1
|
Sallam NA, Laher I. Regional heterogeneity in vascular contractile dysfunction in diabetic mice. Mol Cell Biochem 2025:10.1007/s11010-025-05257-4. [PMID: 40208461 DOI: 10.1007/s11010-025-05257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/16/2025] [Indexed: 04/11/2025]
Abstract
Oxidative stress underlies many diabetic complications, including diabetic vasculopathy. It is unclear if oxidative stress has different effects in regionally distant arteries. We compared the contractile function of three arteries from diabetic mice and elucidated the mechanisms underlying their differential adaptation. We examined responses of the aorta, carotid and femoral arteries, isolated from the same diabetic (db/db) or normoglycemic control mice, to different vasoconstrictors in the presence and absence of indomethacin, apocynin, sulfaphenazole, L-NAME or a reactive oxygen species generating system to identify the enzyme(s) contributing to vascular dysfunction. Expression of superoxide dismutase (SOD) isoforms was measured. db/db aortae showed augmented contractile responses to KCl, phenylephrine, A23197 and U-46619 likely due to activated cyclooxygenases and hypersensitivity to thromboxane A2. Contractile responses of db/db carotid arteries were unaltered, likely due to higher SOD3 and SOD1 levels compared to the aortae. Femoral arteries were more vulnerable to oxidative stress, lacked SOD3 expression, and showed higher basal potassium channels activity. Phenylephrine contractions in femoral arteries were dependent on extracellular calcium entry; while contractions in aortae were dependent on extracellular calcium entry and intracellular calcium release. Femoral arteries from db/db mice exhibited higher basal potassium channels activity and attenuated contractility compared to control mice likely due to lower SOD levels. Heterogeneity exists between the three arteries at functional and molecular levels due to different signalling pathways and antioxidant defense mechanisms. Understanding regional differences in vasomotor control coupled with advanced delivery systems can help in developing therapies targeting specific vascular beds.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-aini Street, Cairo, 11562, Egypt.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Zhou C, Li J, Duan Y, Fu S, Li H, Zhou Y, Gao H, Zhou X, Liu H, Lei L, Chen J, Yuan D. Genome sequencing and transcriptome analysis provide an insight into the hypoxia resistance of Channa asiatica. Int J Biol Macromol 2024; 282:137306. [PMID: 39515710 DOI: 10.1016/j.ijbiomac.2024.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Channa asiatica is an economically valuable fish species and excellent model for studying hypoxic tolerance. However, the underlying genetic and molecular mechanisms are poorly understood. In this study, we assembled a high-quality C. asiatica genome (23 chromosomes, totaling 722 Mb) using a combination of Illumina short-read, PacBio long-read, and Hi-C sequencing. Repetitive elements accounted for 28.39%of the C. asiatica genome, and 23,949 protein-coding genes were predicted, with 96.63 % of these functionally annotated. Moreover, a comparative genomic analysis of 12 fish genomes showed that gene families associated with oxygen binding and transport were expanded in C. asiatica. In addition, transcriptome analysis revealed that multiple oxidative stress pathways were activated when C. asiatica was exposed to air. In conclusion, this study provided high-quality genome assembly and transcriptome data, both serving as critical resources for researching the genetic basis of hypoxic tolerance in C. asiatica.
Collapse
Affiliation(s)
- Chaowei Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Junting Li
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Yuting Duan
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Suxing Fu
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Hejiao Li
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Yinhua Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - He Gao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China; Key Laboratory of Aquatic Science of Chongqing, College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xinghua Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Haiping Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China; Key Laboratory of Aquatic Science of Chongqing, College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Luo Lei
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China.
| | - Jie Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| | - Dengyue Yuan
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China.
| |
Collapse
|
3
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
4
|
Do Couto NF, Fancher I, Granados ST, Cavalcante-Silva J, Beverley KM, Ahn SJ, Hwang CL, Phillips SA, Levitan I. Impairment of microvascular endothelial Kir2.1 channels contributes to endothelial dysfunction in human hypertension. Am J Physiol Heart Circ Physiol 2024; 327:H1004-H1015. [PMID: 39212765 PMCID: PMC11482249 DOI: 10.1152/ajpheart.00732.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hypertension is associated with decreased endothelial function through reduced contributions of nitric oxide (NO). We previously discovered that flow-induced NO production in resistance arteries of mice and humans critically depends on endothelial inwardly rectifying K+ (Kir2.1) channels. The goal of this study was to establish whether these channels contribute to the impairment of endothelial function, measured by flow-induced vasodilation (FIV) in peripheral resistance arteries of humans with hypertension. We measured FIV in vessels isolated from subcutaneous fat biopsies from 32 subjects: normotensive [n = 19; 30.6 ± 9.8 yr old; systolic blood pressure (SBP): 115.2 ± 7 mmHg; diastolic blood pressure (DBP): 75.3 ± 5.7 mmHg] and hypertensive (n = 13; 45.3 ± 15.3 yr old; SBP: 146.1 ± 15.2 mmHg; DBP: 94.4 ± 6.9 mmHg). Consistent with previous studies, we find that FIV is impaired in hypertensive adults as demonstrated by a significant reduction in FIV when compared with the normotensive adults. Furthermore, our data suggest that the impairment of FIV in hypertensive adults is partially attributed to a reduction in Kir2.1-dependent vasodilation. Specifically, we show that blocking Kir2.1 with ML133 or functionally downregulating Kir2.1 with endothelial-specific adenoviral vector containing dominant-negative Kir2.1 (dnKir2.1) result in a significant reduction in FIV in normotensive subjects but with a smaller effect in hypertensive adults. The Kir2.1-dependent vasodilation was negatively correlated to both SBP and DBP, indicating that the Kir2.1 contribution to FIV decreases as blood pressure increases. In addition, we show that exposing vessels from normotensive adults to acute high-pressure results in loss of Kir2.1 contribution, as high pressure impairs vasodilation. No effect is seen when these vessels were incubated with dnKir2.1. Overexpressing wtKir2.1 in the endothelium resulted in some improvement in vasodilation in arteries from all participants, with a greater recovery in hypertensive adults. Our data suggest that hypertension-induced suppression of Kir2.1 is an important mechanism underlying endothelial dysfunction in hypertension.NEW & NOTEWORTHY Impairment of endothelial function under high blood pressure is linked to the loss of inwardly rectifying K+ (Kir2.1) channels activity in human resistance arteries, leading to a reduction in flow-induced vasodilation and possibly leading to a vicious cycle between elevation of blood pressure, and further impairment of Kir2.1 function and flow-induced vasodilation.
Collapse
Affiliation(s)
- Natalia F Do Couto
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois,United States
| | - Ibra Fancher
- Department Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware, United States
| | - Sara T Granados
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States
| | - Jacqueline Cavalcante-Silva
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Katie M Beverley
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Chueh-Lung Hwang
- Department Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois,United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Allergy and Sleep, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
5
|
Angelova PR, Abramov AY. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem Soc Trans 2024; 52:1939-1946. [PMID: 39171662 PMCID: PMC11668289 DOI: 10.1042/bst20240261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.
Collapse
Affiliation(s)
- Plamena R. Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, U.K
| |
Collapse
|
6
|
Zhou M, Li TS, Abe H, Akashi H, Suzuki R, Bando Y. Expression levels of K ATP channel subunits and morphological changes in the mouse liver after exposure to radiation. World J Exp Med 2024; 14:90374. [PMID: 38948415 PMCID: PMC11212743 DOI: 10.5493/wjem.v14.i2.90374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND ATP sensitive K+ (KATP) channels are ubiquitously distributed in various of cells and tissues, including the liver. They play a role in the pathogenesis of myocardial and liver ischemia. AIM To evaluate the radiation-induced changes in the expression of KATP channel subunits in the mouse liver to understand the potential role of KATP channels in radiation injury. METHODS Adult C57BL/6 mice were randomly exposed to γ-rays at 0 Gy (control, n = 2), 0.2 Gy (n = 6), 1 Gy (n = 6), or 5 Gy (n = 6). The livers were removed 3 and 24 h after radiation exposure. Hematoxylin and eosin staining was used for morphological observation; immunohistochemical staining was applied to determine the expression of KATP channel subunits in the liver tissue. RESULTS Compared with the control group, the livers exposed to 0.2 Gy γ-ray showed an initial increase in the expression of Kir6.1 at 3 h, followed by recovery at 24 h after exposure. Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h. However, the expression of Kir6.2, SUR1, or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses. CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses, suggesting a potential role for them in radiation-induced liver injury.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- Sendai Old Age Refresh Station, A Long-term Care Health Facility, Sendai 981-1105, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
7
|
Lewandowska J, Kalenik B, Wrzosek A, Szewczyk A. Redox Regulation of Mitochondrial Potassium Channels Activity. Antioxidants (Basel) 2024; 13:434. [PMID: 38671882 PMCID: PMC11047711 DOI: 10.3390/antiox13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Redox reactions exert a profound influence on numerous cellular functions with mitochondria playing a central role in orchestrating these processes. This pivotal involvement arises from three primary factors: (1) the synthesis of reactive oxygen species (ROS) by mitochondria, (2) the presence of a substantial array of redox enzymes such as respiratory chain, and (3) the responsiveness of mitochondria to the cellular redox state. Within the inner mitochondrial membrane, a group of potassium channels, including ATP-regulated, large conductance calcium-activated, and voltage-regulated channels, is present. These channels play a crucial role in conditions such as cytoprotection, ischemia/reperfusion injury, and inflammation. Notably, the activity of mitochondrial potassium channels is intricately governed by redox reactions. Furthermore, the regulatory influence extends to other proteins, such as kinases, which undergo redox modifications. This review aims to offer a comprehensive exploration of the modulation of mitochondrial potassium channels through diverse redox reactions with a specific focus on the involvement of ROS.
