1
|
Abstract
Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy.
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Shimekake Y, Furuichi T, Abe K, Kera Y, Takahashi S. A novel thermostable D-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA. Sci Rep 2019; 9:11948. [PMID: 31420577 PMCID: PMC6697736 DOI: 10.1038/s41598-019-48480-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
d-Amino acid oxidase (DAAO) is a valuable flavoenzyme capable of being used in various practical applications, such as in determining d-amino acids and producing a material for semisynthetic cephalosporins, requiring higher thermal stability, higher catalytic activity, and broad substrate specificity. In this study, we isolated the thermophilic fungus Rasamsonia emersonii strain YA, which can grow on several d-amino acids as the sole nitrogen source, from a compost and characterized DAAO (ReDAAO) of the fungus. ReDAAO expressed in Escherichia coli exhibited significant oxidase activity against various neutral and basic d-amino acids, in particular hydrophobic d-amino acids. In addition, the enzyme also significantly acted on cephalosporin C, a starting material for semisynthetic antibiotics, and d-Glu, a general substrate for d-aspartate oxidase but not for DAAO, showing its unique and practically useful substrate specificity. The apparent kcat and Km values of the enzyme toward good substrates were comparable to those of higher catalytic fungal DAAOs, and the thermal stability (T50 value of ~60 °C) was comparable to that of a thermophilic bacterial DAAO and significantly higher than that of other eukaryotic DAAOs. These results highlight the great potential of ReDAAO for use in practical applications.
Collapse
Affiliation(s)
- Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Takehiro Furuichi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
3
|
Heinelt M, Nöll T, Nöll G. Spectroelectrochemical Investigation of Cholesterol Oxidase fromStreptomyces lividansat Different pH Values. ChemElectroChem 2019. [DOI: 10.1002/celc.201801416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manuel Heinelt
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Tanja Nöll
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Gilbert Nöll
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
4
|
|
5
|
Galbán J, Sanz-Vicente I, Navarro J, de Marcos S. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review. Methods Appl Fluoresc 2016; 4:042005. [DOI: 10.1088/2050-6120/4/4/042005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Molla G, Nardini M, Motta P, D'Arrigo P, Panzeri W, Pollegioni L. Aminoacetone oxidase from Streptococcus oligofermentans belongs to a new three-domain family of bacterial flavoproteins. Biochem J 2014; 464:387-99. [PMID: 25269103 DOI: 10.1042/bj20140972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The aaoSo gene from Streptococcus oligofermentans encodes a 43 kDa flavoprotein, aminoacetone oxidase (SoAAO), which was reported to possess a low catalytic activity against several different L-amino acids; accordingly, it was classified as an L-amino acid oxidase. Subsequently, SoAAO was demonstrated to oxidize aminoacetone (a pro-oxidant metabolite), with an activity ~25-fold higher than the activity displayed on L-lysine, thus lending support to the assumption of aminoacetone as the preferred substrate. In the present study, we have characterized the SoAAO structure-function relationship. SoAAO is an FAD-containing enzyme that does not possess the classical properties of the oxidase/dehydrogenase class of flavoproteins (i.e. no flavin semiquinone formation is observed during anaerobic photoreduction as well as no reaction with sulfite) and does not show a true L-amino acid oxidase activity. From a structural point of view, SoAAO belongs to a novel protein family composed of three domains: an α/β domain corresponding to the FAD-binding domain, a β-domain partially modulating accessibility to the coenzyme, and an additional α-domain. Analysis of the reaction products of SoAAO on aminoacetone showed 2,5-dimethylpyrazine as the main product; we propose that condensation of two aminoacetone molecules yields 3,6-dimethyl-2,5-dihydropyrazine that is subsequently oxidized to 2,5-dimethylpyrazine. The ability of SoAAO to bind two molecules of the substrate analogue O-methylglycine ligand is thought to facilitate the condensation reaction. A specialized role for SoAAO in the microbial defence mechanism related to aminoacetone catabolism through a pathway yielding dimethylpyrazine derivatives instead of methylglyoxal can be proposed.
