1
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
2
|
Kunrath-Lima M, de Miranda MC, Ferreira ADF, Faraco CCF, de Melo MIA, Goes AM, Rodrigues MA, Faria JAQA, Gomes DA. Phospholipase C delta 4 (PLCδ4) is a nuclear protein involved in cell proliferation and senescence in mesenchymal stromal stem cells. Cell Signal 2018; 49:59-67. [PMID: 29859928 DOI: 10.1016/j.cellsig.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
Abstract
Ca2+ is an important second messenger, and it is involved in many cellular processes such as cell death and proliferation. The rise in intracellular Ca2+ levels can be due to the generation of inositol 1,4,5-trisphosphate (InsP3), which is a product of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by phospholipases C (PLCs), that leads to Ca2+ release from endoplasmic reticulum by InsP3 receptors (InsP3R). Ca2+ signaling patterns can vary in different regions of the cell and increases in nuclear Ca2+ levels have specific biological effects that differ from those of Ca2+ increase in the cytoplasm. There are PLCs in the cytoplasm and nucleus, but little is known about the functions of nuclear PLCs. This work aimed to characterize phenotypically the human PLCδ4 (hPLCδ4) in mesenchymal stem cells. This nuclear isoform of PLC is present in different cell types and has a possible role in proliferative processes. In this work, hPLCδ4 was found to be mainly nuclear in human adipose-derived mesenchymal stem cells (hASC). PLCδ4 knockdown demonstrated that it is essential for hASC proliferation, without inducing cell death. An increase of cells in G1, and a reduction of cells on interphase and G2/M in knockdown cells were seen. Furthermore, PLCδ4 knockdown increased the percentage of senescent cells, p16INK4A+ and p21Cip1 mRNAs expression, which could explain the impaired cell proliferation. The results show that hPLCδ4 is in involved in cellular proliferation and senescence in hASC.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfredo Miranda Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Lo Vasco VR, Leopizzi M, Scotto d’Abusco A, Rocca CD. Different Expression and Localization of Phosphoinositide Specific Phospholipases C in Human Osteoblasts, Osteosarcoma Cell Lines, Ewing Sarcoma and Synovial Sarcoma. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2017. [DOI: 10.15171/ajmb.2017.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Bone hardness and strength depends on mineralization, which involves a complex process in which calcium phosphate, produced by bone-forming cells, was shed around the fibrous matrix. This process is strictly regulated, and a number of signal transduction systems were interested in calcium metabolism, such as the phosphoinositide (PI) pathway and related phospholipase C (PLC) enzymes. Objectives: Our aim was to search for common patterns of expression in osteoblasts, as well as in ES and SS. Methods: We analysed the PLC enzymes in human osteoblasts and osteosarcoma cell lines MG-63 and SaOS-2. We compared the obtained results to the expression of PLCs in samples of patients affected with Ewing sarcoma (ES) and synovial sarcoma (SS). Results: In osteoblasts, MG-63 cells and SaOS-2 significant differences were identified in the expression of PLC δ4 and PLC η subfamily isoforms. Differences were also identified regarding the expression of PLCs in ES and SS. Most ES and SS did not express PLCB1, which was expressed in most osteoblasts, MG-63 and SaOS-2 cells. Conversely, PLCB2, unexpressed in the cell lines, was expressed in some ES and SS. However, PLCH1 was expressed in SaOS-2 and inconstantly expressed in osteoblasts, while it was expressed in ES and unexpressed in SS. The most relevant difference observed in ES compared to SS regarded PLC ε and PLC η isoforms. Conclusion: MG-63 and SaOS-2 osteosarcoma cell lines might represent an inappropriate experimental model for studies about the analysis of signal transduction in osteoblasts
Collapse
Affiliation(s)
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino –Sapienza University, Latina, Rome, Italy
| |
Collapse
|
4
|
Lo Vasco VR, Leopizzi M, Scotto d'abusco A, Della Rocca C. Comparison of Phosphoinositide-Specific Phospholipase C Expression Panels of Human Osteoblasts Versus MG-63 and Saos Osteoblast-Like Cells. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-34104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
5
|
Miao Y, Yang J, Xu Z, Jing L, Zhao S, Li X. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide. Int J Mol Sci 2015; 16:7976-94. [PMID: 25860951 PMCID: PMC4425062 DOI: 10.3390/ijms16047976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.