Collapse
Affiliation(s)
| | | | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (J.L.); (B.K.); (A.W.)
| |
Collapse
|
8
|
Zhu H, Wang H, Zhu X, Chen Q, Fang X, Xu X, Ping Y, Gao B, Tong G, Ding Y, Chen T, Huang J. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther 2023; 40:76-101. [PMID: 36279093 DOI: 10.1007/s12325-022-02343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
Coronary microvascular dysfunction (CMD) refers to a group of disorders affecting the structure and function of coronary microcirculation and is associated with an increased risk of major adverse cardiovascular events. At present, great progress has been made in the diagnosis of CMD, but there is no specific treatment for it because of the complexity of CMD pathogenesis. Vascular dysfunction is one of the important causes of CMD, but previous reviews mostly considered microvascular dysfunction as a whole abnormality so the obtained conclusions are skewed. The coronary microvascular function is co-regulated by multiple mechanisms, and the mechanisms by which microvessels of different luminal diameters are regulated vary. The main purpose of this review is to revisit the mechanisms by which coronary microvessels at different diameters regulate coronary microcirculation through integrated sequential activation and briefly discuss the pathogenesis, diagnosis, and treatment progress of CMD from this perspective.
Collapse
Affiliation(s)
- Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Hanxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Zhu
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaojiang Fang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaoqun Xu
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yan Ping
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Beibei Gao
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Guoxin Tong
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Ding
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
9
|
Saha PS, Knecht TM, Arrick DM, Watt MJ, Scholl JL, Mayhan WG. Prenatal exposure to alcohol impairs responses of cerebral arterioles to activation of potassium channels: Role of oxidative stress. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:87-94. [PMID: 36446735 PMCID: PMC9974881 DOI: 10.1111/acer.14980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Potassium channels play an important role in the basal tone and dilation of cerebral resistance arterioles in response to many stimuli. However, the effect of prenatal alcohol exposure (PAE) on specific potassium channel function remains unknown. The first goal of this study was to determine the influence of PAE on the reactivity of cerebral arterioles to activation of ATP-sensitive potassium (KATP ) and BK channels. Our second goal was to determine whether oxidative stress contributed to potassium channel dysfunction of cerebral arterioles following PAE. METHODS We fed Sprague-Dawley dams a liquid diet with or without alcohol (3% EtOH) for the duration of their pregnancy (21 to 23 days). We examined in vivo responses of cerebral arterioles in control and PAE male and female offspring (14 to 16 weeks after birth) to activators of potassium channels (Iloprost [BK channels] and pinacidil [KATP channels]), before and following inhibition of oxidative stress with apocynin. RESULTS We found that PAE impaired dilation of cerebral arterioles in response to activation of potassium channels with iloprost and pinacidil, and this impairment was similar in male and female rats. In addition, treatment with apocynin reversed the impaired vasodilation to iloprost and pinacidil in PAE rats to levels observed in control rats. This effect of apocynin also was similar in male and female rats. CONCLUSIONS PAE induces dysfunction in the ability of specific potassium channels to dilate cerebral arterioles which appears to be mediated by an increase in oxidative stress. We suggest that these alterations in potassium channel function may contribute to the pathogenesis of cerebral vascular abnormalities and/or behavioral/cognitive deficits observed in fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Partha S. Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Tiffany M. Knecht
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Denise M. Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - Michael J. Watt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jamie L. Scholl
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| | - William G. Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069
| |
Collapse
|
10
|
Gęgotek A, Skrzydlewska E. The Role of ABC Transporters in Skin Cells Exposed to UV Radiation. Int J Mol Sci 2022; 24:115. [PMID: 36613554 PMCID: PMC9820374 DOI: 10.3390/ijms24010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABC transporters are expressed in skin cells to protect them against harmful xenobiotics. Moreover, these transmembrane proteins have a number of additional functions that ensure skin homeostasis. This review summarizes the current knowledge about the role of specific ABC proteins in the skin, including multi-drug resistance transporters (MDR1/3), the transporter associated with antigen processing 1/2 (TAP1/2), the cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptors (SUR1/2), and the breast cancer resistance protein (BCRP). Additionally, the effect of UV radiation on ABC transporters is shown. The exposure of skin cells to UV radiation often leads to increased activity of ABC transporters-as has been observed in the case of MDRs, TAPs, CFTR, and BCRP. A different effect of oxidative stress has been observed in the case of mitochondrial SURs. However, the limited data in the literature-as indicated in this article-highlights the limited number of experimental studies dealing with the role of ABC transporters in the physiology and pathophysiology of skin cells and the skin as a whole. At the same time, the importance of such knowledge in relation to the possibility of daily exposure to UV radiation and xenobiotics, used for both skin care and the treatment of its diseases, is emphasized.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Białystok, Poland
| | | |
Collapse
|
11
|
Sridevi Gurubaran I, Hytti M, Kaarniranta K, Kauppinen A. Epoxomicin, a Selective Proteasome Inhibitor, Activates AIM2 Inflammasome in Human Retinal Pigment Epithelium Cells. Antioxidants (Basel) 2022; 11:antiox11071288. [PMID: 35883779 PMCID: PMC9311580 DOI: 10.3390/antiox11071288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Emerging evidence suggests that the intracellular clearance system plays a vital role in maintaining homeostasis and in regulating oxidative stress and inflammation in retinal pigment epithelium (RPE) cells. Dysfunctional proteasomes and autophagy in RPE cells have been associated with the pathogenesis of age-related macular degeneration. We have previously shown that the inhibition of proteasomes using MG-132 activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in human RPE cells. However, MG-132 is a non-selective proteasome inhibitor. In this study, we used the selective proteasome inhibitor epoxomicin to study the effect of non-functional intracellular clearance systems on inflammasome activation. Our data show that epoxomicin-induced proteasome inhibition promoted both nicotinamide adenine dinucleotide phosphate oxidase and mitochondria-mediated oxidative stress and release of mitochondrial DNA to the cytosol, which resulted in potassium efflux-dependent absence in melanoma 2 (AIM2) inflammasome activation and subsequent interleukin-1β secretion in ARPE-19 cells. The non-specific proteasome inhibitor MG-132 activated both NLRP3 and AIM2 inflammasomes and oxidative stress predominated as the activation mechanism, but modest potassium efflux was also detected. Collectively, our data suggest that a selective proteasome inhibitor is a potent inflammasome activator in human RPE cells and emphasize the role of the AIM2 inflammasome in addition to the more commonly known NLRP3 inflammasome.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
| | - Maria Hytti
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (I.S.G.); (K.K.)