Collapse
Affiliation(s)
- Gianluca Molla
- *Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J.H. Dunant 3, 21100 Varese, ltaly
| | - Marco Nardini
- ‡Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paolo Motta
- *Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J.H. Dunant 3, 21100 Varese, ltaly
| | - Paola D'Arrigo
- †The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM CNR Milano, and Università degli Studi deII'Insubria, Varese, Italy
| | - Walter Panzeri
- ║CNR-Istituto di Chimica del Riconoscimento Molecolare, Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- *Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi deII'Insubria, via J.H. Dunant 3, 21100 Varese, ltaly
| |
Collapse
|
7
|
Frattini LF, Piubelli L, Sacchi S, Molla G, Pollegioni L. Is rat an appropriate animal model to study the involvement of D-serine catabolism in schizophrenia? Insights from characterization of D-amino acid oxidase. FEBS J 2011; 278:4362-73. [PMID: 21981077 DOI: 10.1111/j.1742-4658.2011.08354.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
D-Amino acid oxidase (DAAO; EC1.4.3.3) has been proposed to play a main role in the degradation of D-serine, an allosteric activator of the N-methyl-D-aspartate-type glutamate receptor in the human brain, and to be associated with the onset of schizophrenia. To prevent excessive D-serine degradation, novel drugs for schizophrenia treatment based on DAAO inhibition were designed and tested on rats. However, the properties of rat DAAO are unknown and various in vivo trials have demonstrated the effects of DAAO inhibitors on d-serine concentration in rats. In the present study, rat DAAO was efficiently expressed in Escherichia coli. The recombinant enzyme was purified as an active, 40 kDa monomeric flavoenzyme showing the basic properties of the dehydrogenase-oxidase class of flavoproteins. Rat DAAO differs significantly from the human counterpart because: (a) it possesses a different substrate specificity; (b) it shows a lower kinetic efficiency, mainly as a result of a low substrate affinity; (c) it differs in affinity for the binding of classical inhibitors; (d) it is a stable monomer in the absence of an active site ligand; and (e) it interacts with the mammalian protein modulator pLG72 yielding a ~100 kDa complex in addition to the ~200 kDa one, as formed by the human DAAO. Furthermore, the concentration of endogenous D-serine in U87 glioblastoma cells was not affected by transfection with rat DAAO, whereas it was significantly decreased when expressing the human homologue. These results raise doubt on the use of the rat as a model system for testing new drugs against schizophrenia and indicate a different physiological function of DAAO in rodents and humans.
Collapse
Affiliation(s)
- Luca F Frattini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
8
|
Rosini E, Molla G, Ghisla S, Pollegioni L. On the reaction of d-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of reactivity. FEBS J 2010; 278:482-92. [DOI: 10.1111/j.1742-4658.2010.07969.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Study on the decrease of renal d-amino acid oxidase activity in the rat after renal ischemia by chiral ligand exchange capillary electrophoresis. Amino Acids 2010; 42:337-45. [DOI: 10.1007/s00726-010-0811-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/08/2010] [Indexed: 01/25/2023]
|
10
|
Saam J, Rosini E, Molla G, Schulten K, Pollegioni L, Ghisla S. O2 reactivity of flavoproteins: dynamic access of dioxygen to the active site and role of a H+ relay system in D-amino acid oxidase. J Biol Chem 2010; 285:24439-46. [PMID: 20498362 DOI: 10.1074/jbc.m110.131193] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular dynamics simulations and implicit ligand sampling methods have identified trajectories and sites of high affinity for O(2) in the protein framework of the flavoprotein D-amino-acid oxidase (DAAO). A specific dynamic channel for the diffusion of O(2) leads from solvent to the flavin Si-side (amino acid substrate and product bind on the Re-side). Based on this, amino acids that flank the putative O(2) high affinity sites have been exchanged with bulky residues to introduce steric constraints. In G52V DAAO, the valine side chain occupies the site that in wild-type DAAO has the highest O(2) affinity. In this variant, the reactivity of the reduced enzyme with O(2) is decreased >or=100-fold and the turnover number approximately 1000-fold thus verifying the concept. In addition, the simulations have identified a chain of three water molecules that might serve in relaying a H(+) from the product imino acid =NH(2)(+) group bound on the flavin Re-side to the developing peroxide on the Si-side. This function would be comparable with that of a similarly located histidine in the flavoprotein glucose oxidase.
