for bioethanol production. However, the pretreatment process generates inhibitory compounds that impair the growth and fermentation performance of microorganisms such as Saccharomyces cerevisiae. Pinewood specifically has been shown to be challenging in obtaining industrially relevant ethanol titers. An industrial S. cerevisiae strain was subjected to directed evolution and adaptation in pretreated pine biomass and resultant strains, GHP1 and GHP4, exhibited improved growth and fermentative ability on pretreated pine in the presence of related inhibitory compounds. A comparative transcriptomic approach was applied to identify and characterize differences in phenotypic stability of evolved strains. RESULTS Evolved strains displayed different fermentative capabilities with pretreated pine that appear to be influenced by the addition or absence of 13 inhibitory compounds during pre-culturing. GHP4 performance was consistent independent of culturing conditions, while GHP1 performance was dependent on culturing with inhibitors. Comparative transcriptomics revealed 52 genes potentially associated with stress responses to multiple inhibitors simultaneously. Fluorescence microscopy revealed improved cellular integrity of both strains with mitochondria exhibiting resistance to the damaging effects of inhibitors in contrast to the parent. CONCLUSIONS Multiple potentially novel genetic targets have been discovered for understanding stress tolerance through the characterization of our evolved strains. This study specifically examines the synergistic effects of multiple inhibitors and identified targets will guide future studies in remediating effects of inhibitors and further development of robust yeast strains for multiple industrial applications.
Collapse
Affiliation(s)
| | - Gary M. Hawkins
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Steven W. Gorsich
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| | | |
Collapse
|
33
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
34
|
Oshoma CE, Greetham D, Louis EJ, Smart KA, Phister TG, Powell C, Du C. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation. PLoS One 2015; 10:e0135626. [PMID: 26284784 PMCID: PMC4540574 DOI: 10.1371/journal.pone.0135626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.
Collapse
Affiliation(s)
- Cyprian E. Oshoma
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Darren Greetham
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Edward J. Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, Leicester, United Kingdom
| | | | - Trevor G. Phister
- PepsiCo Int. Beaumont Park, Leycroft Road, Leicester, United Kingdom
| | - Chris Powell
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
| | - Chenyu Du
- Bioenergy and Brewing Science Building, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, United Kingdom
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| |
Collapse
|
35
|
Determinants of tolerance to inhibitors in hardwood spent sulfite liquor in genome shuffled Pachysolen tannophilus strains. Antonie van Leeuwenhoek 2015; 108:811-34. [PMID: 26231071 DOI: 10.1007/s10482-015-0537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Genome shuffling was used to obtain Pachysolen tannophilus mutants with improved tolerance to inhibitors in hardwood spent sulfite liquor (HW SSL). Genome shuffled strains (GHW301, GHW302 and GHW303) grew at higher concentrations of HW SSL (80 % v/v) compared to the HW SSL UV mutant (70 % v/v) and the wild-type (WT) strain (50 % v/v). In defined media containing acetic acid (0.70-0.90 % w/v), GHW301, GHW302 and GHW303 exhibited a shorter lag compared to the acetic acid UV mutant, while the WT did not grow. Genome shuffled strains produced more ethanol than the WT at higher concentrations of HW SSL and an aspen hydrolysate. To identify the genetic basis of inhibitor tolerance, whole genome sequencing was carried out on GHW301, GHW302 and GHW303 and compared to the WT strain. Sixty single nucleotide variations were identified that were common to all three genome shuffled strains. Of these, 40 were in gene sequences and 20 were within 5 bp-1 kb either up or downstream of protein encoding genes. Based on the mutated gene products, mutations were grouped into functional categories and affected a variety of cellular functions, demonstrating the complexity of inhibitor tolerance in yeast. Sequence analysis of UV mutants (UAA302 and UHW303) from which GHW301, GHW302 and GHW303 were derived, confirmed the success of our cross-mating based genome shuffling strategy. Whole-genome sequencing analysis allowed identification of potential gene targets for tolerance to inhibitors in lignocellulosic hydrolysates.
Collapse
|
36
|
PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 2015; 99:8667-80. [PMID: 26051671 DOI: 10.1007/s00253-015-6708-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/22/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022]
Abstract
In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.
