1
|
Liu Z, Hou J, Xie W, Deng H, Wang L. Regulation of sulfur starvation-induced proteins. 3 Biotech 2025; 15:130. [PMID: 40255445 PMCID: PMC12003235 DOI: 10.1007/s13205-025-04303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
The application of environmentally friendly biological desulfurization (BDS) methods for treating organic sulfur offers significant potential to enhance the utilization of organic sulfur, reduce waste generation, and mitigate environmental harm. Several strains, including Escherichia coli, Rhodococcus erythropolis, and Mycobacterium tuberculosis, have been studied for their sulfur metabolic pathways and regulatory proteins involved in BDS. However, the current understanding of these regulatory mechanisms remains limited. This review outlines the role played by sulfur transport, acquisition and assimilation during sulfur metabolism and biosulfuration in response to sulfur starvation. In addition, we outline the involvement of sulfur starvation-inducible proteins in the L-methionine biosynthetic system. We hope to provide initial insights into the regulation of sulfur starvation-induced proteins. By exploring sulfur metabolism regulatory proteins, this review aims to offer valuable insights for the industrial application of biodesulfurization and unlock new possibilities for future research in this field.
Collapse
Affiliation(s)
- Zixin Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 China
| | - Jie Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 China
| | - Wenhai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 China
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 China
| | - Lijuan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
2
|
Devasundaram S, Raja A. Variable transcriptional adaptation between the laboratory (H37Rv) and clinical strains (S7 and S10) of Mycobacterium tuberculosis under hypoxia. INFECTION GENETICS AND EVOLUTION 2016; 40:21-28. [PMID: 26780642 DOI: 10.1016/j.meegid.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/12/2015] [Accepted: 01/07/2016] [Indexed: 11/28/2022]
Abstract
Tuberculosis continues to be a major public health problem in many parts of the world, despite intensified efforts taken to control the disease. The remarkable success of M. tuberculosis as a pathogen is largely due to its ability to persist within the host for long periods. To develop the effective intervention strategies, understanding the biology of persistence is highly required. Accumulating evidences showed oxygen deprivation (hypoxia) as a potential stimulus for triggering the transition of M. tuberculosis to a non-replicating persistent state analogous to latency in vivo. To date, in vitro hypoxia experimental models used the laboratory adapted isolate H37Rv and very little is known about the behavior of clinical isolates that are involved during disease outbreaks. Hence, we compared the transcription profiles of H37Rv and two south Indian clinical isolates (S7 and S10) under hypoxia to find differences in gene expression pattern. The main objective of this current work is to find "differentially regulated genes" (genes that are down regulated in H37Rv but upregulated in both the clinical isolates) under hypoxia. Microarray results showed, a total of 502 genes were down regulated in H37Rv under hypoxia and 10 out of 502 genes were upregulated in both the clinical isolates. Thus, giving less importance to down regulated genes based on H37Rv model strain might exclude the true representative gene candidates in clinical isolates. Our study suggests the use of most prevalent clinical isolates for in vitro experimental model to minimize the variation in understanding the adaptation mechanisms of the strains.
Collapse
Affiliation(s)
- Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR) (Formerly Tuberculosis Research Centre), No.1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR) (Formerly Tuberculosis Research Centre), No.1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
3
|
Ahmed W, Menon S, Karthik PVDNB, Nagaraja V. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription. Nucleic Acids Res 2015; 44:1541-52. [PMID: 26496944 PMCID: PMC4770202 DOI: 10.1093/nar/gkv1088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022] Open
Abstract
The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shruti Menon
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
4
|
Lindestam Arlehamn CS, Lewinsohn D, Sette A, Lewinsohn D. Antigens for CD4 and CD8 T cells in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018465. [PMID: 24852051 DOI: 10.1101/cshperspect.a018465] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (MTB), represents an important cause of morbidity and mortality worldwide for which an improved vaccine and immunodiagnostics are urgently needed. CD4(+) and CD8(+) T cells play an important role in host defense to TB. Definition of the antigens recognized by these T cells is critical for improved understanding of the immunobiology of TB and for development of vaccines and diagnostics. Herein, the antigens and epitopes recognized by classically HLA class I- and II-restricted CD4(+) and CD8(+) T cells in humans infected with MTB are reviewed. Immunodominant antigens and epitopes have been defined using approaches targeting particular TB proteins or classes of proteins and by genome-wide discovery approaches. Antigens and epitopes recognized by classically restricted CD4(+) and CD8(+) T cells show extensive breadth and diversity in MTB-infected humans.
