1
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
2
|
Huang Y, Li D, Mu Y, Zhu Z, Wu Y, Qi Q, Mu Y, Su W. Exploring the heterogeneity of community and function and correspondence of "species-enzymes" among three types of Daqu with different fermentation peak-temperature via high-throughput sequencing and metagenomics. Food Res Int 2024; 176:113805. [PMID: 38163713 DOI: 10.1016/j.foodres.2023.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The enzyme activity of Daqu is an important prerequisite for defining it as a Baijiu starter. However, little is known about the functional species related to enzymes in different types of Daqu at the metagenomic level. Therefore, we analyzed the differences in enzymatic properties, microbial composition and metabolic function of three types of Daqu, namely high-, medium- and low-temperature Daqus (HTD, MTD and LTD), by combining chemical feature and multi-dimensional sequencing. The results showed that both liquefaction, saccharification, fermentation and esterification powers were remarkably weaker in HTD compared to MTD and LTD. Totally, 30 bacterial and 5 fungal phyla were identified and significant differences in community structures were also observed among samples, with Brevibacterium/Microascus, Pseudomonas, and Lactobacillus/Saccharomycopsis identified as biomarkers for HTD, MTD and LTD, respectively. Additionally, the importance of deterministic assembly in bacterial communities was proportional to the fermentation peak-temperature, while stochastic assembly dominated in fungal ones. Metagenomics analysis indicated eukaryota (>80 %, mainly Ascomycota) predominated in HTD and MTD while bacteria (54.3 %, mainly Actinobacteriota) were more abundant in LTD. However, the functional profiles and pathways of MTD and LTD were more similar, and the synthesis and metabolism of carbohydrates and amino acids were the crucial biological functions of all samples. Finally, the relationship between species and enzymes in different samples was constructed and the functional species in LTD and MTD were more diverse than HTD, which elucidated the functional species associated with enzyme activity in each type of Daqu. These results will greatly enrich our understanding of the core functional species in three typical Daqu, which provide available information for rational regulation of Daqu quality and the Baijiu fermentation.
Collapse
Affiliation(s)
- Ying Huang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, China
| | - Dong Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Yu Mu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564507, China.
| | - Zhiyu Zhu
- Kweichow Moutai Distillery Co. Ltd., Renhuai 564501, China
| | - Yuzhang Wu
- Quality Monitoring & Evaluation Center, Moutai Institute, Renhuai 564507, China
| | - Qi Qi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Chai J, Guo G, McSweeney SM, Shanklin J, Liu Q. Structural basis for enzymatic terminal C-H bond functionalization of alkanes. Nat Struct Mol Biol 2023; 30:521-526. [PMID: 36997762 PMCID: PMC10113152 DOI: 10.1038/s41594-023-00958-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Alkane monooxygenase (AlkB) is a widely occurring integral membrane metalloenzyme that catalyzes the initial step in the functionalization of recalcitrant alkanes with high terminal selectivity. AlkB enables diverse microorganisms to use alkanes as their sole carbon and energy source. Here we present the 48.6-kDa cryo-electron microscopy structure of a natural fusion from Fontimonas thermophila between AlkB and its electron donor AlkG at 2.76 Å resolution. The AlkB portion contains six transmembrane helices with an alkane entry tunnel within its transmembrane domain. A dodecane substrate is oriented by hydrophobic tunnel-lining residues to present a terminal C-H bond toward a diiron active site. AlkG, an [Fe-4S] rubredoxin, docks via electrostatic interactions and sequentially transfers electrons to the diiron center. The archetypal structural complex presented reveals the basis for terminal C-H selectivity and functionalization within this broadly distributed evolutionary class of enzymes.