- Immuno-Ophthalmology, School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
- Correspondence:
| |
Collapse
|
12
|
Jia R, Hou Y, Feng W, Li B, Zhu J. Alterations at biochemical, proteomic and transcriptomic levels in liver of tilapia (Oreochromis niloticus) under chronic exposure to environmentally relevant level of glyphosate. CHEMOSPHERE 2022; 294:133818. [PMID: 35114268 DOI: 10.1016/j.chemosphere.2022.133818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of glyphosate (Gly) on aquatic animals has received attention from many researchers. However, the chronic toxicity mechanism of Gly on fish has not yet been clarified entirely. Thus, this study aimed to explore the potential toxicity mechanism of Gly at 2 mg/L, a possibly existing concentration in the aquatic environment, via biochemical, transcriptomic and proteomic analyses in the liver of tilapia. Long-term Gly exposure increased lipid content, and altered redox status in liver. Transcriptomic analysis revealed that Gly exposure changed dramatically the expression of 225 genes in liver, including 94 up-regulated genes and 131 down-regulated genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that these genes were predominantly enriched in ion transport, lipid metabolism and PPAR (peroxisome proliferator-activated receptor) signaling pathway. Meanwhile, at proteomic level, long-term Gly exposure resulted in alteration of 21 proteins, which were principally related to hepatic metabolism function. In conclusion, our data displayed a potential toxicity, mainly manifested as redox imbalance and dysregulation of metabolism function, in the liver of tilapia after long-term Gly exposure at 2 mg/L. This study provided novel insight into underlying toxicity mechanism of long-term Gly exposure at an environmentally relevant concentration in fish.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
13
|
Santos JD, Paulo M, Vercesi JA, Bendhack LM. Thromboxane-prostanoid receptor activation blocks ATP-sensitive potassium channels in rat aortas. Clin Exp Pharmacol Physiol 2021; 48:1537-1546. [PMID: 34329487 DOI: 10.1111/1440-1681.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
K+ channel activation is one of the major mechanisms involved in vasodilation. Vasoconstrictor agonists such as angiotensin II promote ATP-dependent potassium channels (KATP ) dysfunction. This study evaluates whether thromboxane-prostanoid (TP receptor) activation by the agonist U46619 increases reactive oxygen species (ROS) production in rat aortas, which could contribute to KATP channel dysfunction and impaired NO-dependent vasodilation. TP receptor activation with the selective agonist U46619 increased ROS in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), but the TP receptor antagonist SQ29548 abolished this effect. ECs and VSMCs incubation with ROS scavengers like Tiron or PEG-Catalase impaired U46619-induced ROS production. U46619 at the concentrations of 0.1 and 1 µmol/L induced contractions with similar amplitude. KATP channel activation with pinacidil-induced relaxation was lower for the contractions induced with 0.1 or 1 µmol/L U46619 than with 10 nmol/L U46619. Acetylcholine-induced relaxation provided similar results. In aortas pre-contracted with 10 nmol/L U46619, neither Tiron (100 µmol/L) nor catalase (300 U/mL) affected pinacidil-induced relaxation. However, in aortas pre-contracted with 0.1 µmol/L U46619, catalase potentiated pinacidil-induced relaxation. Pinacidil potentiated acetylcholine-induced relaxation in aortas pre-contracted with 0.1 and 1 µmol/L U46619. Incubation with 10 nmol/L U46619 increased NO concentration in ECs. Taken together, these results show that high concentrations of the TP receptor agonist U46619 impair KATP channels, which is probably due to ROS production. It is likely that hydrogen peroxide is the ROS.
Collapse
MESH Headings
- Animals
- Rats
- KATP Channels/metabolism
- KATP Channels/agonists
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Receptors, Thromboxane/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Vasodilation/drug effects
- Aorta/drug effects
- Aorta/metabolism
- Rats, Wistar
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Vasoconstrictor Agents/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
Collapse
Affiliation(s)
- Jeimison D Santos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Juliana A Vercesi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lusiane M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Abbasi A, Pakravan N, Hassan ZM. Hyaluronic Acid Improves Hydrogen Peroxide Modulatory Effects on Calcium Channel and Sodium-Potassium Pump in 4T1 Breast Cancer Cell Line. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8681349. [PMID: 33456676 PMCID: PMC7787766 DOI: 10.1155/2020/8681349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022]
Abstract
Maintaining homeostasis of ion concentrations is critical in cancer cells. Under hypoxia, the levels of channels and pumps in cancer cells are more active than normal cells suggesting ion channels as a suitable therapeutic target. One of the contemporary ways for cancer therapy is oxidative stress. However, the effective concentration of oxidative stress on tumor cells has been reported to be toxic for normal cells as well. In this study, we benefited from the modifying effects of hyaluronic acid (HA) on H2O2, as a free radical source, to make a gradual release of oxidative stress on cancer cells while preventing/decreasing damage to normal cells under normoxia and hypoxic conditions. To do so, we initially investigated the optimal concentration of HA antioxidant capacity by the DPPH test. In the next step, we found optimum H2O2 dose by treating the 4T1 breast cancer cell line with increasing concentrations (0, 10, 20, 50,100, 200, 500, and 1000 μM) of H2O2 alone or H2O2 + HA (83%) for 24 hrs. The calcium channel and the sodium-potassium pumps were then evaluated by measuring the levels of calcium, sodium, and potassium ions using an atomic absorption flame spectrophotometer. The results revealed that treatment with H2O2 or H2O2+ HA led to an intracellular increase of calcium, sodium, and potassium in the normoxic and hypoxic circumstances in a dose-dependent manner. It is noteworthy that H2O2 + HA treatment had more favorable and controllable effects compared with H2O2 alone. Moreover, HA optimizes the antitumor effect of oxidative stress exerted by H2O2 making H2O2 + HA suitable for clinical use in cancer treatment along with chemotherapy.
Collapse
Affiliation(s)
- Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Pakravan
- Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Gao S, Hua B, Liu Q, Liu H, Li W, Li H. Role of peroxisome proliferators-activated receptor-gamma in advanced glycation end product-mediated functional loss of voltage-gated potassium channel in rat coronary arteries. BMC Cardiovasc Disord 2020; 20:337. [PMID: 32664860 PMCID: PMC7362521 DOI: 10.1186/s12872-020-01613-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background High blood glucose impairs voltage-gated K+ (Kv) channel-mediated vasodilation in rat coronary artery smooth muscle cells (CSMCs) via oxidative stress. Advanced glycation end product (AGE) and receptor for AGE (RAGE) axis has been found to impair coronary dilation by reducing Kv channel activity in diabetic rat small coronary arteries (RSCAs). However, its underlying mechanism remain unclear. Here, we used isolated arteries and primary CSMCs to investigate the effect of AGE incubation on Kv channel-mediated coronary dilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR) -γ pathway. Methods The RSCAs and primary CSMCs were isolated, cultured, and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO, PPAR-γ activator) and/or GW9662 (PPAR-γ inhibitor). The groups were accordingly divided as control, BSA, AGE, AGE + ALA, AGE + PIO, or AGE + PIO + GW9662. Kv channel-mediated dilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, major Kv channel subunits expressed in CSMCs (Kv1.2 and Kv1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). Results AGE markedly reduced Forskolin-induced Kv channel-mediated dilation of RSCAs by engaging with RAGE, and ALA or PIO significantly reversed the functional loss of Kv channel. In both RSCAs and CSMCs, AGE reduced Kv1.2/1.5 expression, increased RAGE and NOX-2 expression, and inhibited PPAR-γ expression, while ALA or PIO treatment partially reversed the inhibiting effects of AGE on Kv1.2/1.5 expression, accompanied by the downregulation of RAGE and decreased oxidative stress. Meanwhile, silencing of RAGE with siRNA remarkably alleviated the AGE-induced downregulation of Kv1.2/1.5 expression in CSMCs. Conclusion AGE reduces the Kv channel expression in CSMCs and further impairs the Kv channel-mediated dilation in RSCAs. The AGE/RAGE axis may enhance oxidative stress by inhibiting the downstream PPAR-γ pathway, thus playing a critical role in the dysfunction of Kv channels.
Collapse
Affiliation(s)
- Side Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Bing Hua
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Qingbo Liu
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China
| | - Huirong Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China. .,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China.
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Xicheng, Beijing, 100050, P. R. China. .,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, 100069, P. R. China. .,Department of Internal Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China.
| |
Collapse
|
17
|
Cunha TRD, Giesen JAS, Rouver WN, Costa ED, Grando MD, Lemos VS, Bendhack LM, Santos RLD. Effects of progesterone treatment on endothelium-dependent coronary relaxation in ovariectomized rats. Life Sci 2020; 247:117391. [PMID: 32017871 DOI: 10.1016/j.lfs.2020.117391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
AIM Although progesterone (P4) has a beneficial effect on the cardiovascular system, P4 actions on the coronary bed have not yet been fully elucidated. This study evaluated the effect of progesterone treatment on endothelium-dependent coronary vascular reactivity in Wistar rats. MAIN METHODS Eight-week-old adult rats were divided into Sham, Ovariectomized (OVX), Ovariectomized and progesterone treated (OVX P4). The OVX P4 group received daily doses of progesterone (2 mg/kg/day). Vascular reactivity was assessed by a modified Langendorff technique. The intensity of eNOS, Akt, and gp91phox protein expression was quantified by Western blotting. Superoxide anion (O2●-) and hydrogen peroxide (H2O2) production was measured by dihydroethidium and 2',7'-dichlorofluorescein, respectively. KEY FINDINGS Treatment with P4 was able to prevent the reduction in baseline coronary perfusion pressure induced by ovariectomy. We observed that endothelium-dependent coronary vasodilation was reduced in the OVX group and potentiated in the OVX P4 group. Following the inhibition of the nitric oxide (NO) pathway, the bradykinin-induced relaxing response was potentiated in the OVX P4 group. With regard to the combined inhibition of NO and prostanoids pathways, the OVX P4 group showed a greater relaxing response, similar to what was found upon individual inhibition of NO. After the combined inhibition of NO, prostanoids and epoxyeicosatrienoic acids' pathways, the vasodilatory response induced by BK was abolished in all groups. SIGNIFICANCE Treatment with P4 prevented oxidative stress induced by ovariectomy. These results suggest that progesterone has a beneficial action on the coronary vascular bed.