Collapse
Affiliation(s)
- Jan Saam
- Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
11
|
Pedotti M, Ghisla S, Motteran L, Molla G, Pollegioni L. Catalytic and redox properties of glycine oxidase from Bacillus subtilis. Biochimie 2009; 91:604-12. [DOI: 10.1016/j.biochi.2009.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
12
|
Brenner S, Hay S, Munro AW, Scrutton NS. Inter-flavin electron transfer in cytochrome P450 reductase - effects of solvent and pH identify hidden complexity in mechanism. FEBS J 2008; 275:4540-57. [PMID: 18681889 DOI: 10.1111/j.1742-4658.2008.06597.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study on human cytochrome P450 reductase (CPR) presents a comprehensive analysis of the thermodynamic and kinetic effects of pH and solvent on two- and four-electron reduction in this diflavin enzyme. pH-dependent redox potentiometry revealed that the thermodynamic equilibrium between various two-electron reduced enzyme species (FMNH*,FADH*; FMN,FADH2; FMNH2,FAD) is independent of pH. No shift from the blue, neutral di-semiquinone (FMNH*,FADH*) towards the red, anionic species is observed upon increasing the pH from 6.5 to 8.5. Spectrophotometric analysis of events following the mixing of oxidized CPR and NADPH (1 to 1) in a stopped-flow instrument demonstrates that the establishment of this thermodynamic equilibrium becomes a very slow process at elevated pH, indicative of a pH-gating mechanism. The final level of blue di-semiquinone formation is found to be pH independent. Stopped-flow experiments using excess NADPH over CPR provide evidence that both pH and solvent significantly influence the kinetic exposure of the blue di-semiquinone intermediate, yet the observed rate constants are essentially pH independent. Thus, the kinetic pH-gating mechanism under stoichiometric conditions is of no significant kinetic relevance for four-electron reduction, but rather modulates the observed semiquinone absorbance at 600 nm in a pH-dependent manner. The use of proton inventory experiments and primary kinetic isotope effects are described as kinetic tools to disentangle the intricate pH-dependent kinetic mechanism in CPR. Our analysis of the pH and isotope dependence in human CPR reveals previously hidden complexity in the mechanism of electron transfer in this complex flavoprotein.
Collapse
Affiliation(s)
- Sibylle Brenner
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
13
|
Abstract
YgaF, a protein of previously unknown function in Escherichia coli, was shown to possess noncovalently bound flavin adenine dinucleotide and to exhibit L-2-hydroxyglutarate oxidase activity. The inability of anaerobic, reduced enzyme to reverse the reaction by reducing the product alpha-ketoglutaric acid is explained by the very high reduction potential (+19 mV) of the bound cofactor. The likely role of this enzyme in the cell is to recover alpha-ketoglutarate mistakenly reduced by other enzymes or formed during growth on propionate. On the basis of the identified function, we propose that this gene be renamed lhgO.