Collapse
Affiliation(s)
- Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA
| | | | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
4
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Zhang Y, Sun X, Qian C, Li L, Shang X, Xiao X, Gao Y. Impact of Petroleum Contamination on the Structure of Saline Soil Bacterial Communities. Curr Microbiol 2022; 79:351. [PMID: 36209271 DOI: 10.1007/s00284-022-03057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Petroleum contamination may lead to variations in soil microbial community structure and activities. The bioremediation of petroleum-contaminated soil typically depends on the characteristics and activities of oil-degrading microorganisms, which can be introduced or be part of the native soil microbiota. Thus, analyzing the structure of the microbial community and internal relationships in the bioremediation process is critical. Our study characterized the physical and chemical properties, microbial community structure, and microbial diversity of surface soil collected near an oilfield. The total carbon (TC), total organic carbon (TOC), and microbial diversity in oil-contaminated soil was found higher than in uncontaminated samples. Proteobacteria abundance was inhibited with oil pollution, while Actinomycetes abundance was enhanced. Some indigenous hydrocarbon-degrading bactera were enriched by oil pollution, such as Bacillus, Actinomarinales norank, Balneolaceae uncultured, Marinobacter, and Pseudomonas. Furthermore, Rokubacteria, Nitrospirae, and Entotheonellaeota were significant differences in the contaminated group. There were 16 genera with significant differences in the polluted group, such as Woeseia, Pelagibius, Pontibacillus, IS_44, Aliifodinibius, while Halothiobacillus, Algoriphagus, Novosphingobium, etc. had significant differences in the uncontaminated group. Redundancy analysis demonstrated that the responses of the microorganisms to the evaluated environmental factors were different, and TC was the most important driver of microbial community variation. Moreover, TOC was the largest contributor to operational taxonomic unit (OTU) and Chao index variations. Our results provide a theoretical basis for the enhancement of microbial activity in oil-contaminated soil, which might improve bioremediation efficacy.
Collapse
Affiliation(s)
- Ying Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Xiaojie Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Cheng Qian
- Shengli Oilfield, Dongying, Shandong, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China. .,Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
| | - Xiufang Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Xinfeng Xiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| |
Collapse
|
6
|
Williams SC, Austin RN. An Overview of the Electron-Transfer Proteins That Activate Alkane Monooxygenase (AlkB). Front Microbiol 2022; 13:845551. [PMID: 35295299 PMCID: PMC8918992 DOI: 10.3389/fmicb.2022.845551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Alkane-oxidizing enzymes play an important role in the global carbon cycle. Alkane monooxygenase (AlkB) oxidizes most of the medium-chain length alkanes in the environment. The first AlkB identified was from P. putida GPo1 (initially known as P. oleovorans) in the early 1970s, and it continues to be the family member about which the most is known. This AlkB is found as part of the OCT operon, in which all of the key proteins required for growth on alkanes are present. The AlkB catalytic cycle requires that the diiron active site be reduced. In P. putida GPo1, electrons originate from NADH and arrive at AlkB via the intermediacy of a flavin reductase and an iron–sulfur protein (a rubredoxin). In this Mini Review, we will review what is known about the canonical arrangement of electron-transfer proteins that activate AlkB and, more importantly, point to several other arrangements that are possible. These other arrangements include the presence of a simpler rubredoxin than what is found in the canonical arrangement, as well as two other classes of AlkBs with fused electron-transfer partners. In one class, a rubredoxin is fused to the hydroxylase and in another less well-explored class, a ferredoxin reductase and a ferredoxin are fused to the hydroxylase. We review what is known about the biochemistry of these electron-transfer proteins, speculate on the biological significance of this diversity, and point to key questions for future research.
Collapse
Affiliation(s)
| | - Rachel Narehood Austin
- Department of Chemistry, Barnard College, Columbia University, New York City, NY, United States
- *Correspondence: Rachel Narehood Austin,
| |
Collapse
|
7
|
Kadri T, Robert T, Rouissi T, Sebastian J, Magdouli S, Brar SK, Martel R, Lauzon JM. Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C 10-C 50) contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117986. [PMID: 34523511 DOI: 10.1016/j.envpol.2021.117986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C10-C50. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C10-C50 were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C10-C50. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day-1. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
Collapse
Affiliation(s)
- Tayssir Kadri
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Thomas Robert
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Joseph Sebastian
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Sara Magdouli
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Jean-Marc Lauzon
- TechnoRem Inc., 4701, rue Louis-B.-Mayer, Laval, Québec, H7P 6G5, Canada
| |
Collapse
|
8
|
Petkevičius V, Vaitekūnas J, Gasparavičiūtė R, Tauraitė D, Meškys R. An efficient and regioselective biocatalytic synthesis of aromatic N-oxides by using a soluble di-iron monooxygenase PmlABCDEF produced in the Pseudomonas species. Microb Biotechnol 2021; 14:1771-1783. [PMID: 34115446 PMCID: PMC8313251 DOI: 10.1111/1751-7915.13849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Here, we present an improved whole-cell biocatalysis system for the synthesis of heteroaromatic N-oxides based on the production of a soluble di-iron monooxygenase PmlABCDEF in Pseudomonas sp. MIL9 and Pseudomonas putida KT2440. The presented biocatalysis system performs under environmentally benign conditions, features a straightforward and inexpensive procedure and possesses a high substrate conversion and product yield. The capacity of gram-scale production was reached in the simple shake-flask cultivation. The template substrates (pyridine, pyrazine, 2-aminopyrimidine) have been converted into pyridine-1-oxide, pyrazine-1-oxide and 2-aminopyrimidine-1-oxide in product titres of 18.0, 19.1 and 18.3 g l-1 , respectively. To our knowledge, this is the highest reported productivity of aromatic N-oxides using biocatalysis methods. Moreover, comparing to the chemical method of aromatic N-oxides synthesis based on meta-chloroperoxybenzoic acid, the developed approach is applicable for a regioselective oxidation that is an additional advantageous option in the preparation of the anticipated N-oxides.