Collapse
Affiliation(s)
- Tagana Rosa da Cunha
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Wender Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Eduardo Damasceno Costa
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcella Daruge Grando
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
18
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
19
|
Shields KL, Broxterman RM, Jarrett CL, Bisconti AV, Park SH, Richardson RS. The passive leg movement technique for assessing vascular function: defining the distribution of blood flow and the impact of occluding the lower leg. Exp Physiol 2019; 104:1575-1584. [PMID: 31400019 DOI: 10.1113/ep087845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the distribution of the hyperaemic response to passive leg movement (PLM) in the common (CFA), deep (DFA) and superficial (SFA) femoral arteries? What is the impact of lower leg cuff-induced blood flow occlusion on this response? What is the main finding and its importance? Of the total blood that passed through the CFA, the majority was directed to the DFA and this was unaffected by cuffing. As a small fraction does pass through the SFA to the lower leg, cuffing during PLM should be considered to emphasize the thigh-specific hyperaemia. ABSTRACT It has yet to be quantified how passive leg movement (PLM)-induced hyperaemia, an index of vascular function, is distributed beyond the common femoral artery (CFA), into the deep femoral (DFA) and the superficial femoral (SFA) arteries, which supply blood to the thigh and lower leg, respectively. Furthermore, the impact of cuffing the lower leg, a common practice, especially with drug infusions during PLM, on the hyperaemic response is, also, unknown. Therefore, PLM was performed with and without cuff-induced blood flow (BF) occlusion to the lower leg in 10 healthy subjects, with BF assessed by Doppler ultrasound. In terms of BF distribution during PLM, of the 380 ± 191 ml of blood that passed through the CFA, 69 ± 8% was directed to the DFA, while only 31 ± 8% passed through the SFA. Cuff occlusion of the lower leg significantly attenuated the PLM-induced hyperaemia through the SFA (∼30%), which was reflected by a fall in BF through the CFA (∼20%), but not through the DFA. Additionally, cuff occlusion significantly attenuated the PLM-induced peak change in BF (BFΔpeak ) in the SFA (324 ± 159 to 214 ± 114 ml min-1 ), which was, again, reflected in the CFA (1019 ± 438 to 833 ± 476 ml min-1 ), but not in the DFA. Thus, the PLM-induced hyperaemia predominantly passes through the DFA and this was unaltered by cuffing. However, as a small fraction of the PLM-induced hyperaemia does pass through the SFA to the lower leg, cuffing the lower leg during PLM should be considered to emphasize thigh-specific hyperaemia in the PLM assessment of vascular function.
Collapse
Affiliation(s)
- Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Angela V Bisconti
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Sciences for Health, University of Milan, Milan, MI, Italy
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Li L, Zhang C, Wang P, Wang A, Zhou J, Chen G, Xu J, Yang Y, Zhao Y, Zhang S, Tian Y. Imaging the Redox States of Live Cells with the Time-Resolved Fluorescence of Genetically Encoded Biosensors. Anal Chem 2019; 91:3869-3876. [PMID: 30777423 DOI: 10.1021/acs.analchem.8b04292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox environments in cells influence many important physiological and pathological processes. In this study, the time-resolved fluorescence of a recently reported thiol redox-sensitive sensor based on vertebrate fluorescent protein UnaG, roUnaG, was studied, along with the application of the time-resolved fluorescence of roUnaG to image the redox states of the mitochondria, cytoplasm, and nucleus in live cells. Time-resolved fluorescence images of roUnaG clearly demonstrated that potent anticancer compound KP372-1 induced extreme oxidative stress. A more stressful redox state observed in activated macrophages further demonstrated the validity of roUnaG with time-resolved fluorescence. For comparison, time-resolved fluorescence images of four other frequently used redox biosensors (roGFP1, HyPer, HyPerRed, and rxRFP) were also captured. The time-resolved fluorescence allows an intrinsically ratiometric measurement for biosensors with one excitation wavelength and provides new opportunities for bioimaging.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China.,School of Science , Jiangnan University , Wuxi 214122 , China
| | | | - Peng Wang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | | | - Jiasheng Zhou
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Guoqing Chen
- School of Science , Jiangnan University , Wuxi 214122 , China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200031 , China
| | | | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , China.,Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China.,NYU-ECNU Institute of Physics at NYU Shanghai , No. 3663, North Zhongshan Road , Shanghai 200062 , China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| |
Collapse
|
21
|
Puro DG. Role of ion channels in the functional response of conjunctival goblet cells to dry eye. Am J Physiol Cell Physiol 2018; 315:C236-C246. [PMID: 29669221 DOI: 10.1152/ajpcell.00077.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Optimal vision requires an ocular surface with a stable tear film whose many critical tasks include providing >70% of the eye's refractive power. However, for millions, tear film instability produces uncomfortable sight-impairing dry eye. Despite the multitude of etiologies for dry eye, a universal hallmark is hyperosmolarity of the tear film. Presently, knowledge of how the ocular surface responds to hyperosmolarity remains incomplete with little understood about the role of ion channels. This bioelectric analysis focused on conjunctival goblet cells whose release of tear-stabilizing mucin is a key adaptive response to dry eye. In freshly excised rat conjunctiva, perforated-patch recordings demonstrated that a ≥10% rise in osmolarity triggers goblet cells to rapidly generate a ~15-mV hyperpolarization due to the oxidant-dependent activation of ATP-sensitive K+ (KATP) channels. High-resolution membrane capacitance measurements used to monitor exocytosis revealed that this hyperpolarization results in an approximately fourfold boost in exocytotic activity evoked by cholinergic input, which in vivo occurs via a neural reflex and depends chiefly on calcium influxing down its electro-gradient. We discovered that this adaptive response is transient. During 30-80 min of hyperosmolarity, development of a depolarizing nonspecific cation conductance fully counterbalances the KATP-driven hyperpolarization and thereby eliminates the exocytotic boost. We conclude that hyperosmotic-induced hyperpolarization is a previously unappreciated mechanism by which goblet cells respond to transient ocular dryness. Loss of this voltage increase during long-term dryness/hyperosmolarity may account for the clinical conundrum that goblet cells in chronically dry eyes can remain filled with mucin even though the tear film is hyperosmotic and mucin-deficient.
Collapse
Affiliation(s)
- Donald G Puro
- Department of Ophthalmology and Visual Sciences and Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
22
|
Hydrogen Sulfide as an O 2 Sensor: A Critical Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:261-276. [PMID: 29047091 DOI: 10.1007/978-3-319-63245-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is increasing interest in the physiological actions and therapeutic potential of the gasotransmitter hydrogen sulfide (H2S). In addition to exerting antihypertensive, anti-inflammatory, antioxidant, and pro-angiogenic effects, H2S has been suggested to play a central and ubiquitous role in O2 sensing. According to this concept, because H2S is metabolized by oxidation, its cellular concentration varies inversely with the ambient pO2 such that hypoxia causes a rise in intracellular [H2S]; this then acts to induce appropriate cellular responses. In particular, it has been proposed that H2S underpins O2 sensing in the carotid body, which triggers increases in ventilation in response to hypoxemia, and also in pulmonary arteries, which constrict in response to local alveolar hypoxia. This process, termed hypoxic pulmonary vasoconstriction (HPV), acts to divert blood to better-oxygenated regions of the lung, thereby maintaining the ventilation-perfusion ratio and minimizing hypoxia-induced falls in blood O2 saturation. In this chapter, we present a critical review of the evidence supporting and questioning this model in both HPV and the carotid body.