Collapse
|
37
|
Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 2015; 15:fov008. [DOI: 10.1093/femsyr/fov008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/14/2022] Open
|
38
|
Pinel D, Colatriano D, Jiang H, Lee H, Martin VJJ. Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:53. [PMID: 25866561 PMCID: PMC4393574 DOI: 10.1186/s13068-015-0241-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Identifying the genetic basis of complex microbial phenotypes is currently a major barrier to our understanding of multigenic traits and our ability to rationally design biocatalysts with highly specific attributes for the biotechnology industry. Here, we demonstrate that strain evolution by meiotic recombination-based genome shuffling coupled with deep sequencing can be used to deconstruct complex phenotypes and explore the nature of multigenic traits, while providing concrete targets for strain development. RESULTS We determined genomic variations found within Saccharomyces cerevisiae previously evolved in our laboratory by genome shuffling for tolerance to spent sulphite liquor. The representation of these variations was backtracked through parental mutant pools and cross-referenced with RNA-seq gene expression analysis to elucidate the importance of single mutations and key biological processes that play a role in our trait of interest. Our findings pinpoint novel genes and biological determinants of lignocellulosic hydrolysate inhibitor tolerance in yeast. These include the following: protein homeostasis constituents, including Ubp7p and Art5p, related to ubiquitin-mediated proteolysis; stress response transcriptional repressor, Nrg1p; and NADPH-dependent glutamate dehydrogenase, Gdh1p. Reverse engineering a prominent mutation in ubiquitin-specific protease gene UBP7 in a laboratory S. cerevisiae strain effectively increased spent sulphite liquor tolerance. CONCLUSIONS This study advances understanding of yeast tolerance mechanisms to inhibitory substrates and biocatalyst design for a biomass-to-biofuel/biochemical industry, while providing insights into the process of mutation accumulation that occurs during genome shuffling.
Collapse
Affiliation(s)
- Dominic Pinel
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
- />Current address: Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA 94704 USA
| | - David Colatriano
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
| | - Heng Jiang
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
- />Current address: Crabtree Nutrition Laboratories, McGill University Health Center, Montreal, Quebec H3A 1A1 Canada
| | - Hung Lee
- />School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2 W1 Canada
| | - Vincent JJ Martin
- />Department of Biology, Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6 Canada
| |
Collapse
|
39
|
Guo Z, Olsson L. Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 2014; 14:1234-48. [PMID: 25331461 DOI: 10.1111/1567-1364.12221] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 01/15/2023] Open
Abstract
Weak acids are present in lignocellulosic hydrolysate as potential inhibitors that can hamper the use of this renewable resource for fuel and chemical production. To study the effects of weak acids on yeast growth, physiological investigations were carried out in batch cultures using glucose as carbon source in the presence of acetic, formic, levulinic, and vanillic acid at three different concentrations at pH 5.0. The results showed that acids at moderate concentrations can stimulate the glycolytic flux, while higher levels of acid slow down the glycolytic flux for both aerobically and anaerobically grown yeast cells. In particular, the flux distribution between respiratory and fermentative growth was adjusted to achieve an optimal ATP generation to allow a maintained energy level as high as it is in nonstressed cells grown exponentially on glucose under aerobic conditions. In addition, yeast cells exposed to acids suffered from severe reactive oxygen species stress and depletion of reduced glutathione commensurate with exhaustion of the total glutathione pool. Furthermore, a higher cellular trehalose content was observed as compared to control cultivations, and this trehalose probably acts to enhance a number of stress tolerances of the yeast.
Collapse
Affiliation(s)
- Zhongpeng Guo
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | | |
Collapse
|
40
|
Abstract
The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.