Collapse
Affiliation(s)
- Vytautas Petkevičius
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySaulėtekio 7VilniusLT‐10257Lithuania
| |
Collapse
|
9
|
Liu J, Zhao B, Lan Y, Ma T. Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1 mutants based on their alkane metabolism. BIORESOURCE TECHNOLOGY 2021; 327:124787. [PMID: 33556770 DOI: 10.1016/j.biortech.2021.124787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Microbial consortia offer an attractive biodegradation strategy for removing hydrocarbons from oil-contaminated sites. In this study, we explored the degradation properties of Acinetobacter venetianus strain RAG-1 (RAG-1). RAG-1 effectively degrades three crude oils with excellent emulsification activity and cell surface hydrophobicity, while exhibiting broad environmental tolerance. RAG-1 accepts a range of alkane substrates (C10-C38) using three alkane hydroxylases (AlkMa, AlkMb, and AlmA). Bacterial mutant with alkMa or alkMb deletion enhanced degradation of C10-C20 or C22-C32 n-alkanes, respectively. Based on the substrate metabolism of the mutants, adjustable and targeted consortia consisting of ΔalkMa/almA and ΔalkMb were constructed, achieving enhanced degradation (10 days) of light crude oil (73.42% to 88.65%), viscous crude oil (68.40% to 90.05%), and high waxy crude oil (47.46% to 60.52%) compared with the single wild-type strain. The degradation properties of RAG-1 and the engineered consortia strategy may have potential use in microbial biodegradation applications.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bo Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yazheng Lan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
10
|
Tsai YF, Luo WI, Chang JL, Chang CW, Chuang HC, Ramu R, Wei GT, Zen JM, Yu SSF. Electrochemical Hydroxylation of C 3-C 12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Sci Rep 2017; 7:8369. [PMID: 28827709 PMCID: PMC5566439 DOI: 10.1038/s41598-017-08610-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
An unprecedented method for the efficient conversion of C3–C12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB–AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C–H bond activation. The proof of concept herein advances the development of artificial C–H bond activation catalysts.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-I Luo
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Jen-Lin Chang
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | | | - Ravirala Ramu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Guor-Tzo Wei
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-yi, 621, Taiwan
| | - Jyh-Myng Zen
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
11
|
Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2015; 82:608-19. [PMID: 26567302 DOI: 10.1128/aem.02811-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/31/2015] [Indexed: 01/07/2023] Open
Abstract
CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the -10 and -35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria.
Collapse
|
12
|
Kawakami N, Cong Z, Shoji O, Watanabe Y. Highly efficient hydroxylation of gaseous alkanes at reduced temperature catalyzed by cytochrome P450BM3 assisted by decoy molecules. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytochrome P450BM3 functions as a small-alkane hydroxylase upon the addition of perfluorocarboxylic acids (PFs) as decoy molecules. The coupling efficiency (product formation rate per NADPH consumption rate) for the hydroxylation of small alkanes was improved by reducing the reaction temperature to 0°C.
Collapse
Affiliation(s)
- Norifumi Kawakami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, 223-8522 Yokohama, Japan
| | - Zhiqi Cong
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
13
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
14
|
Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01271-14. [PMID: 25477416 PMCID: PMC4256197 DOI: 10.1128/genomea.01271-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence.
Collapse
|
15
|
Grant C, Deszcz D, Wei YC, Martínez-Torres RJ, Morris P, Folliard T, Sreenivasan R, Ward J, Dalby P, Woodley JM, Baganz F. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Sci Rep 2014; 4:5844. [PMID: 25068650 PMCID: PMC5376172 DOI: 10.1038/srep05844] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 07/03/2014] [Indexed: 01/31/2023] Open
Abstract
Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.