Collapse
Affiliation(s)
- Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Zhong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Lu Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
6
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|
7
|
Lo Vasco VR, Leopizzi M, Chiappetta C, Puggioni C, Di Cristofano C, Della Rocca C. Expression of phosphoinositide-specific phospholipase C enzymes in human skin fibroblasts. Connect Tissue Res 2013; 54:1-4. [PMID: 22800439 DOI: 10.3109/03008207.2012.712584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibroblasts are involved in a number of functions regulated by different signal transduction pathways, including the phosphoinositide (PI) signaling system and related converting enzymes, such as phosphoinositide-specific phospholipase C (PI-PLC). The PI-PLC family comprises crucial effector enzymes in the PI signal transduction pathway. Once activated, PI-PLC cleaves an important membrane PI, the phosphatidylinositol (4,5) bisphosphate into inositol trisphosphate and diacylglycerol-both are crucial molecules in the transduction of signals. The activity of selected PI-PLC enzymes was reported in fibroblasts, although the complete panel of expression was not available. Each cell type expresses a group of selected PI-PLC isoforms, and knowledge of the panel of expression is a necessary and preliminary tool to address further studies. In the present study, we delineated the expression panel of PI-PLC enzymes in human skin fibroblasts. PI-PLC β1, PI-PLC β3, PI-PLC β4, PI-PLC γ1, PI-PLC γ2, PI-PLC δ1, PI-PLC δ3, PI-PLC δ4, and PI-PLC ϵ were expressed. PI-PLC β1 was weakly expressed, PI-PLC δ4 was inconstantly expressed, and PI-PLC γ2 was weakly expressed.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department of Sensitive Organs, Policlinic Umberto I, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
8
|
Chae SW, Kim JM, Yun YP, Lee WK, Kim JS, Kim YH, Lee KS, Ko YJ, Lee KH, Rha HK. Identification and analysis of the promoter region of the human PLC-δ4 gene. Mol Biol Rep 2007; 34:69-77. [PMID: 17394098 DOI: 10.1007/s11033-006-9014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
The delta4 isoform of phospholipase C (PLC-delta4) is thought to be associated with various cellular functions and disease status. However, little is known about how its function is controlled in cells, particularly in terms of the regulation of its expression. To understand the regulation mechanisms of the PLC-delta4 gene transcription, the 5'-flanking region (-2046 approximately +5) (the nucleotide sequence data reported in this paper have been submitted to the EMBL/GenBank/DDBJ data bank under accession numbers DQ302751) of the human PLC-delta4 gene was isolated from human genomic DNA. It was a TATA-less promoter with very GC-rich sequences near the transcription start site. The activity of the PLC-delta4 promoter was shown in various human and mouse cell lines by luciferase reporter assay. Serial deletion analysis identified the core promoter region as being between -402 and -67, in which an E-box and an AP-1 binding site played important roles in the promoter activity. In addition, we also showed that 12-O-tetradecanoylphorbol-1,3-acetate (TPA), a PKC activator and tumor promoter, induced the activity of the PLC-delta4 promoter via the AP-1 binding site. In summary, this study identified a core promoter region of the hPLC-delta4 gene and the factor binding sites responsible for the promoter activity. These results will provide important new information to further understand the regulatory mechanism of the PLC-delta4 function.
Collapse
Affiliation(s)
- Song Wha Chae
- Neuroscience Genome Research Center, The Catholic University of Korea, Banpo-dong, Socho-ku, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yagisawa H, Okada M, Naito Y, Sasaki K, Yamaga M, Fujii M. Coordinated intracellular translocation of phosphoinositide-specific phospholipase C-δ with the cell cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:522-34. [PMID: 16580873 DOI: 10.1016/j.bbalip.2006.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 11/18/2022]
Abstract
The delta family phosphoinositide (PI)-specific phospholipase C (PLC) are most fundamental forms of eukaryotic PI-PLCs. Despite the presence of lipid targeting domains such as the PH domain and C2 domain, the isoforms are also found in the cytoplasm and nucleus as well as at the plasma membrane. The isoforms have sequences or regions that can serve as a nuclear localization signal (NLS) and a nuclear export signal (NES). Their intracellular localization differs from one isoform to another, presumably due to the difference in the transport equilibrium balanced by the strength of the two signals of each isoform. Even for a particular isoform, its intracellular localization seems to vary during the cell cycle. As an example, PLCdelta(1), which is generally found at the plasma membrane and in the cytoplasm of quiescent cells, localizes to discrete nuclear structures in the G(1)/S boundary of the cell cycle. This may be at least partly due to an increase in intracellular Ca(2+), since Ca(2+) facilitates the formation of a nuclear transport complex comprised of PLCdelta(1) and importin beta1, a carrier molecule for the nuclear import. PLCdelta(1) as well as PLCdelta(4) may play a pivotal role in controlling the initiation of DNA synthesis in S phase. Spatio-temporal changes in the levels of PtdIns(4,5)P(2) seem to be another major determinant for the localization and regulation of the delta isoforms. High nuclear PtdIns(4,5)P(2) levels are associated with the G(1)/S phases. After entering M phase, PtdIns(4,5)P(2) synthesis at sites of cell division occurs and PLCs seem to localize to the cleavage furrow during cytokinesis. Coordinated translocation of PLCs with the cell cycle or with stress responses may result in changes in intra-nuclear environments and local membrane architectures that modulate proliferation and differentiation. In this review, recent findings regarding the molecular machineries and mechanisms of the nucleocytoplasmic shuttling as well as roles in the cell cycle progression of the delta isoforms of PLC will be discussed.
