1
|
Jiménez-Leiva A, Juárez-Martos RA, Cabrera JJ, Torres MJ, Mesa S, Delgado MJ. Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Antioxid Redox Signal 2025; 42:408-420. [PMID: 39868566 DOI: 10.1089/ars.2024.0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Aims: To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont Bradyrhizobium diazoefficiens. Results: We have performed an integrated study of norCBQD expression and NO reductase activity in regR, regS1, regS2, regS1/2, and nifA mutants in response to microoxia (2% O2) or anoxia. An activating role of RegR and NifA was observed under anoxia. In contrast, under microaerobic conditions, RegR acts as a repressor by binding to a RegR box located between the -10 and -35 regions within the norCBQD promoter. In addition, both RegS1 and RegS2 sensors cooperated with RegR in repressing norCBQD genes. Innovation: NO is a reactive gas that, at high levels, acts as a potent inhibitor of symbiotic nitrogen fixation. In this paper, we report new insights into the regulation of NO reductase, the major enzyme involved in NO removal in rhizobia. This knowledge will be crucial for the development of new strategies and management practices in agriculture, in particular, for improving legume production. Conclusion: Our results demonstrate, for the first time, a dual control of the RegSR two-component regulatory system on norCBQD genes control in response to oxygen levels. Antioxid. Redox Signal. 42, 408-420.
Collapse
Affiliation(s)
- Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Raquel A Juárez-Martos
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Juan J Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María J Torres
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - María J Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
2
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Reyes Ruiz LM, Fiebig A, Crosson S. Regulation of bacterial surface attachment by a network of sensory transduction proteins. PLoS Genet 2019; 15:e1008022. [PMID: 31075103 PMCID: PMC6530869 DOI: 10.1371/journal.pgen.1008022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
Bacteria are often attached to surfaces in natural ecosystems. A surface-associated lifestyle can have advantages, but shifts in the physiochemical state of the environment may result in conditions in which attachment has a negative fitness impact. Therefore, bacteria employ numerous mechanisms to control the transition from an unattached to a sessile state. The Caulobacter crescentus protein HfiA is a potent developmental inhibitor of the secreted polysaccharide adhesin known as the holdfast, which enables permanent attachment to surfaces. Multiple environmental cues influence expression of hfiA, but mechanisms of hfiA regulation remain largely undefined. Through a forward genetic selection, we have discovered a multi-gene network encoding a suite of two-component system (TCS) proteins and transcription factors that coordinately control hfiA transcription, holdfast development and surface adhesion. The hybrid HWE-family histidine kinase, SkaH, is central among these regulators and forms heteromeric complexes with the kinases, LovK and SpdS. The response regulator SpdR indirectly inhibits hfiA expression by activating two XRE-family transcription factors that directly bind the hfiA promoter to repress its transcription. This study provides evidence for a model in which a consortium of environmental sensors and transcriptional regulators integrate environmental cues at the hfiA promoter to control the attachment decision. Living on a surface within a community of cells confers a number of advantages to a bacterium. However, the transition from a free-living, planktonic state to a surface-attached lifestyle should be tightly regulated to ensure that cells avoid adhering to toxic or resource-limited niches. Many bacteria build adhesive structures on the surface of their cell envelopes that enable attachment. We sought to discover genes that control development of the Caulobacter crescentus surface adhesin known as the holdfast. Our studies uncovered a network of signal transduction proteins that coordinately control the biosynthesis of the holdfast by regulating transcription of the holdfast inhibitor, hfiA. We conclude that C. crescentus uses a multi-component regulatory system to sense and integrate environmental information to determine whether to attach to a surface, or to remain in an unattached state.