Collapse
Affiliation(s)
- Chris Grant
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Dawid Deszcz
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Yu-Chia Wei
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | | | - Phattaraporn Morris
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Thomas Folliard
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Rakesh Sreenivasan
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - John Ward
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Dept. of Structural and Molecular Biology, ISMB, University College London, Gower Street, London WC1E 6BT, U.K
| | - Paul Dalby
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK 2800 Lyngby, Denmark
| | - Frank Baganz
- Dept. of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
16
|
Kem MP, Zane HK, Springer SD, Gauglitz JM, Butler A. Amphiphilic siderophore production by oil-associating microbes. Metallomics 2014; 6:1150-5. [DOI: 10.1039/c4mt00047a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphibactin siderophores have been isolated from oil-associatedVibriospp. following the Deepwater Horizon oil spill, and fromAlcanivorax borkumensisSK2.
Collapse
Affiliation(s)
- Michelle P. Kem
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara, USA
| | - Hannah K. Zane
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara, USA
| | - Stephen D. Springer
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara, USA
| | - Julia M. Gauglitz
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara, USA
| | - Alison Butler
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara, USA
| |
Collapse
|
17
|
Teimoori A, Ahmadian S, Madadkar-Sobhani A. Biochemical characterization of two recombinant ferredoxin reductases from Alcanivorax borkumensis SK2. Biotechnol Appl Biochem 2013; 59:457-64. [PMID: 23586955 DOI: 10.1002/bab.1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/22/2012] [Indexed: 11/10/2022]
Abstract
Alcanivorax borkumensis strain SK2 is a cosmopolitan oil-degrading oligotrophic marine γ-proteobacterium that exclusively uses petroleum hydrocarbons as sources of carbon and energy. Its ubiquity and unusual physiology suggest its global importance in the removal of hydrocarbons from polluted marine systems. The genome of A. borkumensis SK2 was recently sequenced. Two ferredoxin-nicotinamide adenine dinucleotide phosphate (NADPH) reductase genes (ABO_0145 and ABO_0203) have been annotated for this bacterium. In the present study, the expression, purification, and kinetic properties of these two genes were explored by constructing the prokaryotic expression vectors (pET21a) for the first time. Isopropyl β-D-thiogalactoside (0.5 mM) was used for induction of exponentially growing cells (30 °C, overnight). Most of the proteins were expressed in inclusion body. Partial purification of recombinant enzymes was performed by ion-exchange chromatography on a DEAE-sepharose column using only one linear gradient of sodium chloride ranging between 0 and 500 mM. The recombinant enzymes displayed reductase activity, which was optimal at pH 6.0 and 45 °C. Ferredoxin-NADPH reductases exhibited several outstanding properties that made them excellent model proteins to address broad biological questions. This study serves as the basis for further investigations of the biotechnological potential of these enzymes.
Collapse
Affiliation(s)
- Afsaneh Teimoori
- Department of Biochemistry, Institute of Biochemistry and Biophysics-IBB, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
18
|
Olaofe OA, Fenner CJ, Gudiminchi RK, Smit MS, Harrison STL. The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6. Microb Cell Fact 2013; 12:8. [PMID: 23351575 PMCID: PMC3598389 DOI: 10.1186/1475-2859-12-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n-octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). RESULTS Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW-1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. CONCLUSION This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.
Collapse
Affiliation(s)
- Oluwafemi A Olaofe
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
19
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
20
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Julsing MK, Kuhn D, Schmid A, Bühler B. Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng 2011; 109:1109-19. [DOI: 10.1002/bit.24404] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/24/2011] [Accepted: 11/28/2011] [Indexed: 11/07/2022]
|
22
|
An Improved Procedure for the Purification of Catalytically Active Alkane Hydroxylase from Pseudomonas putida GPo1. Appl Biochem Biotechnol 2011; 165:823-31. [DOI: 10.1007/s12010-011-9300-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
23
|
Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol 2010; 146:9-24. [PMID: 20132846 DOI: 10.1016/j.jbiotec.2010.01.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 12/29/2022]
Abstract
Monooxygenases are enzymes that catalyze the insertion of a single oxygen atom from O(2) into an organic substrate. In order to carry out this type of reaction, these enzymes need to activate molecular oxygen to overcome its spin-forbidden reaction with the organic substrate. In most cases, monooxygenases utilize (in)organic cofactors to transfer electrons to molecular oxygen for its activation. Monooxygenases typically are highly chemo-, regio-, and/or enantioselective, making them attractive biocatalysts. In this review, an exclusive overview of known monooxygenases is presented, based on the type of cofactor that these enzymes require. This includes not only the cytochrome P450 and flavin-dependent monooxygenases, but also enzymes that utilize pterin, metal ions (copper or iron) or no cofactor at all. As most of these monooxygenases require nicotinamide coenzymes as electron donors, also an overview of current methods for coenzyme regeneration is given. This latter overview is of relevance for the biotechnological applications of these oxidative enzymes.