Collapse
|
41
|
Doğan A, Demirci S, Aytekin AÖ, Şahin F. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 2014; 174:28-42. [PMID: 24908051 DOI: 10.1007/s12010-014-1006-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey,
| | | | | | | |
Collapse
|
42
|
Nygård Y, Mojzita D, Toivari M, Penttilä M, Wiebe MG, Ruohonen L. The diverse role of Pdr12 in resistance to weak organic acids. Yeast 2014; 31:219-32. [PMID: 24691985 DOI: 10.1002/yea.3011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 11/08/2022] Open
Abstract
Resistance to weak organic acids is important relative to both weak organic acid preservatives and the development of inhibitor tolerant yeast as industrial production organisms. The ABC transporter Pdr12 is important for resistance to sorbic and propionic acid, but its role in tolerance to other weak organic acids with industrial relevance is not well established. In this study, yeast strains with altered expression of PDR12 and/or CMK1, a protein kinase associated with post-transcriptional negative regulation of Pdr12, were exposed to seven weak organic acids: acetic, formic, glycolic, lactic, propionic, sorbic and levulinic acid. These are widely used as preservatives, present in lignocellulosic hydrolysates or attractive as chemical precursors. Overexpression of PDR12 increased tolerance to acids with longer chain length, such as sorbic, propionic and levulinic acid, whereas deletion of PDR12 increased tolerance to the shorter acetic and formic acid. The viability of all strains decreased dramatically in acetic or propionic acid, but the Δpdr12 strains recovered more rapidly than other strains in acetic acid. Furthermore, our results indicated that Cmk1 plays a role in weak organic acid tolerance, beyond its role in regulation of Pdr12, since deletion of both Cmk1 and Pdr12 resulted in different responses to exposure to acids than were explained by deletion of Pdr12 alone.
Collapse
Affiliation(s)
- Yvonne Nygård
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | |
Collapse
|
43
|
Rugthaworn P, Murata Y, Machida M, Apiwatanapiwat W, Hirooka A, Thanapase W, Dangjarean H, Ushiwaka S, Morimitsu K, Kosugi A, Arai T, Vaithanomsat P. Growth Inhibition of Thermotolerant Yeast, Kluyveromyces marxianus, in Hydrolysates from Cassava Pulp. Appl Biochem Biotechnol 2014; 173:1197-208. [DOI: 10.1007/s12010-014-0906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
|
44
|
Viana T, Loureiro-Dias MC, Prista C. Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 2014; 4:16. [PMID: 24949253 PMCID: PMC4052690 DOI: 10.1186/s13568-014-0016-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/05/2023] Open
Abstract
Grape must or freshly pressed grape juice is a complex chemical matrix that impacts the efficiency of yeast fermentation. The composition of natural grape must (NGM) can be variable; thus, to ensure reproducibility, a synthetic grape must (SGM) with defined composition is commonly used. The aim of this work was to create conditions to advance the use of Saccharomyces cerevisiae laboratory strains for wine fermentation studies, considering previous results obtained for enological strains fermenting NGM under simulated winery conditions. We designed a new SGM formulation, ISA-SGM, by introducing specific modifications to a commonly used formulation, putting together previous reports. We added glucose and fructose in equal amounts (125 g/l) and 50 parts per million (ppm) sulfur dioxide (SO2, corresponding to standard enological treatment), and we optimized the concentrations of malic acid (3 g/l), citric acid (0.3 g/l), and tartaric acid (3 g/l). Using ISA-SGM, we obtained similar fermentative profiles for the wine strain ISA1000, the prototrophic strain S288C, and its auxotrophic derivative BY4741. In this case, the concentrations of supplements were optimized to 120 mg/l L-uracil, 80 mg/l L-methionine, 400 mg/l L-leucine, and 100 mg/l L-histidine. All these strains tested in ISA-SGM presented a similar fermentative performance as ISA1000 in NGM. ISA-SGM formulation is a promising new tool to allow the use of the auxotrophic BY strains in the detailed assessment of the alcoholic fermentation process under simulated winery conditions, and it provides a foundation to extract relevant physiological conclusions in future research on enological yeast traits.