Collapse
|
23
|
Ribeiro Junior RF, Fiorim J, Marques VB, de Sousa Ronconi K, Botelho T, Grando MD, Bendhack LM, Vassallo DV, Stefanon I. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats. Vascul Pharmacol 2017; 99:23-33. [DOI: 10.1016/j.vph.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 11/27/2022]
|
24
|
Louie JC, Fujii N, Meade RD, Kenny GP. The roles of the Na+/K+-ATPase, NKCC, and K+ channels in regulating local sweating and cutaneous blood flow during exercise in humans in vivo. Physiol Rep 2017; 4:4/22/e13024. [PMID: 27881572 PMCID: PMC5358008 DOI: 10.14814/phy2.13024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 11/24/2022] Open
Abstract
Na+/K+‐ATPase has been shown to regulate the sweating and cutaneous vascular responses during exercise; however, similar studies have not been conducted to assess the roles of the Na‐K‐2Cl co‐transporter (NKCC) and K+ channels. Additionally, it remains to be determined if these mechanisms underpinning the heat loss responses differ with exercise intensity. Eleven young (24 ± 4 years) males performed three 30‐min semirecumbent cycling bouts at low (30% VO2peak), moderate (50% VO2peak), and high (70% VO2peak) intensity, respectively, each separated by 20‐min recovery periods. Using intradermal microdialysis, four forearm skin sites were continuously perfused with either: (1) lactated Ringer solution (Control); (2) 6 mmol·L−1 ouabain (Na+/K+‐ATPase inhibitor); (3) 10 mmol·L−1 bumetanide (NKCC inhibitor); or (4) 50 mmol·L−1 BaCl2 (nonspecific K+ channel inhibitor); sites at which we assessed local sweat rate (LSR) and cutaneous vascular conductance (CVC). Inhibition of Na+/K+‐ATPase attenuated LSR compared to Control during the moderate and high‐intensity exercise bouts (both P ˂ 0.01), whereas attenuations with NKCC and K+ channel inhibition were only apparent during the high‐intensity exercise bout (both P ≤ 0.05). Na+/K+‐ATPase inhibition augmented CVC during all exercise intensities (all P ˂ 0.01), whereas CVC was greater with NKCC inhibition during the low‐intensity exercise only (P ˂ 0.01) and attenuated with K+ channel inhibition during the moderate and high‐intensity exercise conditions (both P ˂ 0.01). We show that Na+/K+‐ATPase, NKCC and K+ channels all contribute to the regulation of sweating and cutaneous blood flow but their influence is dependent on the intensity of dynamic exercise.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull 2017; 134:151-161. [DOI: 10.1016/j.brainresbull.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
|
26
|
Pitra S, Stern JE. A-type K + channels contribute to the prorenin increase of firing activity in hypothalamic vasopressin neurosecretory neurons. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626074 DOI: 10.1152/ajpheart.00216.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have supported an important contribution of prorenin (PR) and its receptor (PRR) to the regulation of hypothalamic, sympathetic, and neurosecretory outflows to the cardiovascular system, including systemic release of vasopressin (VP), both under physiological and cardiovascular disease conditions. Still, the identification of precise cellular mechanisms and neuronal/molecular targets remain unknown. We have recently shown that PRR is expressed in VP neurons and that their activation increases neuronal activity. However, the underlying ionic channel mechanisms are undefined. Here, we performed patch-clamp electrophysiology from identified VP neurons in acute hypothalamic slices obtained from enhanced green fluorescent protein-VP transgenic rats. Voltage-clamp recordings showed that PR inhibited the magnitude of A-type K+ current (IA; ~50% at -25 mV), a subthreshold voltage-dependent current that restrains VP firing activity. PR also increased the inactivation rate of IA and shifted the steady-state voltage-dependent inactivation function toward more hyperpolarized membrane potential (~7 mV shift), thus resulting in less channel availability to be activated at any given membrane potential. PR also inhibited a sustained component of IA ("window" current). PR-mediated changes in action potential waveform and increased firing activity were occluded when IA was blocked by 4-aminopyridine. Finally, PR failed to increase superoxide production within the supraoptic nucleus/paraventricular nucleus, and PR excitatory effects persisted in slices treated with the SOD mimetic tempol. Taken together, these experiments indicated that PR excitatory effects on vasopressin neurons involve inhibition of IA, due, in part, to increases in its voltage-dependent inactivation properties. Moreover, our results indicate that PR effects did not involve an increase in oxidative stress.NEW & NOTEWORTHY Here, we demonstrate that prorenin/the prorenin receptor is an important signaling unit for the regulation of vasopressin firing activity and, thus, systemic hormonal release. We identified A-type K+ channels as key molecular targets mediating prorenin stimulation of vasopressin neuronal activity, thus standing as a potential therapeutic target for neurohumoral activation in cardiovascular disease.
Collapse
Affiliation(s)
- Soledad Pitra
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
27
|
Louie JC, Fujii N, Meade RD, McNeely BD, Kenny GP. The roles of K Ca, K ATP, and K V channels in regulating cutaneous vasodilation and sweating during exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 312:R821-R827. [PMID: 28254750 DOI: 10.1152/ajpregu.00507.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
Abstract
We recently showed the varying roles of Ca2+-activated (KCa), ATP-sensitive (KATP), and voltage-gated (KV) K+ channels in regulating cholinergic cutaneous vasodilation and sweating in normothermic conditions. However, it is unclear whether the respective contributions of these K+ channels remain intact during dynamic exercise in the heat. Eleven young (23 ± 4 yr) men completed a 30-min exercise bout at a fixed rate of metabolic heat production (400 W) followed by a 40-min recovery period in the heat (35°C, 20% relative humidity). Cutaneous vascular conductance (CVC) and local sweat rate were assessed at four forearm skin sites perfused via intradermal microdialysis with: 1) lactated Ringer solution (control); 2) 50 mM tetraethylammonium (nonspecific KCa channel blocker); 3) 5 mM glybenclamide (selective KATP channel blocker); or 4) 10 mM 4-aminopyridine (nonspecific KV channel blocker). Responses were compared at baseline and at 10-min intervals during and following exercise. KCa channel inhibition resulted in greater CVC versus control at end exercise (P = 0.04) and 10 and 20 min into recovery (both P < 0.01). KATP channel blockade attenuated CVC compared with control during baseline (P = 0.04), exercise (all P ≤ 0.04), and 10 min into recovery (P = 0.02). No differences in CVC were observed with KV channel inhibition during baseline (P = 0.15), exercise (all P ≥ 0.06), or recovery (all P ≥ 0.14). With the exception of KV channel inhibition augmenting sweating during baseline (P = 0.04), responses were similar to control with all K+ channel blockers during each time period (all P ≥ 0.07). We demonstrated that KCa and KATP channels contribute to the regulation of cutaneous vasodilation during rest and/or exercise and recovery in the heat.
Collapse
Affiliation(s)
- Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and.,Institute of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
28
|
Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 2016; 100:81-85. [PMID: 27296839 DOI: 10.1016/j.freeradbiomed.2016.06.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
Abstract
The major energy generator in the cell - mitochondria produce reactive oxygen species as a by-product of a number of enzymatic reactions and the production of ATP. Emerging evidence suggests that mitochondrial ROS regulate diverse physiological parameters and that dysregulated ROS signalling may contribute to a development of processes which lead to human diseases. ROS produced in mitochondrial enzymes are triggers of monoamine-induced calcium signal in astrocytes, playing important role in physiological and pathophysiological response to dopamine. Generation of ROS in mitochondria leads to peroxidation of lipids, which is considered to be one of the most important mechanisms of cell injury under condition of oxidative stress. However, it also can induce activation of mitochondrial and cellular phospholipases that can trigger a variety of the signals - from activation of ion channels to stimulation of calcium signal. Mitochondria are shown to be the oxygen sensor in astrocytes, therefore inhibition of respiration by hypoxia induces ROS production which leads to lipid peroxidation, activation of phospholipase C and induction of IP3-mediated calcium signal. Propagation of astrocytic calcium signal stimulates breathing activity in response to hypoxia. Thus, ROS produced by mitochondrial enzymes or electron transport chain can be used as a trigger for signalling cascades in central nervous system and deregulation of this process leads to pathology.