Collapse
|
24
|
Yang J, Wang S, Lorrain MJ, Rho D, Abokitse K, Lau PCK. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl Microbiol Biotechnol 2009; 84:867-76. [DOI: 10.1007/s00253-009-2026-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/29/2022]
|
25
|
Mehboob F, Junca H, Schraa G, Stams AJM. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 2009; 83:739-47. [PMID: 19352644 PMCID: PMC2690828 DOI: 10.1007/s00253-009-1985-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 10/27/2022]
Abstract
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 +/- 0.1 and 0.4 +/- 0.02 day(-1), respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.
Collapse
|
26
|
In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6. Appl Environ Microbiol 2008; 75:337-44. [PMID: 19011057 DOI: 10.1128/aem.01758-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47 Delta B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts.
Collapse
|
27
|
Di Gennaro P, Ferrara S, Bestetti G, Sello G, Solera D, Galli E, Renzi F, Bertoni G. Novel auto-inducing expression systems for the development of whole-cell biocatalysts. Appl Microbiol Biotechnol 2008; 79:617-25. [DOI: 10.1007/s00253-008-1460-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/07/2008] [Accepted: 03/14/2008] [Indexed: 11/29/2022]
|
28
|
Takei D, Washio K, Morikawa M. Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane. Biotechnol Lett 2008; 30:1447-52. [PMID: 18414802 DOI: 10.1007/s10529-008-9710-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/10/2008] [Accepted: 03/12/2008] [Indexed: 11/28/2022]
Abstract
Rhodococcus sp. TMP2 is an alkane-degrading strain that can grow with a branched alkane as a sole carbon source. TMP2 degrades considerable amounts of pristane at 20 degrees C but not at 30 degrees C. In order to gain insights into microbial alkane degradation, we characterized one of the key enzymes for alkane degradation. TMP2 contains at least five genes for membrane-bound, non-heme iron, alkane hydroxylase, known as AlkB (alkB1-5). Phylogenetical analysis using bacterial alkB genes indicates that TMP2 is a close relative of the alkane-degrading bacteria, such as Rhodococcus erythropolis NRRL B-16531 and Q15. RT-PCR analysis showed that expressions of the genes for AlkB1 and AlkB2 were apparently induced by the addition of pristane at a low temperature. The results suggest that TMP2 recruits certain alkane hydroxylase systems to utilize a branched alkane under low temperature conditions.
Collapse
Affiliation(s)
- Daisuke Takei
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
29
|
Fasan R, Chen MM, Crook NC, Arnold FH. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 2008; 46:8414-8. [PMID: 17886313 DOI: 10.1002/anie.200702616] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rudi Fasan
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 California Blvd. MC 210-41, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
30
|
Park JB, Bühler B, Panke S, Witholt B, Schmid A. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerantPseudomonas sp. strain VLB120ΔC. Biotechnol Bioeng 2007; 98:1219-29. [PMID: 17514751 DOI: 10.1002/bit.21496] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Utilization of solvent tolerant bacteria as biocatalysts has been suggested to enable or improve bioprocesses for the production of toxic compounds. Here, we studied the relevance of solvent (product) tolerance and inhibition, carbon metabolism, and the stability of biocatalytic activity in such a bioprocess. Styrene degrading Pseudomonas sp. strain VLB120 is shown to be solvent tolerant and was engineered to produce enantiopure (S)-styrene oxide from styrene. Whereas glucose as sole source for carbon and energy allowed efficient styrene epoxidation at rates up to 97 micromol/min/(g cell dry weight), citrate was found to repress epoxidation by the engineered Pseudomonas sp. strain VLB120DeltaC emphasizing that carbon source selection and control is critical. In comparison to recombinant Escherichia coli, the VLB120DeltaC-strain tolerated higher toxic product levels but showed less stable activities during fed-batch cultivation in a two-liquid phase system. Epoxidation activities of the VLB120DeltaC-strain decreased at product concentrations above 130 mM in the organic phase. During continuous two-liquid phase cultivations at organic-phase product concentrations of up to 85 mM, the VLB120DeltaC-strain showed stable activities and, as compared to recombinant E. coli, a more efficient glucose metabolism resulting in a 22% higher volumetric productivity. Kinetic analyses indicated that activities were limited by the styrene concentration and not by other factors such as NADH availability or catabolite repression. In conclusion, the stability of activity of the solvent tolerant VLB120DeltaC-strain can be considered critical at elevated toxic product levels, whereas the efficient carbon and energy metabolism of this Pseudomonas strain augurs well for productive continuous processing.