Collapse
Affiliation(s)
| | - David Lewinsohn
- Oregon Health and Science University, Portland, Oregon 97239 Portland VA Medical Center, Portland, Oregon 97239
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | | |
Collapse
|
5
|
Revealing of Mycobacterium marinum transcriptome by RNA-seq. PLoS One 2013; 8:e75828. [PMID: 24098731 PMCID: PMC3786904 DOI: 10.1371/journal.pone.0075828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis has played an essential role for revealing gene expression and the complexity of regulations at transcriptional level. RNA-seq is a powerful tool for transcriptome profiling, which uses deep-sequencing technologies to directly determine the cDNA sequence. Here, we utilized RNA-seq to explore the transcriptome of Mycobacteriummarinum (M. marinum), which is a useful model to study the pathogenesis of Mycobacterium tuberculosis (Mtb). Two profiles of exponential and early stationary phase cultures were generated after a physical ribosome RNA removal step. We systematically described the transcriptome and analyzed the functions for the differentiated expressed genes between the two phases. Furthermore, we predicted 360 operons throughout the whole genome, and 13 out of 17 randomly selected operons were validated by qRT-PCR. In general, our study has primarily uncovered M. marinum transcriptome, which could help to gain a better understanding of the regulation system in Mtb that underlines disease pathogenesis.
Collapse
|
6
|
Ahmed W, Bhat AG, Leelaram MN, Menon S, Nagaraja V. Carboxyl terminal domain basic amino acids of mycobacterial topoisomerase I bind DNA to promote strand passage. Nucleic Acids Res 2013; 41:7462-71. [PMID: 23771144 PMCID: PMC3753633 DOI: 10.1093/nar/gkt506] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn(2+) finger motifs in the CTD. The Zn(2+) finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn(2+) fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn(2+) fingers from the mycobacterial topoI could be associated with Zn(2+) export and homeostasis.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
7
|
Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Vet Immunol Immunopathol 2011; 148:29-47. [PMID: 21450348 DOI: 10.1016/j.vetimm.2011.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/12/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Paratuberculosis or Johne's disease of livestock, which is caused by Mycobacterium avium subsp. paratuberculosis (MAP), has increased in prevalence and expanded in geographic and host ranges over about 100 years. The slow and progressive spread of MAP reflects its substantial adaptation to its hosts, the technical limitations of diagnosis, the lack of practical therapeutic approaches, the lack of a vaccine that prevents transmission and the complexity and difficulty of the on-farm control strategies needed to prevent infection. More recently evidence has accumulated for an association of MAP with Crohn's disease in humans, adding to the pressure on animal health authorities to take precautions by controlling paratuberculosis. Mycobacterial infections invoke complex immune responses but the essential determinants of virulence and pathogenesis are far from clear. In this review we compare the features of major diseases in humans and animals that are caused by the pathogenic mycobacteria M. ulcerans, M. avium subsp. avium, M. leprae, M. tuberculosis and MAP. We seek to answer key questions: are the common mycobacterial infections of humans and animals useful "models" for each other, or are the differences between them too great to enable meaningful extrapolation? To simplify this, the immunopathogenesis of mycobacterial infections will be defined at cellular, tissue, animal and population levels and the key events at each level will be discussed. Many pathogenic processes are similar between divergent mycobacterial diseases, and at variance between virulent and avirulent isolates of mycobacteria, suggesting that the research on the pathogenesis of one mycobacterial disease will be informative for the others.
Collapse
|
8
|
Yu J, Niu C, Wang D, Li M, Teo W, Sun G, Wang J, Liu J, Gao Q. MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish. Microbes Infect 2011; 13:33-41. [DOI: 10.1016/j.micinf.2010.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/27/2010] [Accepted: 08/31/2010] [Indexed: 11/30/2022]
|
9
|
White TA, Kell DB. Comparative genomic assessment of novel broad-spectrum targets for antibacterial drugs. Comp Funct Genomics 2010; 5:304-27. [PMID: 18629165 PMCID: PMC2447455 DOI: 10.1002/cfg.411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 03/24/2004] [Accepted: 04/01/2004] [Indexed: 11/08/2022] Open
Abstract
Single and multiple resistance to antibacterial drugs currently in use is spreading, since they act against only a very small number of molecular targets; finding novel targets for anti-infectives is therefore of great importance. All protein sequences from three pathogens (Staphylococcus aureus, Mycobacterium tuberculosis and Escherichia coli O157:H7 EDL993) were assessed via comparative genomics methods for their suitability as antibacterial targets according to a number of criteria, including the essentiality of the protein, its level of sequence conservation, and its distribution in pathogens, bacteria and eukaryotes (especially humans). Each protein was scored and ranked based on weighted variants of these criteria in order to prioritize proteins as potential novel broad-spectrum targets for antibacterial drugs. A number of proteins proved to score highly in all three species and were robust to variations in the scoring system used. Sensitivity analysis indicated the quantitative contribution of each metric to the overall score. After further analysis of these targets, tRNA methyltransferase (trmD) and translation initiation factor IF-1 (infA) emerged as potential and novel antimicrobial targets very worthy of further investigation. The scoring strategy used might be of value in other areas of post-genomic drug discovery.