Collapse
Affiliation(s)
- Plamena R Angelova
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
29
|
Tawa M, Shimosato T, Iwasaki H, Imamura T, Okamura T. Effects of hydrogen peroxide on relaxation through the NO/sGC/cGMP pathway in isolated rat iliac arteries. Free Radic Res 2016; 49:1479-87. [PMID: 26334090 DOI: 10.3109/10715762.2015.1089987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The production of reactive oxygen species, including hydrogen peroxide (H(2)O(2)), is increased in diseased blood vessels. Although H(2)O(2) leads to impairment of the nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP signaling pathway, it is not clear whether this reactive molecule affects the redox state of sGC, a key determinant of NO bioavailability. To clarify this issue, mechanical responses of endothelium-denuded rat external iliac arteries to BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator), nitroglycerin (NO donor), acidified NaNO(2) (exogenous NO) and 8-Br-cGMP (cGMP analog) were studied under exposure to H(2)O(2). The relaxant response to BAY 41-2272 (pD2: 6.79 ± 0.10 and 6.62 ± 0.17), BAY 60-2770 (pD2: 9.57 ± 0.06 and 9.34 ± 0.15) or 8-Br-cGMP (pD2: 5.19 ± 0.06 and 5.24 ± 0.08) was not apparently affected by exposure to H(2)O(2). In addition, vascular cGMP production stimulated with BAY 41-2272 or BAY 60-2770 in the presence of H(2)O(2) was identical to that in its absence. On the other hand, nitroglycerin-induced relaxation was markedly attenuated by exposing the arteries to H(2)O(2) (pD2: 8.73 ± 0.05 and 8.30 ± 0.05), which was normalized in the presence of catalase (pD2: 8.59 ± 0.05). Likewise, H(2)O(2) exposure impaired the relaxant response to acidified NaNO(2) (pD2: 6.52 ± 0.17 and 6.09 ± 0.16). These findings suggest that H(2)O(2) interferes with the NO-mediated action, but the sGC redox equilibrium and the downstream target(s) of cGMP are unlikely to be affected in the vasculature.
Collapse
Affiliation(s)
- Masashi Tawa
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Takashi Shimosato
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Hirotaka Iwasaki
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Takeshi Imamura
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| | - Tomio Okamura
- a Department of Pharmacology , Shiga University of Medical Science , Otsu , Shiga , Japan
| |
Collapse
|
30
|
Whidden MA, Basgut B, Kirichenko N, Erdos B, Tümer N. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats. J Exerc Nutrition Biochem 2016; 20:58-64. [PMID: 27508155 PMCID: PMC4977904 DOI: 10.20463/jenb.2016.06.20.2.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
[Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli.
Collapse
Affiliation(s)
- Melissa A Whidden
- Department of Kinesiology, West Chester University, West Chester USA
| | - Bilgen Basgut
- Department of Pharmacology, Near East University, Northern Cyprus Turkey
| | - Nataliya Kirichenko
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington USA
| | - Nihal Tümer
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center GainesvilleUSA; Department of Pharmacology and Therapeutics, University of Florida, GainesvilleUSA
| |
Collapse
|
31
|
Di Marco LY, Farkas E, Martin C, Venneri A, Frangi AF. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease? J Alzheimers Dis 2016; 46:35-53. [PMID: 25720414 PMCID: PMC4878307 DOI: 10.3233/jad-142976] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.
Collapse
Affiliation(s)
- Luigi Yuri Di Marco
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chris Martin
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK.,IRCCS, Fondazione Ospedale S. Camillo, Venice, Italy
| | - Alejandro F Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Sesti F. Oxidation of K(+) Channels in Aging and Neurodegeneration. Aging Dis 2016; 7:130-5. [PMID: 27114846 PMCID: PMC4809605 DOI: 10.14336/ad.2015.0901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/01/2015] [Indexed: 01/26/2023] Open
Abstract
Reversible regulation of proteins by reactive oxygen species (ROS) is an important mechanism of neuronal plasticity. In particular, ROS have been shown to act as modulatory molecules of ion channels-which are key to neuronal excitability-in several physiological processes. However ROS are also fundamental contributors to aging vulnerability. When the level of excess ROS increases in the cell during aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. From this arose the idea that oxidation of ion channels by ROS is one of the culprits for neuronal aging. Aging-dependent oxidative modification of voltage-gated potassium (K(+)) channels was initially demonstrated in the nematode Caenorhabditis elegans and more recently in the mammalian brain. Specifically, oxidation of the delayed rectifier KCNB1 (Kv2.1) and of Ca(2+)- and voltage sensitive K(+) channels have been established suggesting that their redox sensitivity contributes to altered excitability, progression of healthy aging and of neurodegenerative disease. Here I discuss the implications that oxidation of K(+) channels by ROS may have for normal aging, as well as for neurodegenerative disease.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Voltage-Gated K+ Channel, Kv3.3 Is Involved in Hemin-Induced K562 Differentiation. PLoS One 2016; 11:e0148633. [PMID: 26849432 PMCID: PMC4743930 DOI: 10.1371/journal.pone.0148633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Voltage-gated K+ (Kv) channels are well known to be involved in cell proliferation. However, even though cell proliferation is closely related to cell differentiation, the relationship between Kv channels and cell differentiation remains poorly investigated. This study demonstrates that Kv3.3 is involved in K562 cell erythroid differentiation. Down-regulation of Kv3.3 using siRNA-Kv3.3 increased hemin-induced K562 erythroid differentiation through decreased activation of signal molecules such as p38, cAMP response element-binding protein, and c-fos. Down-regulation of Kv3.3 also enhanced cell adhesion by increasing integrin β3 and this effect was amplified when the cells were cultured with fibronectin. The Kv channels, or at least Kv3.3, appear to be associated with cell differentiation; therefore, understanding the mechanisms of Kv channel regulation of cell differentiation would provide important information regarding vital cellular processes.
Collapse
|
34
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
35
|
Afsar S, Hemsinli D, Ozyazgan S, Akkan AG, Arslan C. The Effects of Potassium Channels in Human Internal Mammary Artery. Pharmacology 2015; 97:72-7. [DOI: 10.1159/000442528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
|
36
|
Virelli A, Zironi I, Pasi F, Ceccolini E, Nano R, Facoetti A, Gavoçi E, Fiore MR, Rocchi F, Mostacci D, Cucchi G, Castellani G, Sumini M, Orecchia R. Early effects comparison of X-rays delivered at high-dose-rate pulses by a plasma focus device and at low dose rate on human tumour cells. RADIATION PROTECTION DOSIMETRY 2015; 166:383-387. [PMID: 25883300 DOI: 10.1093/rpd/ncv163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A comparative study has been performed on the effects of high-dose-rate (DR) X-ray beams produced by a plasma focus device (PFMA-3), to exploit its potential medical applications (e.g. radiotherapy), and low-DR X-ray beams produced by a conventional source (XRT). Experiments have been performed at 0.5 and 2 Gy doses on a human glioblastoma cell line (T98G). Cell proliferation rate and potassium outward currents (IK) have been investigated by time lapse imaging and patch clamp recordings. The results showed that PFMA-3 irradiation has a greater capability to reduce the proliferation rate activity with respect to XRT, while it does not affect IK of T98G cells at any of the dose levels tested. XRT irradiation significantly reduces the mean IK amplitude of T98G cells only at 0.5 Gy. This work confirms that the DR, and therefore the source of radiation, is crucial for the planning and optimisation of radiotherapy applications.