Collapse
Affiliation(s)
- Leila M Reyes Ruiz
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America
| | - Sean Crosson
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America.,Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Torres MJ, Argandoña M, Vargas C, Bedmar EJ, Fischer HM, Mesa S, Delgado MJ. The global response regulator RegR controls expression of denitrification genes in Bradyrhizobium japonicum. PLoS One 2014; 9:e99011. [PMID: 24949739 PMCID: PMC4064962 DOI: 10.1371/journal.pone.0099011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/24/2014] [Indexed: 12/03/2022] Open
Abstract
Bradyrhizobium japonicum RegSR regulatory proteins belong to the family of two-component regulatory systems, and orthologs are present in many Proteobacteria where they globally control gene expression mostly in a redox-responsive manner. In this work, we have performed a transcriptional profiling of wild-type and regR mutant cells grown under anoxic denitrifying conditions. The comparative analyses of wild-type and regR strains revealed that almost 620 genes induced in the wild type under denitrifying conditions were regulated (directly or indirectly) by RegR, pointing out the important role of this protein as a global regulator of denitrification. Genes controlled by RegR included nor and nos structural genes encoding nitric oxide and nitrous oxide reductase, respectively, genes encoding electron transport proteins such as cycA (blr7544) or cy2 (bll2388), and genes involved in nitric oxide detoxification (blr2806-09) and copper homeostasis (copCAB), as well as two regulatory genes (bll3466, bll4130). Purified RegR interacted with the promoters of norC (blr3214), nosR (blr0314), a fixK-like gene (bll3466), and bll4130, which encodes a LysR-type regulator. By using fluorescently labeled oligonucleotide extension (FLOE), we were able to identify two transcriptional start sites located at about 35 (P1) and 22 (P2) bp upstream of the putative translational start codon of norC. P1 matched with the previously mapped 5′end of norC mRNA which we demonstrate in this work to be under FixK2 control. P2 is a start site modulated by RegR and specific for anoxic conditions. Moreover, qRT-PCR experiments, expression studies with a norC-lacZ fusion, and heme c-staining analyses revealed that anoxia and nitrate are required for RegR-dependent induction of nor genes, and that this control is independent of the sensor protein RegS.
Collapse
Affiliation(s)
- Maria J. Torres
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Montserrat Argandoña
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Vargas
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, Sevilla, Spain
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | - Socorro Mesa
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María J. Delgado
- Estación Experimental del Zaidin, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
5
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Bauer CE, Setterdahl A, Wu J, Robinson BR. Regulation of Gene Expression in Response to Oxygen Tension. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Dangel AW, Tabita FR. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol 2008; 71:717-29. [PMID: 19077171 DOI: 10.1111/j.1365-2958.2008.06558.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the cbb(I) and cbb(II) (Calvin-Benson-Bassham CO(2) fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbb(I) promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross-linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbb(I) promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbb(I) promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbb(I) promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbb(I) operon genes of R. sphaeroides.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
9
|
RegB/RegA, A Global Redox-Responding Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:131-48. [DOI: 10.1007/978-0-387-78885-2_9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC. Biochim Biophys Acta Gen Subj 2008; 1780:1023-31. [PMID: 18534200 DOI: 10.1016/j.bbagen.2008.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/05/2008] [Accepted: 05/05/2008] [Indexed: 11/22/2022]
Abstract
The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.
Collapse
|
11
|
Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. J Bacteriol 2008; 190:4301-12. [PMID: 18359816 DOI: 10.1128/jb.01308-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DevR-DevS two-component system of Mycobacterium tuberculosis mediates bacterial adaptation to hypoxia, a condition believed to be associated with the initiation and maintenance of dormant bacilli during latent tuberculosis. The activity of the Rv3134c-devRS operon was studied in M. tuberculosis using several transcriptional fusions comprised of promoter regions and the gfp reporter gene under inducing and aerobic conditions. Aerobic transcription was DevR independent, while hypoxic induction was completely DevR dependent. The hypoxia transcriptional start point, T(H), was mapped at -40 bp upstream of Rv3134c. In contrast, the divergently transcribed Rv3135 gene was not induced under hypoxic conditions. DNase I footprinting and mutational analyses demonstrated that induction required the interaction of DevR-P with binding sites centered at bp -42.5 and -63.5 relative to T(H). Binding to the distal site (D) was necessary to recruit another molecule of DevR-P to the proximal site (P), and interaction with both sequences was essential for promoter activation. These sites did not bind to either unphosphorylated or phosphorylation-defective DevR protein, which was consistent with an essential role for DevR-P in activation. Phosphorylated DevR also bound to three copies of the motif at the hspX promoter. The Rv3134c and hspX promoters have a similar architecture, wherein the proximal DevR-P binding site overlaps with the promoter -35 element. A model for the likely mode of action of DevR at these promoters is discussed.