Collapse
Affiliation(s)
- Jin-Byung Park
- Department of Food Science & Technology, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
31
|
Fasan R, Chen M, Crook N, Arnold F. Engineered Alkane-Hydroxylating Cytochrome P450BM3 Exhibiting Nativelike Catalytic Properties. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702616] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Park JB, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 2006; 95:501-12. [PMID: 16767777 DOI: 10.1002/bit.21037] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Styrene is efficiently converted into (S)-styrene oxide by growing Escherichia coli expressing the styrene monooxygenase genes styAB of Pseudomonas sp. strain VLB120 in an organic/aqueous emulsion. Now, we investigated factors influencing the epoxidation activity of recombinant E. coli with the aim to improve the process in terms of product concentration and volumetric productivity. The catalytic activity of recombinant E. coli was not stable and decreased with reaction time. Kinetic analyses and the independence of the whole-cell activity on substrate and biocatalyst concentrations indicated that the maximal specific biocatalyst activity was not exploited under process conditions and that substrate mass transfer and enzyme inhibition did not limit bioconversion performance. Elevated styrene oxide concentrations, however, were shown to promote acetic acid formation, membrane permeabilization, and cell lysis, and to reduce growth rate and colony-forming activity. During biotransformations, when cell viability was additionally reduced by styAB overexpression, such effects coincided with decreasing specific epoxidation rates and metabolic activity. This clearly indicated that biocatalyst performance was reduced as a result of product toxicity. The results point to a product toxicity-induced biological energy shortage reducing the biocatalyst activity under process conditions. By reducing exposure time of the biocatalyst to the product and increasing biocatalyst concentrations, volumetric productivities were increased up to 1,800 micromol/min/liter aqueous phase (with an average of 8.4 g/L(aq) x h). This represents the highest productivity reported for oxygenase-based whole-cell biocatalysis involving toxic products.
Collapse
Affiliation(s)
- Jin-Byung Park
- Institute of Biotechnology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Meyer D, Bühler B, Schmid A. Process and catalyst design objectives for specific redox biocatalysis. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:53-91. [PMID: 16829256 DOI: 10.1016/s0065-2164(06)59003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Meyer
- Department of Biochemical and Chemical Engineering, University of Dortmund, Emil-Figge-Strasse 66 D-44227 Dortmund, Germany
| | | | | |
Collapse
|
34
|
Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan Y, Webster CE, Hall MB. Rhodium boryl complexes in the catalytic, terminal functionalization of alkanes. J Am Chem Soc 2005; 127:2538-52. [PMID: 15725009 DOI: 10.1021/ja045090c] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of studies have been conducted by experimental and theoretical methods on the synthesis, structures, and reactions of CpRh boryl complexes that are likely intermediates in the rhodium-catalyzed regioselective, terminal functionalization of alkanes. The photochemical reaction of CpRh(eta(6)-C(6)Me(6)) with pinacolborane (HBpin) generates the bisboryl complex CpRh(H)(2)(Bpin)(2) (2), which reacts with neat HBpin to generate CpRh(H)(Bpin)(3) (3). X-ray diffraction, density functional theory (DFT) calculations, and NMR spectroscopy suggest a weak, but measurable, B-H bonding interaction. Both 2 and 3 dissociate HBpin and coordinate PEt(3) or P(p-Tol)(3) to generate the conventional rhodium(III) species CpRh(PEt(3))(H)(Bpin) (4) and CpRh[P(p-tol)(3)](Bpin)(2) (5). Compounds 2 and 3 also react with alkanes and arenes to form alkyl- and arylboronate esters at temperatures similar to or below those of the catalytic borylation of alkanes and arenes. Further, these compounds were observed directly in catalytic reactions. The enthalpies and free energies for generation of the 16-electron intermediate and for the C-H bond cleavage and B-C bond formation have been calculated with DFT. These results strongly suggest that the C-H bond cleavage process occurs by a metal-assisted sigma-bond metathesis mechanism to generate a borane complex that isomerizes if necessary to place the alkyl group cis to the boryl group. This complex with cis boryl and alkyl groups then undergoes B-C bond formation by a second sigma-bond metathesis to generate the final functionalized product.
Collapse
Affiliation(s)
- John F Hartwig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Bühler B, Schmid A. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 2004; 113:183-210. [PMID: 15380656 DOI: 10.1016/j.jbiotec.2004.03.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 02/19/2004] [Accepted: 03/04/2004] [Indexed: 11/25/2022]
Abstract
Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.