Collapse
|
14
|
Boselli A, Piubelli L, Molla G, Pilone MS, Pollegioni L, Sacchi S. Investigating the role of active site residues of Rhodotorula gracilis d-amino acid oxidase on its substrate specificity. Biochimie 2007; 89:360-8. [PMID: 17145127 DOI: 10.1016/j.biochi.2006.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/27/2006] [Indexed: 11/21/2022]
Abstract
D-amino acid oxidase (DAAO) is a flavoprotein that catalyzes stereospecifically the oxidative deamination of D-amino acids. The wild-type DAAO is mainly active on neutral D-amino acids, while basic D-amino acids are poor substrates and the acidic ones are virtually not oxidized. To present a comprehensive picture of how the active site residues can modulate the substrate specificity a number of mutants at position M213, Y223, Y238, R285, S335, and Q339 were prepared in the enzyme from the yeast Rhodotorula gracilis. All DAAO mutants have spectral properties similar to those of the wild-type enzyme and are catalytically active, thus excluding an essential role in catalysis; a lower activity on neutral and basic amino acids was observed. Interestingly, an increase in activity and (k(cat)/K(m))(app) ratio on D-aspartate was observed for all the mutants containing an additional charged residue in the active site. The active site of yeast DAAO appears to be a highly evolved scaffold built up through evolution to optimize the oxidative deamination of neutral D-amino acids without limiting its substrate specificity. It is noteworthy, that introduction of a sole, additional, positively charged residue in the active site is sufficient to optimize the reactivity on acidic D-amino acids, giving rise to kinetic properties similar to those of D-aspartate oxidase.
Collapse
Affiliation(s)
- Angelo Boselli
- Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Polegioni L. Characterization of human D-amino acid oxidase. FEBS Lett 2006; 580:2358-64. [PMID: 16616139 DOI: 10.1016/j.febslet.2006.03.045] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/09/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.
Collapse
Affiliation(s)
- Gianluca Molla
- Department of Biotechnology and Molecular Sciences, University of Insubria, Varese, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Sacchi S, Boselli A, Job V, Pilone MS, Pollegioni L, Molla G. The role of tyrosines 223 and 238 in Rhodotorula gracilis d-amino acid oxidase catalysis: Interpretation of double mutations. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/pl00021754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0050-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Dunford AJ, Marshall KR, Munro AW, Scrutton NS. Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395. ACTA ACUST UNITED AC 2004; 271:2548-60. [PMID: 15182370 DOI: 10.1111/j.1432-1033.2004.04185.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In rat neuronal nitric oxide synthase, Phe1395 is positioned over the FAD isoalloxazine ring. This is replaced by Trp676 in human cytochrome P450 reductase, a tryptophan in related diflavin reductases (e.g. methionine synthase reductase and novel reductase 1), and tyrosine in plant ferredoxin-NADP(+) reductase. Trp676 in human cytochrome P450 reductase is conformationally mobile, and plays a key role in enzyme reduction. Mutagenesis of Trp676 to alanine results in a functional NADH-dependent reductase. Herein, we describe studies of rat neuronal nitric oxide synthase FAD domains, in which the aromatic shielding residue Phe1395 is replaced by tryptophan, alanine and serine. In steady-state assays the F1395A and F1395S domains have a greater preference for NADH compared with F1395W and wild-type. Stopped-flow studies indicate flavin reduction by NADH is significantly faster with F1395S and F1395A domains, suggesting that this contributes to altered preference in coenzyme specificity. Unlike cytochrome P450 reductase, the switch in coenzyme specificity is not attributed to differential binding of NADPH and NADH, but probably results from improved geometry for hydride transfer in the F1395S- and F1395A-NADH complexes. Potentiometry indicates that the substitutions do not significantly perturb thermodynamic properties of the FAD, although considerable changes in electronic absorption properties are observed in oxidized F1395A and F1395S, consistent with changes in hydrophobicity of the flavin environment. In wild-type and F1395W FAD domains, prolonged incubation with NADPH results in development of the neutral blue semiquinone FAD species. This reaction is suppressed in the mutant FAD domains lacking the shielding aromatic residue.