Collapse
|
12
|
New target genes controlled by the Bradyrhizobium japonicum two-component regulatory system RegSR. J Bacteriol 2007; 189:8928-43. [PMID: 17951393 DOI: 10.1128/jb.01088-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RegSR-like proteins, members of the family of two-component regulatory systems, are present in a large number of proteobacteria in which they globally control gene expression mostly in a redox-responsive manner. The controlled target genes feature an enormous functional diversity. In Bradyrhizobium japonicum, the facultative root nodule symbiont of soybean, RegSR activate the transcription of the nitrogen fixation regulatory gene nifA, thus forming a RegSR-NifA cascade which is part of a complex regulatory network for gene regulation in response to changing oxygen concentrations. Whole-genome transcription profiling was performed here in order to assess the full regulatory scope of RegSR. The comparative analysis of wild-type and delta regR cells grown under oxic and microoxic conditions revealed that expression of almost 250 genes is dependent on RegR, a result that underscores the important contribution of RegR to oxygen- or redox-regulated gene expression in B. japonicum. Furthermore, transcription profiling of delta regR bacteroids compared with wild-type bacteroids revealed expression changes for about 1,200 genes in young and mature bacteroids. Incidentally, many of these were found to be induced in symbiosis when wild-type bacteroids were compared with free-living, culture-grown wild-type cells, and they appeared to encode diverse functions possibly related to symbiosis and nitrogen fixation. We demonstrated direct RegR-mediated control at promoter regions of several selected target genes by means of DNA binding experiments and in vitro transcription assays, which revealed six novel direct RegR target promoters.
Collapse
|
13
|
Bogel G, Schrempf H, Ortiz de Orué Lucana D. DNA-binding characteristics of the regulator SenR in response to phosphorylation by the sensor histidine autokinase SenS from Streptomyces reticuli. FEBS J 2007; 274:3900-13. [PMID: 17617222 DOI: 10.1111/j.1742-4658.2007.05923.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The two-component system SenS-SenR from Streptomyces reticuli has been shown to influence the production of the redox regulator FurS, the mycelium-associated enzyme CpeB, which displays heme-dependent catalase and peroxidase activity as well as heme-independent manganese peroxidase activity, and the extracellular heme-binding protein HbpS. In addition, it was suggested to participate in the sensing of redox changes. In this work, the tagged cytoplasmic domain of SenS (SenS(c)), as well as the full-length differently tagged SenR, and corresponding mutant proteins carrying specific amino acid exchanges were purified after heterologous expression in Escherichia coli. In vitro, SenS(c) is autophosphorylated to SenS(c) approximately P at the histidine residue at position 199, transfers the phosphate group to the aspartic acid residue at position 65 in SenR, and acts as a phosphatase for SenR approximately P. Bandshift and footprinting assays in combination with competition and mutational analyses revealed that only unphosphorylated SenR binds to specific sites upstream of the furS-cpeB operon. Further specific sites within the regulatory region, common to the oppositely orientated senS and hbpS genes, were recognized by SenR. Upon its phosphorylation, the DNA-binding affinity of this area was enhanced. These data, together with previous in vivo studies using mutants lacking functional senS and senR, indicate that the two-component SenS-SenR system governs the transcription of the furS-cpeB operon, senS-senR and the hbpS gene. Comparative analyses reveal that only the genomes of a few actinobacteria encode two-component systems that are closely related to SenS-SenR.