Collapse
Affiliation(s)
- Bruno Bühler
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, ETH Zurich, Hönggerberg HPT, CH-8093
| | | |
Collapse
|
36
|
Smith CA, Hyman MR. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 2004; 70:4544-50. [PMID: 15294784 PMCID: PMC492405 DOI: 10.1128/aem.70.8.4544-4550.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alkane hydroxylase enzyme system in Pseudomonas putida GPo1 has previously been reported to be unreactive toward the gasoline oxygenate methyl tert-butyl ether (MTBE). We have reexamined this finding by using cells of strain GPo1 grown in rich medium containing dicyclopropylketone (DCPK), a potent gratuitous inducer of alkane hydroxylase activity. Cells grown with DCPK oxidized MTBE and generated stoichiometric quantities of tert-butyl alcohol (TBA). Cells grown in the presence of DCPK also oxidized tert-amyl methyl ether but did not appear to oxidize either TBA, ethyl tert-butyl ether, or tert-amyl alcohol. Evidence linking MTBE oxidation to alkane hydroxylase activity was obtained through several approaches. First, no TBA production from MTBE was observed with cells of strain GPo1 grown on rich medium without DCPK. Second, no TBA production from MTBE was observed in DCPK-treated cells of P. putida GPo12, a strain that lacks the alkane-hydroxylase-encoding OCT plasmid. Third, all n-alkanes that support the growth of strain GPo1 inhibited MTBE oxidation by DCPK-treated cells. Fourth, two non-growth-supporting n-alkanes (propane and n-butane) inhibited MTBE oxidation in a saturable, concentration-dependent process. Fifth, 1,7-octadiyne, a putative mechanism-based inactivator of alkane hydroxylase, fully inhibited TBA production from MTBE. Sixth, MTBE-oxidizing activity was also observed in n-octane-grown cells. Kinetic studies with strain GPo1 grown on n-octane or rich medium with DCPK suggest that MTBE-oxidizing activity may have previously gone undetected in n-octane-grown cells because of the unusually high K(s) value (20 to 40 mM) for MTBE.
Collapse
Affiliation(s)
- Christy A Smith
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|
37
|
Shanklin J, Whittle E. Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. FEBS Lett 2003; 545:188-92. [PMID: 12804773 DOI: 10.1016/s0014-5793(03)00529-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site.
Collapse
Affiliation(s)
- John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave., Upton, NY 11973, USA.
| | | |
Collapse
|
38
|
Abstract
The enzymological and genetic aspects of microbial metabolism of hydrocarbons have been extensively revealed. Such molecular information is useful for understanding the bioremediation of oil spill environments and production of hydrocarbon-specific fine chemicals.
Collapse
Affiliation(s)
- Takeru Ishige
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
39
|
Marín MM, Yuste L, Rojo F. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 2003; 185:3232-7. [PMID: 12730186 PMCID: PMC154056 DOI: 10.1128/jb.185.10.3232-3237.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidation of n-alkanes in bacteria is normally initiated by an enzyme system formed by a membrane-bound alkane hydroxylase and two soluble proteins, rubredoxin and rubredoxin reductase. Pseudomonas aeruginosa strains PAO1 and RR1 contain genes encoding two alkane hydroxylases (alkB1 and alkB2), two rubredoxins (alkG1 and alkG2), and a rubredoxin reductase (alkT). We have localized the promoters for these genes and analyzed their expression under different conditions. The alkB1 and alkB2 genes were preferentially expressed at different moments of the growth phase; expression of alkB2 was highest during the early exponential phase, while alkB1 was induced at the late exponential phase, when the growth rate decreased. Both genes were induced by C(10) to C(22)/C(24) alkanes but not by their oxidation derivatives. However, the alkG1, alkG2, and alkT genes were expressed at constant levels in both the absence and presence of alkanes.
Collapse
Affiliation(s)
- Mercedes M Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
40
|
Abstract
Oxygenases carry out the regio-, stereo- and chemoselective introduction of oxygen in a tremendous range of organic molecules. This versatility has already been exploited in several commercial processes. There are, however, many hurdles to further practical large-scale applications. Here, we review various issues in biocatalysis using these enzymes, such as screening strategies, overoxidation, uncoupling, substrate uptake, substrate toxicity, and oxygen mass transfer. By addressing these issues in a systematic way, the productivity of promising laboratory scale biotransformations involving oxygenases may be improved to levels that allow industry to realise the full commercial potential of these enzymes.