Collapse
Affiliation(s)
- Thomas A White
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | |
Collapse
|
10
|
Gumber S, Whittington RJ. Analysis of the growth pattern, survival and proteome of Mycobacteriumavium subsp. paratuberculosis following exposure to heat. Vet Microbiol 2008; 136:82-90. [PMID: 19019575 DOI: 10.1016/j.vetmic.2008.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/27/2008] [Accepted: 10/01/2008] [Indexed: 11/25/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease in ruminants and may be involved in Crohn's disease in humans. The aim of this study was to evaluate the in vitro growth pattern and proteome of MAP after heat stress following prior observations that MAP may exist in a dormant state in the environment when protected from extreme temperature flux and may survive pasteurization. Data were obtained for two genomically distinct strains of MAP, sheep (S) and cattle (C), from 50 degrees C to 80 degrees C. When assessed by comparing accumulated time at a given high temperature, cycles of heating and cooling resulted in shorter survival than holding at the high temperature, for example MAP survived exposure to 60 degrees C for only 9 min during repeated cycles of 12-60 degrees C flux but survived to 28 min when continuously exposed at 60 degrees C. This helps to explain the observed die off of MAP in natural environments. A prolonged lag phase was observed following sub-lethal exposure to heat, specifically repeated temperature flux in the range 10-50 degrees C, and this was suggestive of dormancy. 2-D PAGE analysis and identification of differentially expressed spots detected 23 proteins in the C strain and 10 in the S strain associated with heat stress. These proteins represented a range of metabolic pathways, including 12 previously identified in M. tuberculosis during heat stress. These proteins may be required for the survival of MAP both in the environment and within the host.
Collapse
|
11
|
Abstract
In the murine model of infection, a Mycobacterium tuberculosis mce1 operon mutant elicits an aberrant granulomatous response, resulting in uncontrolled replication and failure to enter a persistent state. In this study, we demonstrate that the mce1 genes can be transcribed as a 13-gene polycistronic message encompassing Rv0166 to Rv0178. Quantitative reverse transcriptase PCR and immunoblot analyses revealed that the mce1 genes and proteins are expressed during in vitro growth but are significantly down-regulated in intracellular bacilli isolated from murine macrophages. A homologue of the FadR subfamily of GntR transcriptional regulators, Rv0165c (designated Mce1R), lies upstream and is divergently transcribed from the operon. To investigate whether this gene plays a role in regulation of mce1 expression, we created an M. tuberculosis mce1R deletion mutant. There was no difference in expression of mce1 operon genes in Deltamce1R compared to expression in the wild type during logarithmic growth in vitro. However, in bacilli isolated from murine macrophages, expression of mce1 genes was significantly higher in Deltamce1R. In addition, overexpression of mce1R resulted in repression of the mce1 genes. These data demonstrate that Mce1R is a negative regulator that acts intracellularly to repress expression of the mce1 operon. We propose that Mce1R facilitates balanced temporal expression of the mce1 products required for organized granuloma formation, which is both protective to the host and necessary for the persistence of M. tuberculosis.
Collapse
Affiliation(s)
- Nicola Casali
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, 140 Warren Hall, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
12
|
Singh KK, Dong Y, Patibandla SA, McMurray DN, Arora VK, Laal S. Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during incipient and clinical tuberculosis. Infect Immun 2005; 73:5004-14. [PMID: 16041015 PMCID: PMC1201194 DOI: 10.1128/iai.73.8.5004-5014.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical tuberculosis (TB), whether noncavitary or cavitary, is the late stage of a chronic disease process, since Mycobacterium tuberculosis is a slowly growing organism. Our studies have shown that the profiles of antigenic proteins expressed by the in vivo bacteria that elicit antibodies differ in cavitary and noncavitary TB. To gain insight into antigenic proteins expressed during incipient, subclinical TB, an expression library of M. tuberculosis genomic DNA was screened with sera obtained during subclinical TB from guinea pigs infected with aerosols of M. tuberculosis H37Rv. One of the proteins recognized by antibodies elicited during subclinical TB infection of guinea pigs is the 309-kDa PPE55 (Rv3347c) protein. Genomic hybridization studies suggest that the PPE55 gene is specific to the M. tuberculosis complex and is present in a majority of clinical isolates tested. Antibodies to the C-terminal, approximately 100-kDa fragment of PPE55 (PPE-C) were detectable in sera from 29/30 (97%) human immunodeficiency virus-negative/TB-positive (HIV(-) TB(+)) patients and 17/24 (71%) HIV(+) TB(+) patients tested but not in sera from purified-protein derivative-positive healthy controls, suggesting that the in vivo expression of PPE55 protein correlates with active M. tuberculosis infection. Anti-PPE-C antibodies were also detected in retrospective sera obtained months prior to manifestation of clinical TB from 17/21 (81%) HIV(+) TB(+) individuals tested, providing evidence that the protein is expressed during incipient, subclinical TB in HIV-infected humans. Thus, PPE55 is a highly immunogenic protein that may be useful for differentiating between latent TB and incipient, subclinical TB.