Collapse
Affiliation(s)
- Gabriele Bogel
- FB Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | | | |
Collapse
|
14
|
Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 2006; 103:10420-10425. [PMID: 16803956 PMCID: PMC1482837 DOI: 10.1073/pnas.0604343103] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing is a cell-to-cell signaling mechanism in which bacteria respond to hormone-like molecules called autoinducers (AIs). The AI-3 quorum-sensing system is also involved in interkingdom signaling with the eukaryotic hormones epinephrine/norepinephrine. This signaling activates transcription of virulence genes in enterohemorrhagic Escherichia coli O157:H7. However, this signaling system has never been shown to be involved in virulence in vivo, and the bacterial receptor for these signals had not been identified. Here, we show that the QseC sensor kinase is a bacterial receptor for the host epinephrine/norepinephrine and the AI-3 produced by the gastrointestinal microbial flora. We also found that an alpha-adrenergic antagonist can specifically block the QseC response to these signals. Furthermore, we demonstrated that a qseC mutant is attenuated for virulence in a rabbit animal model, underscoring the importance of this signaling system in virulence in vivo. Finally, an in silico search found that the periplasmic sensing domain of QseC is conserved among several bacterial species. Thus, QseC is a bacterial adrenergic receptor that activates virulence genes in response to interkingdom cross-signaling. We anticipate that these studies will be a starting point in understanding bacterial-host hormone signaling at the biochemical level. Given the role that this system plays in bacterial virulence, further characterization of this unique signaling mechanism may be important for developing novel classes of antimicrobials.
Collapse
Affiliation(s)
- Marcie B Clarke
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| | - David T Hughes
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| | - Chengru Zhu
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Edgar C Boedeker
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Vanessa Sperandio
- *Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048; and
| |
Collapse
|
15
|
Potter CA, Jeong EL, Williamson MP, Henderson PJF, Phillips-Jones MK. Redox-responsive in vitro modulation of the signalling state of the isolated PrrB sensor kinase of Rhodobacter sphaeroides NCIB 8253. FEBS Lett 2006; 580:3206-10. [PMID: 16684526 DOI: 10.1016/j.febslet.2006.04.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 11/26/2022]
Abstract
Prr is a global regulatory system that controls a large and diverse range of genes in Rhodobacter sphaeroides in response to changing conditions of environmental redox potential. PrrB is the membrane-bound sensor kinase and previously we showed that the purified, detergent-solubilised intact membrane protein is functional in autophosphorylation, phosphotransfer and phosphatase activities. Here we confirm that it also senses and responds directly to its environmental signal, redox potential; strong autophosphorylation of PrrB occurred in response to dithiothreitol (DTT)-induced reducing conditions (and levels increased in response to a wide 0.1-100 mM DTT range), whilst under oxidising conditions, PrrB exhibited low, just detectable levels of autophosphorylation. The clear response of PrrB to changes in reducing conditions confirmed its suitability for in vitro studies to identify modulators of its phosphorylation signalling state, and was used here to investigate whether PrrB might sense more than one redox-related signal, such as signals of cell energy status. NADH, ATP and AMP were found to exert no detectable effect on maintenance of the PrrB-P signalling state. By contrast, adenosine diphosphate produced a very strong increase in PrrB-P dephosphorylation rate, presumably through the back-conversion of PrrB-P to PrrB.