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, ETH Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
41
|
Van Beilen JB, Mourlane F, Seeger MA, Kovac J, Li Z, Smits THM, Fritsche U, Witholt B. Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ Microbiol 2003; 5:174-82. [PMID: 12588297 DOI: 10.1046/j.1462-2920.2003.00401.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clone novel type 1 Baeyer-Villiger monooxygenase (BVMO) genes, we isolated or collected 25 bacterial strains able to grow on alicyclic compounds. Twelve of the bacterial strains yielded polymerase chain reaction (PCR) fragments with highly degenerate primers based on the sequences of known and putative BVMOs. All these fragments were found to encode peptides homologous to published BVMO sequences. The complete BVMO genes and flanking DNA were cloned from a Comamonas, a Xanthobacter and a Rhodococcus strain using the PCR fragments as probes. BVMO genes cloned from the first two strains could be expressed to high levels in Escherichia coli using standard expression vectors, and the recombinants converted cyclopentanone and cyclohexanone to the corresponding lactones. The Rhodococcus BVMO, a putative steroid monooxygenase, could be expressed after modification of the N-terminal sequence. However, recombinants expressing this protein did not show activity towards progesterone. An esterase homologue located directly upstream of the Xanthobacter BVMO gene and a dehydrogenase homologue encoded directly downstream of the Comamonas sp. NCIMB 9872 BVMO gene were also expressed in E. coli and shown to specify lactone hydrolase and cyclohexanol dehydrogenase activity respectively.
Collapse
Affiliation(s)
- Jan B Van Beilen
- Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Glieder A, Farinas ET, Arnold FH. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 2002; 20:1135-9. [PMID: 12368811 DOI: 10.1038/nbt744] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.
Collapse
Affiliation(s)
- Anton Glieder
- Institute of Biotechnology, Technical University of Graz, Petersgasse 12, A-8010 Graz, Austria
| | | | | |
Collapse
|
43
|
van Beilen JB, Neuenschwander M, Smits THM, Roth C, Balada SB, Witholt B. Rubredoxins involved in alkane oxidation. J Bacteriol 2002; 184:1722-32. [PMID: 11872724 PMCID: PMC134906 DOI: 10.1128/jb.184.6.1722-1732.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rubredoxins (Rds) are essential electron transfer components of bacterial membrane-bound alkane hydroxylase systems. Several Rd genes associated with alkane hydroxylase or Rd reductase genes were cloned from gram-positive and gram-negative organisms able to grow on n-alkanes (Alk-Rds). Complementation tests in an Escherichia coli recombinant containing all Pseudomonas putida GPo1 genes necessary for growth on alkanes except Rd 2 (AlkG) and sequence comparisons showed that the Alk-Rds can be divided in AlkG1- and AlkG2-type Rds. All alkane-degrading strains contain AlkG2-type Rds, which are able to replace the GPo1 Rd 2 in n-octane hydroxylation. Most strains also contain AlkG1-type Rds, which do not complement the deletion mutant but are highly conserved among gram-positive and gram-negative bacteria. Common to most Rds are the two iron-binding CXXCG motifs. All Alk-Rds possess four negatively charged residues that are not conserved in other Rds. The AlkG1-type Rds can be distinguished from the AlkG2-type Rds by the insertion of an arginine downstream of the second CXXCG motif. In addition, the glycines in the two CXXCG motifs are usually replaced by other amino acids. Mutagenesis of residues conserved in either the AlkG1- or the AlkG2-type Rds, but not between both types, shows that AlkG1 is unable to transfer electrons to the alkane hydroxylase mainly due to the insertion of the arginine, whereas the exchange of the glycines in the two CXXCG motifs only has a limited effect.
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
44
|
Duetz WA, van Beilen JB, Witholt B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 2001; 12:419-25. [PMID: 11551473 DOI: 10.1016/s0958-1669(00)00237-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The unique catalytic properties of oxygenases (the regio-specific and/or enantio-specific hydroxylation of non-activated carbons) are of undisputed biosynthetic value. Factors that govern the economics of their industrial use include a low k(cat), a frequently decreased k(cat) in recombinant strains, limiting oxygen transfer rates in bioreactors, product inhibition, and the demanding discovery (screening) process.
Collapse
Affiliation(s)
- W A Duetz
- Institute of Biotechnology, ETH Hönggerberg, HPT, CH 8093, Zürich, Switzerland.
| | | | | |
Collapse
|
45
|
Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80113-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Gene Cloning of an alcohol dehydrogenase from thermophilic alkane-degrading Bacillus thermoleovorans B23. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80122-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|