Collapse
|
45
|
Svanström Å, Boveri S, Boström E, Melin P. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. BMC Res Notes 2013; 6:464. [PMID: 24229396 PMCID: PMC3835548 DOI: 10.1186/1756-0500-6-464] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/08/2013] [Indexed: 11/29/2022] Open
Abstract
Background Food spoilage caused by molds is a severe problem. In food and feed, e.g. dairy products, sourdough bread and silage, lactic acid bacteria are used as starter cultures. Besides lactic and acetic acid, some strains produce other low molecular weight compounds with antifungal activities. One of these metabolites is phenyllactic acid (PLA), well known for its antifungal effect. The inhibitory effect of PLA has only partially been investigated, and the objective of this study was to elucidate in detail the antifungal properties of PLA. Results We investigated the outgrowth of individual conidia from Aspergillus niger, Cladosporium cladosporioides and Penicillium roqueforti, and observed the morphologies of resulting colonies on solid media using different acid concentrations. We found that PLA inhibits molds similar to weak acid preservatives. Furthermore, it has an additional activity: at sub-inhibitory concentrations, fungal colonies displayed slower radial growth and inhibited sporulation. The L isoform of PLA is a more potent inhibitor than the D form. Increased expression of phiA was observed during PLA treatment. This gene was initially identified as being induced by Streptomyces-produced macrolide antibiotics, and is shown to be a structural protein in developed cells. This suggests that PhiA may act as a general stress protectant in fungi. Conclusion From a food protection perspective, the results of this study support the usage of lactic acid bacteria strains synthesizing PLA as starter cultures in food and feed. Such starter cultures could inhibit spore synthesis, which would be beneficial as many food borne fungi are spread by airborne spores.
Collapse
Affiliation(s)
| | | | | | - Petter Melin
- Uppsala BioCenter, Department of Microbiology, Swedish University of Agricultural Sciences, P,O, Box 7025, Uppsala SE-750 07, Sweden.
| |
Collapse
|
46
|
Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure. PLoS One 2013; 8:e73736. [PMID: 24040048 PMCID: PMC3767620 DOI: 10.1371/journal.pone.0073736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/22/2022] Open
Abstract
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.
Collapse
|
47
|
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl Microbiol Biotechnol 2013; 97:7405-16. [DOI: 10.1007/s00253-013-5071-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
|
48
|
Ullah A, Chandrasekaran G, Brul S, Smits GJ. Yeast adaptation to weak acids prevents futile energy expenditure. Front Microbiol 2013; 4:142. [PMID: 23781215 PMCID: PMC3678083 DOI: 10.3389/fmicb.2013.00142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/20/2013] [Indexed: 11/18/2022] Open
Abstract
Weak organic acids (WOAs) are widely used preservatives to prevent fungal spoilage of foods and beverages. Exposure of baker's yeast Saccharomyces cerevisiae to WOA leads to cellular acidification and anion accumulation. Pre-adaptation of cultures reduced the rate of acidification caused by weak acid exposure, most likely as a result of changes in plasma membrane or cell wall composition. In order to adapt to sublethal concentrations of the acids and grow, yeast cells activate ATP consuming membrane transporters to remove protons and anions. We explored to what extent ATP depletion contributes to growth inhibition in sorbic or acetic acid treated cells. Therefore, we analyzed the effect of the reduction of proton and anion pumping activity on intracellular pH (pHi), growth, and energy status upon exposure to the hydrophilic acetic acid (HA) and the lipophilic sorbic acid (HS). ATP concentrations were dependent on the severity of the stress. Unexpectedly, we observed a stronger reduction of ATP with growth reducing than with growth inhibitory concentrations of both acids. We deduce that the not the ATP reduction caused by proton pumping, but rather the cost of sorbate anion pumping contributes to growth inhibition. A reduction of proton pumping activity may reduce ATP consumption, but the resulting decrease of pHi affects growth more. ATP utilization was differentially regulated during moderate and severe stress conditions. We propose that the energy depletion alone is not the cause of growth inhibition during HA or HS stress. Rather, the cells appear to reduce ATP consumption in high stress conditions, likely to prevent futile cycling and maintain energy reserves for growth resumption in more favorable conditions. The mechanism for such decision making remains to be established.
Collapse
Affiliation(s)
- Azmat Ullah
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, Netherlands Institute for Systems Biology, University of Amsterdam Amsterdam, Netherlands
| | | | | | | |
Collapse
|
49
|
Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 2012; 161:164-71. [PMID: 23334094 DOI: 10.1016/j.ijfoodmicro.2012.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.
Collapse
Affiliation(s)
- Malcolm Stratford
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Hachiro T, Yamamoto T, Nakano K, Tanaka K. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast. J Biol Chem 2012; 288:3594-608. [PMID: 23250744 DOI: 10.1074/jbc.m112.416263] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH(2)-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH(2)-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.
Collapse
Affiliation(s)
- Takeru Hachiro
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, N15 W7, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|