Collapse
Affiliation(s)
- Christopher A Potter
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
16
|
Ellington MJK, Fosdike WLJ, Sawers RG, Richardson DJ, Ferguson SJ. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Arch Microbiol 2005; 184:298-304. [PMID: 16333617 DOI: 10.1007/s00203-005-0044-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 07/19/2005] [Accepted: 09/08/2005] [Indexed: 11/27/2022]
Abstract
Expression of the nap operon, encoding the periplasmic nitrate reductase in Paracoccus pantotrophus, is maximal when cells are grown aerobically, but not anaerobically, with butyrate. Two promoters, termed P1 and P2, control operon expression and the operon-proximal P2 promoter is primarily responsible for increased nap expression in the presence of butyrate. A near-perfect palindromic sequence is centred at +7, relative to the P2 transcription start site. Mutation of this palindrome demonstrated that it is important for regulation of nap operon expression in response to both the redox and the oxidation state of the carbon substrate. A 5' deletion analysis of the nap promoter fused to lacZ revealed that full redox control of expression was retained when the DNA sequence up to position -49 bp, relative to the operon-distal P1 transcription start site, was removed. Encroaching beyond this position resulted in an approximately 4-fold reduction in expression when cells were grown aerobically with butyrate. Additionally, point mutations at position -38 and -45 relative to P1 also resulted in a reduction in expression during aerobic growth with butyrate. A GC-rich region of nap promoter DNA, centred on position -41 relative to the P1 transcription start site is thus proposed as a second DNA motif that is important for efficient expression of the nap operon.
Collapse
Affiliation(s)
- M J K Ellington
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
17
|
Hauser F, Lindemann A, Vuilleumier S, Patrignani A, Schlapbach R, Fischer HM, Hennecke H. Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region. Mol Genet Genomics 2005; 275:55-67. [PMID: 16328374 DOI: 10.1007/s00438-005-0059-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 10/08/2005] [Indexed: 10/25/2022]
Abstract
The design and use of a pilot microarray for transcriptome analysis of the symbiotic, nitrogen-fixing Bradyrhizobium japonicum is reported here. The custom-synthesized chip (Affymetrix GeneChip) features 738 genes, more than half of which belong to a 400-kb chromosomal segment strongly associated with symbiosis-related functions. RNA was isolated following an optimized protocol from wild-type cells grown aerobically and microaerobically, and from cells of aerobically grown regR mutant and microaerobically grown nifA mutant. Comparative microarray analyses thus revealed genes that are transcribed in either a RegR- or a NifA-dependent manner plus genes whose expression depends on the cellular oxygen status. Several genes were newly identified as members of the RegR and NifA regulons, beyond genes, which had been known from previous work. A comprehensive transcription analysis was performed with one of the new RegR-controlled genes (id880). Expression levels determined by microarray analysis of selected NifA- and RegR-controlled genes corresponded well with quantitative real-time PCR data, demonstrating the high complementarity of microarray analysis to classical methods of gene expression analysis in B. japonicum. Nevertheless, several previously established members of the NifA regulon were not detected as transcribed genes by microarray analysis, confirming the potential pitfalls of this approach also observed by other authors. By and large, this pilot study has paved the way towards the genome-wide transcriptome analysis of the 9.1-Mb B. japonicum genome.
Collapse
Affiliation(s)
- F Hauser
- Institute of Microbiology, Eidgenössische Technische Hochschule, ETH-Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Lioliou EE, Mimitou EP, Grigoroudis AI, Panagiotidis CH, Panagiotidis CA, Kyriakidis DA. Phosphorylation activity of the response regulator of the two-component signal transduction system AtoS–AtoC in E. coli. Biochim Biophys Acta Gen Subj 2005; 1725:257-68. [PMID: 16153782 DOI: 10.1016/j.bbagen.2005.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.
