1
|
Ling N, Li W, Xu G, Qi Z, Ji C, Liu X, Cui D, Sun Y. Transcriptomic sequencing reveals the response of Dunaliella salina to copper stress via the increased photosynthesis and carbon mechanism. Mol Omics 2021; 17:769-782. [PMID: 34254634 DOI: 10.1039/d1mo00125f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Copper (Cu) is one of the essential microelements for plants and algae. It can stimulate growth and photosynthesis at low concentration but inhibit them at higher concentration. The knowledge of molecular response mechanisms to copper stress in green algae is still limited. The responses of the green algae Dunaliella salina to Cu stress were studied using the physiochemical indexes and RNA-seq analysis. The physiochemical indexes such as growth rate, the content of chlorophyll and soluble sugar, photosynthesis and peroxidase activity were all changed in D. salina under Cu stress. In addition, a total of 3799 differentially expressed genes (DEGs) were identified between the control and Cu-treated group. Among these, 2350 unigenes were up-regulated whereas 1449 were down-regulated. Here, the DEGs encoding proteins relevant to photosynthesis, carbon assimilation and carbohydrate mechanism were significantly up-regulated in the Cu-treated group. In addition, the unigenes encoding proteins involved in the antioxidant system and heat shock proteins were also up-regulated, and these were consistent with the expression patterns based on TPM (transcripts per million) values. This study shows that the enhanced growth and photosynthesis and carbon mechanism in D. salina can be triggered by copper, which will lay a firm foundation for future breeding and carotenoid production, further highlighting the underlying application of D. salina as a functional food.
Collapse
Affiliation(s)
- Na Ling
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China. and Engineering Research Center for Medicines, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Weilu Li
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Guiguo Xu
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Zheng Qi
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China. and Engineering Research Center for Medicines, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Chenfeng Ji
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China. and Engineering Research Center for Medicines, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Xiaorui Liu
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Di Cui
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| | - Yuan Sun
- Engineering Research Center for Natural Anticancer Drugs, Ministry of Education, Harbin University of Commerce, Harbin, Heilongjiang 150076, China. and Engineering Research Center for Medicines, Harbin University of Commerce, Harbin, Heilongjiang 150076, China.
| |
Collapse
|
3
|
Rokka A, Suorsa M, Saleem A, Battchikova N, Aro EM. Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 2005; 388:159-68. [PMID: 15638811 PMCID: PMC1186704 DOI: 10.1042/bj20042098] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 01/04/2005] [Accepted: 01/07/2005] [Indexed: 11/17/2022]
Abstract
To study the synthesis and assembly of multisubunit thylakoid protein complexes, we performed [35S]Met pulse and chase experiments with isolated chloroplasts and intact leaves of spinach (Spinacia oleracea L.), followed by Blue Native gel separation of the (sub)complexes and subsequent identification of the newly synthesized and assembled protein subunits. PSII (photosystem II) core subunits were the most intensively synthesized proteins, particularly in vitro and at high light intensities in vivo, and could be sequestered in several distinct PSII subassemblies. Newly synthesized D1 was first found in the reaction centre complex that also contained labelled D2 and two labelled low-molecular-mass proteins. The next biggest PSII subassembly contained CP47 also. Then PsbH was assembled together with at least two other labelled chloroplast-encoded low-molecular-mass subunits, PsbM and PsbTc, and a nuclear-encoded PsbR. Subsequently, CP43 was inserted into the PSII complex concomitantly with PsbK. These assembly steps seemed to be essential for the dimerization of PSII core monomers. Intact PSII core monomer was the smallest subcomplex harbouring the newly synthesized 33 kDa oxygen-evolving complex protein PsbO. Nuclear-encoded PsbW was synthesized only at low light intensities concomitantly with Lhcb polypeptides and was distinctively present in PSII-LHCII (where LHC stands for light-harvesting complex) supercomplexes. The PsbH protein, on the contrary, was vigorously synthesized and incorporated into PSII core monomers together with the D1 protein, suggesting an intrinsic role for PsbH in the photoinhibition-repair cycle of PSII.
Collapse
Affiliation(s)
- Anne Rokka
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku FI-20014, Finland
| | - Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku FI-20014, Finland
| | - Ammar Saleem
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku FI-20014, Finland
| | - Natalia Battchikova
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku FI-20014, Finland
| | - Eva-Mari Aro
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
4
|
Abstract
Photosynthetic proteins are a source of biological material well-suited to technological applications. They exhibit light-induced electron transfer across lipid membranes that can be exploited for the construction of photo-optical electrical devices. The structure and function of photosynthetic proteins differ across the photosynthetic evolutionary scale, allowing for their application in a range of technologies. Here we provide a general description of the basic and technical research in this sector and an overview of biochips and biosensors based on photochemical activity that have been developed for the bioassay of pollutants.
Collapse
Affiliation(s)
- Maria Teresa Giardi
- Institute of Crystallography, National Council of Research, Department of Molecular Design and Nanotechnology, Area of Research of Rome, Via Salaria Km 29.300, 00016 Monterotondo scalo Rome, Italy
| | | |
Collapse
|
5
|
Rhee KH. Photosystem II: the solid structural era. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:307-28. [PMID: 11340062 DOI: 10.1146/annurev.biophys.30.1.307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the precise role of photosystem II as an element of oxygenic photosynthesis requires knowledge of the molecular structure of this membrane protein complex. The past few years have been particularly exciting because the structural era of the plant photosystem II has begun. Although the atomic structure has yet to be determined, the map obtained at 6 A resolution by electron crystallography allows assignment of the key reaction center subunits with their associated pigment molecules. In the following, we first review the structural details that have recently emerged and then discuss the primary and secondary photochemical reaction pathways. Finally, in an attempt to establish the evolutionary link between the oxygenic and the anoxygenic photosynthesis, a framework structure common to all photosynthetic reaction centers has been defined, and the implications have been described.
Collapse
Affiliation(s)
- K H Rhee
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
6
|
Lustig A, Engel A, Tsiotis G, Landau EM, Baschong W. Molecular weight determination of membrane proteins by sedimentation equilibrium at the sucrose or nycodenz-adjusted density of the hydrated detergent micelle. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:199-206. [PMID: 10727607 DOI: 10.1016/s0005-2736(99)00254-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The determination of the molecular weight of a membrane protein by sedimentation equilibrium is complicated by the fact that these proteins interact with detergents and form complexes of unknown density. These effects become marginal when running sedimentation equilibrium at gravitational transparency, i.e., at the density corresponding to that of the hydrated detergent micelles. Dodecyl-maltoside and octyl-glucoside are commonly used for dissolving membrane proteins. The density of micelles thereof was measured in sucrose or Nycodenz. Both proved to be about 50% lower than those of the corresponding non-hydrated micelles. Several membrane proteins were centrifuged at sedimentation equilibrium in sucrose- and in Nycodenz-enriched solutions of various densities. Their molecular weights were then calculated by using the resulting slope value at the density of the hydrated detergent micelles, i.e. at gravitational transparency, and the partial specific volume corrected for a 50% hydration of the membrane protein. The molecular weights of all measured membrane proteins, i.e. of photosystem II complex, reaction center of Rhodobacter sphaeroides R26, spinach photosystem II reaction center (core complex), bacteriorhodopsin, OmpF-porin and rhodopsin from Bovine retina corresponded within +/-15% to those reported previously, indicating a general applicability of this approach.
Collapse
Affiliation(s)
- A Lustig
- Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrassse 70, CH-4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|