Collapse
Affiliation(s)
- Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Leung DW, Tompkins C, Brewer J, Ball A, Coon M, Morris V, Waggoner D, Singer JW. Phospholipase C delta-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells. Mol Cancer 2004; 3:15. [PMID: 15140260 PMCID: PMC420486 DOI: 10.1186/1476-4598-3-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 05/13/2004] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The expression of the rodent phosphoinositide-specific phospholipase C delta-4 (PLCdelta4) has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCdelta4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCdelta4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCdelta4 on cell signaling and proliferation in this study. RESULTS The cDNA for human PLCdelta4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCdelta4 selectively activates protein kinase C-phi and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in MCF-7 cells. MCF-7 cells stably expressing PLCdelta4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCdelta4 are not reversible by siRNA. CONCLUSION Overexpression or dysregulated expression of PLCdelta4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCdelta4 are not reversible, PLCdelta4 itself is not a suitable drug target, but enzymes in pathways activated by PLCdelta4 are potential therapeutic targets for oncogenic intervention.
Collapse
Affiliation(s)
- David W Leung
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Chris Tompkins
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Jim Brewer
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Alexey Ball
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Mike Coon
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Valerie Morris
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - David Waggoner
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| | - Jack W Singer
- Cell Therapeutics, Inc., 201 Elliott Ave., W., Seattle, WA 98119, U.S.A
| |
Collapse
|
11
|
Suetsugu S, Takenawa T. Translocation of N-WASP by nuclear localization and export signals into the nucleus modulates expression of HSP90. J Biol Chem 2003; 278:42515-23. [PMID: 12871950 DOI: 10.1074/jbc.m302177200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-WASP regulates the actin cytoskeleton through activation of the Arp2/3 complex. N-WASP localizes at the cell periphery, where it controls actin polymerization downstream of signal molecules such as adapter proteins, Cdc42, Src family kinases, and phosphoinositides. N-WASP also localizes in the nucleus; however, the role of N-WASP in the nucleus is unclear. Here, we show that localization of N-WASP is controlled through phosphorylation by Src family kinases in which phosphorylated N-WASP is exported from the nucleus in a nuclear export signal (NES) and leptomycin B-dependent manner. N-WASP had nuclear localization signal (NLS) at its basic region and NES close to the phosphorylation site by Src family kinases, indicating that phosphorylation controls the accessibility to the NES through conformational changes. Increased levels of unphosphorylated N-WASP in the nucleus suppressed expression of HSP90 and transcription from a heat shock element (HSE). N-WASP bound heat shock transcription factor (HSTF) and enhanced the HSTF association with HSE. In addition, nuclear N-WASP was present in the protein complex that associates with HSE, suggesting that N-WASP participates in suppression of HSP90 transcription. Increased levels of unphosphorylated N-WASP also decreased the activities of Src family kinases in cells but not in experiments in vitro with pure N-WASP and Fyn. Because HSP90 is essential for the activities of Src family kinases, these results suggest that localization of N-WASP modulates Src kinase activity by regulating HSP90 expression.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
12
|
Yagisawa H, Yamaga M, Okada M, Sasaki K, Fujii M. Regulation of the intracellular localization of phosphoinositide-specific phospholipase Cdelta(1). ADVANCES IN ENZYME REGULATION 2002; 42:261-84. [PMID: 12123720 DOI: 10.1016/s0065-2571(01)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hitoshi Yagisawa
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
13
|
Lin FG, Cheng HF, Lee IF, Kao HJ, Loh SH, Lee WH. Downregulation of phospholipase C delta3 by cAMP and calcium. Biochem Biophys Res Commun 2001; 286:274-80. [PMID: 11500033 DOI: 10.1006/bbrc.2001.5371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four different isoforms of mammalian phospholipase C delta (PLCdelta) have been described. PLCdelta1, the best-understood isoform, is activated by an atypical GTP-binding protein. It has been suggested that it is a calcium signal amplifier. However, very less is known about other subtypes, including PLCdelta3. Therefore, in the present study, we examined the expression of PLCdelta3 in different human tissues. Moreover, the cellular underlying regulation for PLCdelta3 was studied in different cell lines. Our study showed that the mRNA and protein levels differed significantly among human tissues. The human PLCdelta3 gene was composed of 15 exons and 1 putative cAMP response element in the 5'-end promoter region. PLCdelta3 mRNA expression was downregulated by cAMP and calcium in both the human normal embryonic lung tissue diploid WI38 cell line and the glioblastoma/astrocytoma U373 cell line. However, mRNA expression showed no impact by PKC activators or inhibitors. This study shows the human PLCdelta3 expression pattern and is the first report that PLCdelta3 gene expression is downregulation by cAMP and calcium.
Collapse
Affiliation(s)
- F G Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|