Collapse
Affiliation(s)
- Efthimia E Lioliou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
20
|
Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004; 68:263-79. [PMID: 15187184 PMCID: PMC419920 DOI: 10.1128/mmbr.68.2.263-279.2004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Grenoble, France
| | | | | | | |
Collapse
|
21
|
Janausch IG, Garcia-Moreno I, Lehnen D, Zeuner Y, Unden G. Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. MICROBIOLOGY-SGM 2004; 150:877-883. [PMID: 15073297 DOI: 10.1099/mic.0.26900-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The function of the response regulator DcuR of the DcuSR fumarate two-component sensory system of Escherichia coli was analysed in vitro. Isolated DcuR protein was phosphorylated by the sensory histidine kinase, DcuS, and ATP, or by acetyl phosphate. In gel retardation assays with target promoters (frdA, dcuB, dctA), phosphoryl DcuR (DcuR-P) formed a high-affinity complex, with an apparent K(D) (app. K(D)) of 0.2-0.3 microM DcuR-P, and a low-affinity (app. K(D) 0.8-2 microM) complex. The high-affinity complex was formed only with promoters transcriptionally-regulated by DcuSR, whereas low-affinity binding was seen also with some DcuSR-independent promoters. The binding site of DcuR-P at the dcuB promoter was determined by DNase I footprinting. One binding site of 42-52 nt (position -359 to -400/-410 nt upstream of the transcriptional start) was identified in the presence of low and high concentrations of DcuR-P. Non-phosphorylated DcuR, or DcuR-D56N mutated in the phosphoryl-accepting Asp56 residue, showed low-affinity binding to target promoters. DcuR-D56N was still able to interact with DcuS. DcuR-D56N increased the phosphorylation of DcuS and competitively inhibited phosphoryl transfer to wild-type DcuR.
Collapse
Affiliation(s)
- Ingo G Janausch
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Inma Garcia-Moreno
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Daniela Lehnen
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Yvonne Zeuner
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Gottfried Unden
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| |
Collapse
|
22
|
Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR. Sinorhizobium medicaegenes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09622.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Saini DK, Malhotra V, Tyagi JS. Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett 2004; 565:75-80. [PMID: 15135056 DOI: 10.1016/j.febslet.2004.02.092] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 11/19/2022]
Abstract
Rv2027c is a putative orphan histidine sensor kinase that bears strong homology to DevS of the hypoxia-responsive DevR-DevS two-component system in M. tuberculosis. The cytosolic C-terminal domain of Rv2027c protein (Rv2027c(194)) was overexpressed in E. coli and biochemically characterized. Rv2027c(194) underwent autophosphorylation at a conserved His(392) residue and engaged in phosphotransfer with DevR response regulator. The rates of autophosphorylation and the stabilities of the phosphorylated species were broadly similar in Rv2027c and DevS. However, unlike DevS, Rv2027c utilized Ca(2+) as an alternative divalent ion during autophosphorylation. In contrast to DevS which completed phosphotransfer to DevR in 5-10 min, phosphotransfer from Rv2027c approximately P was only partial at 30 min. Unlike devS transcription that was hypoxia-responsive, Rv2027c transcript levels were not upregulated from basal levels during hypoxia. The differential regulation of devS and Rv2027c genes, the ability of Rv2027c to utilize Ca(2+) as a divalent cation in autophosphorylation at physiological concentrations and to engage in phosphotransfer with DevR suggests that the DevR regulon could be modulated by more than one environmental cue relayed through DevS and Rv2027c.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
24
|