Collapse
Affiliation(s)
- A Virelli
- Department of Physics and Astronomy, University of Bologna, viale C. Berti Pichat 6/2, Bologna 40127, Italy IEO, Via G. Ripamonti 435, Milano 20141, Italy
| | - I Zironi
- Department of Physics and Astronomy, University of Bologna, viale C. Berti Pichat 6/2, Bologna 40127, Italy INFN, Viale C. Berti Pichat 6/2, Bologna 40127, Italy
| | - F Pasi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Via Ferrata 9, Pavia 27100, Italy IEO, Via G. Ripamonti 435, Milano 20141, Italy
| | - E Ceccolini
- Department of Industrial Engineering, University of Bologna, Via dei colli 16, Bologna 40136, Italy LAINSA Italia s.r.l, Via Carlo Porta, 3, Gallarate, VA 21013, USA
| | - R Nano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | - A Facoetti
- CNAO Foundation, Strada Campeggi, 53, Pavia 27100, Italy
| | - E Gavoçi
- INFN, Viale C. Berti Pichat 6/2, Bologna 40127, Italy
| | - M R Fiore
- CNAO Foundation, Strada Campeggi, 53, Pavia 27100, Italy
| | - F Rocchi
- ENEA, Via Martiri di Monte Sole, 4, Bologna 40129, Italy
| | - D Mostacci
- Department of Industrial Engineering, University of Bologna, Via dei colli 16, Bologna 40136, Italy
| | - G Cucchi
- Department of Industrial Engineering, University of Bologna, Via dei colli 16, Bologna 40136, Italy
| | - G Castellani
- Department of Physics and Astronomy, University of Bologna, viale C. Berti Pichat 6/2, Bologna 40127, Italy INFN, Viale C. Berti Pichat 6/2, Bologna 40127, Italy
| | - M Sumini
- INFN, Viale C. Berti Pichat 6/2, Bologna 40127, Italy Department of Industrial Engineering, University of Bologna, Via dei colli 16, Bologna 40136, Italy
| | - R Orecchia
- IEO, Via G. Ripamonti 435, Milano 20141, Italy CNAO Foundation, Strada Campeggi, 53, Pavia 27100, Italy
| |
Collapse
|
37
|
Leffa DD, dos Santos CEI, Daumann F, Longaretti LM, Amaral L, Dias JF, da Silva J, Andrade VM. Effects of Supplemental Acerola Juice on the Mineral Concentrations in Liver and Kidney Tissue Samples of Mice Fed with Cafeteria Diet. Biol Trace Elem Res 2015; 167:70-6. [PMID: 25724149 DOI: 10.1007/s12011-015-0276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
We evaluated the impact of a supplemental acerola juice (unripe, ripe, and industrial) and its main pharmaceutically active components on the concentrations of minerals in the liver and kidney of mice fed with cafeteria diet. Swiss male mice were fed with a cafeteria (CAF) diet for 13 weeks. The CAF consisted of a variety of supermarket products with high energy content. Subsequently, animals received one of the following food supplements for 1 month: water, unripe acerola juice, ripe acerola juice, industrial acerola juice, vitamin C, or rutin. Mineral concentrations of the tissues were determined by particle-induced X-ray emission (PIXE). Our study suggests that the simultaneous intake of acerola juices, vitamin C, or rutin in association with a hypercaloric and hyperlipidic diet provides change in the mineral composition of organisms in the conditions of this study, which plays an important role in the antioxidant defenses of the body. This may help to reduce the metabolism of the fat tissue or even to reduce the oxidative stress.
Collapse
Affiliation(s)
- Daniela Dimer Leffa
- Laboratory for Molecular and Celular Biology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000, Criciúma, SC, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hermann A, Sitdikova GF, Weiger TM. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels. Biomolecules 2015; 5:1870-911. [PMID: 26287261 PMCID: PMC4598779 DOI: 10.3390/biom5031870] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/13/2023] Open
Abstract
All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.
Collapse
Affiliation(s)
- Anton Hermann
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Salzburg 5020, Austria.
| | - Guzel F Sitdikova
- Department of Physiology of Man and Animals, Kazan Federal University, Kazan 420008, Russia.
| | - Thomas M Weiger
- Department of Cell Biology, Division of Cellular and Molecular Neurobiology, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE Oxygen plays a key role in cellular metabolism and function. Oxygen delivery to cells is crucial, and a lack of oxygen such as that which occurs during myocardial infarction can be lethal. Cells should, therefore, be able to respond to changes in oxygen tension. RECENT ADVANCES Since the first studies examining the acute cellular effect of hypoxia on activation of transmitter release from glomus or type I chemoreceptor cells, it is now known that virtually all cells are able to respond to changes in oxygen tension. CRITICAL ISSUES Despite advances made in characterizing hypoxic responses, the identity of the "oxygen sensor" remains debated. Recently, more evidence has evolved as to how cardiac myocytes sense acute changes in oxygen. This review will examine the available evidence in support of acute oxygen-sensing mechanisms providing a brief historical perspective and then more detailed insights into the heart and the role of cardiac ion channels in hypoxic responses. FUTURE DIRECTIONS A further understanding of these cellular processes should result in interventions that assist in preventing the deleterious effects of acute changes in oxygen tension such as alterations in contractile function and cardiac arrhythmia.
Collapse
Affiliation(s)
- Livia C Hool
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley, Australia
| |
Collapse
|
40
|
Salheen SM, Panchapakesan U, Pollock CA, Woodman OL. The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose. Pharmacol Res 2015; 94:26-33. [PMID: 25697548 DOI: 10.1016/j.phrs.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
The aim of the study was to investigate the effects of the DPP-4 inhibitors and GLP-1R agonist, exendin-4 on the mechanism(s) of endothelium-dependent relaxation in rat mesenteric arteries exposed to high glucose concentration (40 mM). Organ bath techniques were employed to investigate vascular endothelial function in rat mesenteric arteries in the presence of normal (11 mM) or high (40 mM) glucose concentrations. Pharmacological tools (1μM TRAM-34, 1μM apamin, 100 nM Ibtx, 100 μM l-NNA, 10 μM ODQ) were used to distinguish between NO and EDHF-mediated relaxation. Superoxide anion levels were assessed by L-012 and lucigenin enhanced-chemiluminescence techniques. Incubation of mesenteric rings with high glucose for 2 h caused a significant increase in superoxide anion generation and a significant impairment of endothelium-dependent relaxation. Exendin-4 and DPP-4 inhibitor linagliptin, but not sitagliptin or vildagliptin, significantly reduced vascular superoxide and improved endothelium-dependent relaxation in the presence of high glucose. The beneficial actions of exendin-4, but not linagliptin, were attenuated by the GLP-1R antagonist exendin fragment (9-39). Further experiments demonstrated that the presence of high glucose impaired the contribution of both nitric oxide and endothelium-dependent hyperpolarisation to relaxation and that linagliptin improved both mechanisms involved in endothelium-dependent relaxation. These findings demonstrate that high glucose impaired endothelium-dependent relaxation can be improved by exendin-4 and linagliptin, likely due to their antioxidant activity and independently of any glucose lowering effect.
Collapse
Affiliation(s)
- S M Salheen
- School of Medical Sciences, RMIT University, Melbourne, Australia
| | - U Panchapakesan
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales, Australia
| | - C A Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales, Australia
| | - O L Woodman
- School of Medical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
41
|
Ma T, Ding H, Xu H, Lv Y, Liu H, Wang H, Tian Z. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Analyst 2015; 140:322-9. [DOI: 10.1039/c4an01441c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of resorufin-based dual-functional fluorescent probe whose fluorescence emission features are sensitive to thiol compounds and redox homeostasis was developed.
Collapse
Affiliation(s)
- Tao Ma
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049
- P. R. China
| | - Hui Ding
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049
- P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences (CAS)
- Changchun 130022
- P. R. China
| | - Yanlin Lv
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049
- P. R. China
| | - Heng Liu
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049
- P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences (CAS)
- Changchun 130022
- P. R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering
- University of Chinese Academy of Sciences (UCAS)
- Beijing 100049
- P. R. China
| |
Collapse
|
42
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
43
|
Yang Y, Jin X, Jiang C. S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing. Antioxid Redox Signal 2014; 20:937-51. [PMID: 23834398 PMCID: PMC3924852 DOI: 10.1089/ars.2013.5483] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Ion channels control membrane potential, cellular excitability, and Ca(++) signaling, all of which play essential roles in cellular functions. The regulation of ion channels enables cells to respond to changing environments, and post-translational modification (PTM) is one major regulation mechanism. RECENT ADVANCES Many PTMs (e.g., S-glutathionylation, S-nitrosylation, S-palmitoylation, S-sulfhydration, etc.) targeting the thiol group of cysteine residues have emerged to be essential for ion channels regulation under physiological and pathological conditions. CRITICAL ISSUES Under oxidative stress, S-glutathionylation could be a critical PTM that regulates many molecules. In this review, we discuss S-glutathionylation-mediated structural and functional changes of ion channels. Criteria for testing S-glutathionylation, methods and reagents used in ion channel S-glutathionylation studies, and thiol modification crosstalk, are also covered. Mechanotransduction, and S-glutathionylation of the mechanosensitive KATP channel, are discussed. FUTURE DIRECTIONS Further investigation of the ion channel S-glutathionylation, especially the physiological significance of S-glutathionylation and thiol modification crosstalk, could lead to a better understanding of the thiol modifications in general and the ramifications of such modifications on cellular functions and related diseases.