Collapse
|
21
|
Boselli A, Sacchi S, Job V, Pilone MS, Pollegioni L. Role of tyrosine 238 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4762-71. [PMID: 12354107 DOI: 10.1046/j.1432-1033.2002.t01-1-03173.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Y238, one of the very few conserved residues in the active site of d-amino acid oxidases (DAAO), was mutated to phenylalanine and serine in the enzyme from the yeast Rhodotorula gracilis. The mutated proteins are catalytically competent thus eliminating Tyr238 as an active-site acid/base catalyst. Y238F and Y238S mutants exhibit a threefold slower turnover on d-alanine as substrate, which can be attributed to a slower rate of product release relative to the wild-type enzyme (a change of the rate constants for substrate binding was also evident). The Y238 DAAO mutants have spectral properties similar to those of the wild-type enzyme but the degree of stabilization of the flavin semiquinone and the redox properties in the free form of Y238S are different. The binding of the carboxylic acid competitive inhibitors and the substrate d-alanine are changed only slightly, suggesting that the overall substrate binding pocket remains intact. In agreement with data from the pH dependence of ligand binding and with the protein crystal structure, site-directed mutagenesis results emphasize the importance of residue Y238 in controlling access to the active site instead of a role in the substrate/ligand interaction.
Collapse
Affiliation(s)
- Angelo Boselli
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
22
|
Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L. Engineering the substrate specificity of D-amino-acid oxidase. J Biol Chem 2002; 277:27510-6. [PMID: 12021281 DOI: 10.1074/jbc.m203946200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high resolution crystal structure of D-amino-acid oxidase (DAAO) from the yeast Rhodotorula gracilis provided us with the tool to engineer the substrate specificity of this flavo-oxidase. DAAO catalyzes the oxidative deamination of D-amino acids, with the exception of D-aspartate and D-glutamate (which are oxidized by D-aspartate oxidase, DASPO). Following sequence homology, molecular modeling, and simulated annealing docking analyses, the active site residue Met-213 was mutated to arginine. The mutant enzyme showed properties close to those of DASPO (e.g. the oxidation of D-aspartate and the binding of l-tartrate), and it was still active on D-alanine. The presence of an additional guanidinium group in the active site of the DAAO mutant allowed the binding (and thus the oxidation) of D-aspartate, but it was also responsible for a lower catalytic activity on D-alanine. Similar results were also obtained when two additional arginines were simultaneously introduced in the active site of DAAO (M213R/Y238R mutant, yielding an architecture of the active site more similar to that obtained for the DASPO model), but the double mutant showed very low stability in solution. The decrease in maximal activity observed with these DAAO mutants could be due to alterations in the precise orbital alignment required for efficient catalysis, although even the change in the redox properties (more evident in the DAAO-benzoate complex) could play a role. The rational design approach was successful in producing an enzymatic activity with a new, broader substrate specificity, and this approach could also be used to develop DAAO variants suitable for use in biotechnological applications.
Collapse
Affiliation(s)
- Silvia Sacchi
- Department of Structural and Functional Biology, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Léger C, Heffron K, Pershad HR, Maklashina E, Luna-Chavez C, Cecchini G, Ackrell BA, Armstrong FA. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry 2001; 40:11234-45. [PMID: 11551223 DOI: 10.1021/bi010889b] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein film voltammetry is used to probe the energetics of electron transfer and substrate binding at the active site of a respiratory flavoenzyme--the membrane-extrinsic catalytic domain of Escherichia coli fumarate reductase (FrdAB). The activity as a function of the electrochemical driving force is revealed in catalytic voltammograms, the shapes of which are interpreted using a Michaelis-Menten model that incorporates the potential dimension. Voltammetric experiments carried out at room temperature under turnover conditions reveal the reduction potentials of the FAD, the stability of the semiquinone, relevant protonation states, and pH-dependent succinate--enzyme binding constants for all three redox states of the FAD. Fast-scan experiments in the presence of substrate confirm the value of the two-electron reduction potential of the FAD and show that product release is not rate limiting. The sequence of binding and protonation events over the whole catalytic cycle is deduced. Importantly, comparisons are made with the electrocatalytic properties of SDH, the membrane-extrinsic catalytic domain of mitochondrial complex II.
Collapse
Affiliation(s)
- C Léger
- Inorganic Chemistry Laboratory, Oxford OX1 3QR, U.K
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|