Saini DK, Malhotra V, Dey D, Pant N, Das TK, Tyagi JS. DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology (Reading) 2004; 150:865-875. [PMID: 15073296 DOI: 10.1099/mic.0.26218-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS201) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system ofMycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His6-tagged proteins fromEscherichia coli. DevS201underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg2+-dependent manner. Chemical stability analysis and site-directed mutagenesis implicated the highly conserved residues His395and Asp54as the sites of phosphorylation in DevS and DevR, respectively. Mutations in Asp8and Asp9residues, postulated to form the acidic Mg2+-binding pocket, and the invariant Lys104of DevR, abrogated phosphoryl transfer from DevS201to DevR. DevR–DevS was thus established as a typical two-component regulatory system based on His-to-Asp phosphoryl transfer. Expression of theRv3134c–devR–devSoperon was induced at the RNA level in hypoxic cultures ofM. tuberculosisH37Rv and was associated with an increase in the level of DevR protein. However, in adevRmutant strain expressing the N-terminal domain of DevR, induction was observed at the level of RNA expression but not at that of protein. DevS was translated independently of DevR and induction ofdevStranscripts was not associated with an increase in protein level in either wild-type or mutant strains, reflecting differential regulation of this locus during hypoxia.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Malhotra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepanwita Dey
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neha Pant
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Taposh K Das
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
25
|
Janausch IG, Garcia-Moreno I, Unden G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem 2002; 277:39809-14. [PMID: 12167640 DOI: 10.1074/jbc.m204482200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-component regulatory system DcuSR of Escherichia coli controls the expression of genes of C(4)-dicarboxylate metabolism in response to extracellular C(4)- dicarboxylates such as fumarate or succinate. DcuS is a membrane-integral sensor kinase, and the sensory and kinase domains are located on opposite sides of the cytoplasmic membrane. The intact DcuS protein (His(6)-DcuS) was overproduced and isolated in detergent containing buffer. His(6)-DcuS was reconstituted into liposomes made from E. coli phospholipids. Reconstituted His(6)-DcuS catalyzed, in contrast to the detergent-solubilized sensor, autophosphorylation by [gamma-(33)P]ATP with an approximate K(D) of 0.16 mm for ATP. Up to 7% of the reconstituted DcuS was phosphorylated. Phosphorylation was stimulated up to 5.9-fold by C(4)-dicarboxylates, but not by other carboxylates. The phosphoryl group of DcuS was rapidly transferred to the response regulator DcuR. Upon phosphorylation, DcuR bound specifically to dcuB promoter DNA. The reconstituted DcuSR system therefore represents a defined in vitro system, which is capable of the complete transmembrane signal transduction by the DcuSR two-component system from the stimulus (fumarate) to the DNA, including signal transfer across the phospholipid membrane.
Collapse
Affiliation(s)
- Ingo G Janausch
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany
| | | | | |
Collapse
|
26
|
Potter CA, Ward A, Laguri C, Williamson MP, Henderson PJF, Phillips-Jones MK. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. J Mol Biol 2002; 320:201-13. [PMID: 12079379 DOI: 10.1016/s0022-2836(02)00424-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The global redox switch between aerobic and anaerobic growth in Rhodobacter sphaeroides is controlled by the RegA/RegB two-component system, in which RegB is the integral membrane histidine protein kinase, and RegA is the cytosolic response regulator. Despite the global regulatory importance of this system and its many homologues, there have been no reported examples to date of heterologous expression of full-length RegB or any histidine protein kinases. Here, we report the amplified expression of full-length functional His-tagged RegB in Escherichia coli, its purification, and characterisation of its properties. Both the membrane-bound and purified solubilised RegB protein demonstrate autophosphorylation activity, and the purified protein autophosphorylates at the same rate under both aerobic and anaerobic conditions confirming that an additional regulator is required to control/inhibit autophosphorylation. The intact protein has similar activity to previously characterised soluble forms, but is dephosphorylated more rapidly than the soluble form (half-life ca 30 minutes) demonstrating that the transmembrane segment present in the full-length RegB may be an important regulator of RegB activity. Phosphotransfer from RegB to RegA (overexpressed and purified from E. coli) by RegB is very rapid, as has been reported for the soluble domain. Dephosphorylation of active RegA by full-length RegB has a rate similar to that observed previously for soluble RegB.