Collapse
Affiliation(s)
- Yang Yang
- 1 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut
| | | | | |
Collapse
|
44
|
Merkus D, Duncker DJ. Perspectives: Coronary microvascular dysfunction in post-infarct remodelled myocardium. Eur Heart J Suppl 2014. [DOI: 10.1093/eurheartj/sut016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Acute exposure of methylglyoxal leads to activation of KATP channels expressed in HEK293 cells. Acta Pharmacol Sin 2014; 35:58-64. [PMID: 24122011 DOI: 10.1038/aps.2013.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/21/2013] [Indexed: 12/16/2022]
Abstract
AIM Highly reactive carbonyl methylglyoxal (MGO) is one of the metabolites excessively produced in diabetes. We have showed that prolonged exposure of vascular smooth muscle cells to MGO leads to instability of the mRNA encoding ATP-sensitive potassium (KATP) channel. In the present study we investigated the effects of MGO on the activity of KATP channels. METHODS Kir6.1/ SUR2B, Kir6.2/SUR2B or Kir6.2Δ36 (a truncated Kir6.2 isoform) alone was expressed in HEK293 cells. Whole-cell currents were recorded in the cells with an Axopatch 200B amplifier. Macroscopic currents and single-channel currents were recorded in giant inside-out patches and normal inside-out patches, respectively. Data were analyzed using Clampfit 9 software. RESULTS The basal activity of Kir6.1/SUR2B channels was low. The specific KATP channel opener pinacidil (10 μmol/L) could fully activate Kir6.1/SUR2B channels, which was inhibited by the specific KATP channel blocker glibenclamide (10 μmol/L). MGO (0.1-10 mmol/L) dose-dependently activated Kir6.1/SUR2B channels with an EC50 of 1.7 mmol/L. The activation of Kir6.1/SUR2B channels by MGO was reversible upon washout, and could be inhibited completely by glibenclamide. Kir6.2Δ36 channels expressed in HEK293 cells could open automatically, and the channel activity was enhanced in the presence of MGO (3 mmol/L). Single channel recordings showed that MGO (3 mmol/L) markedly increased the open probability of Kir6.1/SUR2B channels, leaving the channel conductance unaltered. CONCLUSION Acute application of MGO activates KATP channels through direct, non-covalent and reversible interactions with the Kir6 subunits.
Collapse
|
46
|
Csonka C, Kupai K, Bencsik P, Görbe A, Pálóczi J, Zvara A, Puskás LG, Csont T, Ferdinandy P. Cholesterol-enriched diet inhibits cardioprotection by ATP-sensitive K+ channel activators cromakalim and diazoxide. Am J Physiol Heart Circ Physiol 2013; 306:H405-13. [PMID: 24285110 DOI: 10.1152/ajpheart.00257.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been previously shown that hyperlipidemia interferes with cardioprotective mechanisms. Here, we investigated the interaction of hyperlipidemia with cardioprotection induced by pharmacological activators of ATP-sensitive K(+) (KATP) channels. Hearts isolated from rats fed a 2% cholesterol-enriched diet or normal diet for 8 wk were subjected to 30 min of global ischemia and 120 min of reperfusion in the presence or absence of KATP modulators. In normal diet-fed rats, either the nonselective KATP activator cromakalim at 10(-5) M or the selective mitochondrial (mito)KATP opener diazoxide at 3 × 10(-5) M significantly decreased infarct size compared with vehicle-treated control rats. Their cardioprotective effect was abolished by coadministration of the nonselective KATP blocker glibenclamide or the selective mitoKATP blocker 5-hydroxydecanoate, respectively. However, in cholesterol-fed rats, the cardioprotective effect of cromakalim or diazoxide was not observed. Therefore, we further investigated how cholesterol-enriched diet influences cardiac KATP channels. Cardiac expression of a KATP subunit gene (Kir6.1) was significantly downregulated in cholesterol-fed rats; however, protein levels of Kir6.1 and Kir6.2 were not changed. The cholesterol diet significantly decreased cardiac ATP, increased lactate content, and enhanced myocardial oxidative stress, as shown by increased cardiac superoxide and dityrosine formation. This is the first demonstration that cardioprotection by KATP channel activators is impaired in cholesterol-enriched diet-induced hyperlipidemia. The background mechanism may include hyperlipidemia-induced attenuation of mitoKATP function by altered energy metabolism and increased oxidative stress in the heart.
Collapse
Affiliation(s)
- Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fike CD, Aschner JL, Kaplowitz MR, Zhang Y, Madden JA. Reactive oxygen species scavengers improve voltage-gated K(+) channel function in pulmonary arteries of newborn pigs with progressive hypoxia-induced pulmonary hypertension. Pulm Circ 2013; 3:551-63. [PMID: 24618540 DOI: 10.1086/674307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract Changes in voltage-gated K(+) (Kv) channel function contribute to the pathogenesis of pulmonary hypertension. Yet the mechanisms underlying Kv channel impairments in the pulmonary circulation remain unclear. We tested the hypothesis that reactive oxygen species (ROSs) contribute to the Kv channel dysfunction that develops in resistance-level pulmonary arteries (PRAs) of piglets exposed to chronic in vivo hypoxia. Piglets were raised in either room air (control) or hypoxia for 3 or 10 days. To evaluate Kv channel function, responses to the Kv channel antagonist 4-aminopyridine (4-AP) were measured in cannulated PRAs. To assess the influence of ROSs, PRAs were treated with the ROS-removing agent M40403 (which dismutates superoxide to hydrogen peroxide), plus polyethylene glycol catalase (which converts hydrogen peroxide to water). Responses to 4-AP were diminished in PRAs from both groups of hypoxic piglets. ROS-removing agents had no impact on 4-AP responses in PRAs from piglets exposed to 3 days of hypoxia but significantly increased the response to 4-AP in PRAs from piglets exposed to 10 days of hypoxia. Kv channel function is impaired in PRAs of piglets exposed to 3 or 10 days of in vivo hypoxia. ROSs contribute to Kv channel dysfunction in PRAs from piglets exposed to hypoxia for 10 days but are not involved with the Kv channel dysfunction that develops within 3 days of exposure to hypoxia. Therapies to remove ROSs might improve Kv channel function and thereby ameliorate the progression, but not the onset, of pulmonary hypertension in chronically hypoxic newborn piglets.
Collapse
Affiliation(s)
- Candice D Fike
- 1 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
48
|
Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci U S A 2013; 110:E3955-64. [PMID: 24065831 DOI: 10.1073/pnas.1309896110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial myocytes are continuously exposed to mechanical forces including shear stress. However, in atrial myocytes, the effects of shear stress are poorly understood, particularly with respect to its effect on ion channel function. Here, we report that shear stress activated a large outward current from rat atrial myocytes, with a parallel decrease in action potential duration. The main ion channel underlying the increase in current was found to be Kv1.5, the recruitment of which could be directly observed by total internal reflection fluorescence microscopy, in response to shear stress. The effect was primarily attributable to recruitment of intracellular pools of Kv1.5 to the sarcolemma, as the response was prevented by the SNARE protein inhibitor N-ethylmaleimide and the calcium chelator BAPTA. The process required integrin signaling through focal adhesion kinase and relied on an intact microtubule system. Furthermore, in a rat model of chronic hemodynamic overload, myocytes showed an increase in basal current despite a decrease in Kv1.5 protein expression, with a reduced response to shear stress. Additionally, integrin beta1d expression and focal adhesion kinase activation were increased in this model. This data suggests that, under conditions of chronically increased mechanical stress, the integrin signaling pathway is overactivated, leading to increased functional Kv1.5 at the membrane and reducing the capacity of cells to further respond to mechanical challenge. Thus, pools of Kv1.5 may comprise an inducible reservoir that can facilitate the repolarization of the atrium under conditions of excessive mechanical stress.
Collapse
|
49
|
Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain. PLoS One 2013; 8:e68125. [PMID: 23826369 PMCID: PMC3694950 DOI: 10.1371/journal.pone.0068125] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/30/2013] [Indexed: 01/10/2023] Open
Abstract
Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+)-regulated potassium channel (mitoBKCa channel) was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma) U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+) at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.
Collapse
|
50
|
Choi S, Na HY, Kim JA, Cho SE, Suh SH. Contradictory Effects of Superoxide and Hydrogen Peroxide on KCa3.1 in Human Endothelial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:181-7. [PMID: 23776393 PMCID: PMC3682077 DOI: 10.4196/kjpp.2013.17.3.181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 01/18/2023]
Abstract
Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. KCa3.1 plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on KCa3.1 expression and the K+ current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated KCa3.1 expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysopho-sphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismustase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, KCa3.1 current, which was activated by clamping cells with 1 µM Ca2+ and applying the KCa3.1 activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases KCa3.1 expression by upregulating pERK and downregulating REST, and augments the K+ current. On the other hand, superoxide reduces KCa3.1 expression by downregulating pERK and upregulating REST, and inhibits the K+ current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating KCa3.1 and endothelial function.
Collapse
Affiliation(s)
- Shinkyu Choi
- Department of Physiology and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | | | | | | | | |
Collapse
|