Collapse
Affiliation(s)
- Christopher A Potter
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
27
|
Comolli JC, Carl AJ, Hall C, Donohue T. Transcriptional activation of the Rhodobacter sphaeroides cytochrome c(2) gene P2 promoter by the response regulator PrrA. J Bacteriol 2002; 184:390-9. [PMID: 11751815 PMCID: PMC139555 DOI: 10.1128/jb.184.2.390-399.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anoxygenic photosynthetic growth of Rhodobacter sphaeroides, a member of the alpha subclass of the class Proteobacteria, requires the response regulator PrrA. PrrA and the sensor kinase PrrB are part of a two-component signaling pathway that influences a wide range of processes under oxygen-limited conditions. In this work we characterized the pathway of transcription activation by PrrB and PrrA by purifying these proteins, analyzing them in vitro, and characterizing a mutant PrrA protein in vivo and in vitro. When purified, a soluble transmitter domain of PrrB (cPrrB) could autophosphorylate, rapidly transfer phosphate to PrrA, and stimulate dephosphorylation of phospho-PrrA. Unphosphorylated PrrA activated transcription from a target cytochrome c(2) gene (cycA) promoter, P2, which contained sequences from -73 to +22 relative to the transcription initiation site. However, phosphorylation of PrrA increased its activity since activation of cycA P2 was enhanced up to 15-fold by treatment with the low-molecular-weight phosphodonor acetyl phosphate. A mutant PrrA protein containing a single amino acid substitution in the presumed phosphoacceptor site (PrrA-D63A) was not phosphorylated in vitro but also was not able to stimulate cycA P2 transcription. PrrA-D63A also had no apparent in vivo activity, demonstrating that aspartate 63 is necessary both for the function of PrrA and for its phosphorylation-dependent activation. The cellular level of wild-type PrrA was negatively autoregulated so that less PrrA was present in the absence of oxygen, conditions in which the activities of many PrrA target genes increase. PrrA-D63A failed to repress expression of the prrA gene under anaerobic conditions, suggesting that this single amino acid change also eliminated PrrA function in vivo.
Collapse
Affiliation(s)
- James C Comolli
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Emmerich R, Strehler P, Hennecke H, Fischer HM. An imperfect inverted repeat is critical for DNA binding of the response regulator RegR of Bradyrhizobium japonicum. Nucleic Acids Res 2000; 28:4166-71. [PMID: 11058113 PMCID: PMC113139 DOI: 10.1093/nar/28.21.4166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RegR is the response regulator of the RegSR two-component regulatory system in Bradyrhizobium japonicum. The only target known so far is the fixR-nifA operon, encoding the redox-responsive transcription factor NifA, which activates many genes required for symbiotic nitrogen fixation in soybean nodules. In previous in vivo studies, we identified a 32 bp upstream activating sequence located around position -68, which is essential for RegR-dependent expression of the fixR-nifA operon. Here, we used an in vitro binding-site selection assay (SELEX) to more precisely define the DNA-binding specificity of RegR. The selected sequences comprised an imperfect inverted repeat (GCGGC-N(5)-GTCGC) which is highly similar to an imperfect inverted repeat in the fixR UAS (GCGAC-N(5)-GACGC). In a parallel approach, band-shift experiments were performed with oligonucleotides comprising defined point or deletion mutations in the fixR UAS. This led to the identification of 11 critical nucleotides within a 17 bp minimal RegR binding site centered at position -64 upstream of the fixR-nifA transcription start site. Notably, all 11 critical nucleotides were located either within the half sites of the inverted repeat (four nucleotides in each half site) or in the 5 bp spacer that separates the half sites (three nucleotides). Based on these results, we defined a DNA motif comprising those nucleotides that are critical for RegR binding (RegR box; 5'-GNG(A)(G)C(A)(G)TTNNGNCGC-3'). A comparison of the RegR box with functional binding sites of the RegR-like regulator RegA of Rhodobacter capsulatus revealed considerable similarities. Thus, the RegR box may assist in the identification of new RegR target genes not only in B.japonicum but also in other alpha-proteobacteria possessing RegR-like response regulators.
Collapse
Affiliation(s)
- R Emmerich
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|