Collapse
Affiliation(s)
- Krishna K Singh
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
13
|
Andersen P, Doherty TM. TB subunit vaccines—putting the pieces together. Microbes Infect 2005; 7:911-21. [PMID: 15878836 DOI: 10.1016/j.micinf.2005.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 03/09/2005] [Indexed: 11/20/2022]
Abstract
The search for a new and improved vaccine against tuberculosis (TB) is currently a very active field of research, which in the last 10 years has benefited tremendously from the completed Mycobacterium tuberculosis genome and the progress in molecular biology and computer science. In this review, we discuss how Genomics, Proteomics and Transcriptomics have accelerated the pace of antigen discovery and vaccine development and have changed this field completely, resulting in the identification of a large number of antigens with potential in TB vaccines. The next phase of this work has now started--putting the most relevant molecules back together as fusion molecules and cocktails. This requires carefully monitoring aspects as immunodominance, recognition in different populations as well as vaccine manufacturing.
Collapse
Affiliation(s)
- Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark.
| | | |
Collapse
|
14
|
Sun M, Andreassi JL, Liu S, Pinto R, Triccas JA, Leyh TS. The trifunctional sulfate-activating complex (SAC) of Mycobacterium tuberculosis. J Biol Chem 2004; 280:7861-6. [PMID: 15615729 DOI: 10.1074/jbc.m409613200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sulfate activation pathway is essential for the assimilation of sulfate and, in many bacteria, is comprised of three reactions: the synthesis of adenosine 5'-phosphosulfate (APS), the hydrolysis of GTP, and the 3'-phosphorylation of APS to produce 3'-phosphoadenosine 5'-phosphosulfate (PAPS), whose sulfuryl group is reduced or transferred to other metabolites. The entire sulfate activation pathway is organized into a single complex in Mycobacterium tuberculosis. Although present in many bacteria, these tripartite complexes have not been studied in detail. Initial rate characterization of the mycobacterial system reveals that it is poised for extremely efficient throughput: at saturating ATP, PAPS synthesis is 5800 times more efficient than APS synthesis. The APS kinase domain of the complex does not appear to form the covalent E.P intermediate observed in the closely related APS kinase from Escherichia coli. The stoichiometry of GTP hydrolysis and APS synthesis is 1:1, and the APS synthesis reaction is driven 1.1 x 10(6)-fold further during GTP hydrolysis; the system harnesses the full chemical potential of the hydrolysis reaction to the synthesis of APS. A key energy-coupling step in the mechanism is a ligand-induced isomerization that enhances the affinity of GTP and commits APS synthesis and GTP hydrolysis to the completion of the catalytic cycle. Ligand-induced increases in guanine nucleotide affinity observed in the mycobacterial system suggest that it too undergoes the energy-coupling isomerization.
Collapse
Affiliation(s)
- Meihao Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1926, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pinto R, Tang QX, Britton WJ, Leyh TS, Triccas JA. The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. Microbiology (Reading) 2004; 150:1681-1686. [PMID: 15184554 DOI: 10.1099/mic.0.26894-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfur metabolism has been implicated in the virulence, antibiotic resistance and anti-oxidant defence ofMycobacterium tuberculosis. Despite its human disease relevance, sulfur metabolism in mycobacteria has not yet been fully characterized. ATP sulfurylase catalyses the synthesis of activated sulfate (adenosine 5′-phosphosulfate, APS), the first step in the reductive assimilation of sulfate. Expression of theM. tuberculosis cysDgene, predicted to encode the adenylyl-transferase subunit of ATP sulfurylase, is upregulated by the bacilli inside its preferred host, the macrophage. This study demonstrates thatcysDandcysNCorthologues exist inM. tuberculosisand constitute an operon whose expression is induced by sulfur limitation and repressed by the presence of cysteine, a major end-product of sulfur assimilation. ThecysDNCgenes are also induced upon exposure to oxidative stress, suggesting regulation of sulfur assimilation byM. tuberculosisin response to toxic oxidants. To ensure that thecysDNCoperon encoded the activities predicted by its primary sequence, and to begin to characterize the products of the operon, they were expressed inEscherichia coli, purified to homogeneity, and tested for their catalytic activities. The CysD and CysNC proteins were shown to form a multifunctional enzyme complex that exhibits the three linked catalytic activities that constitute the sulfate activation pathway.
Collapse
Affiliation(s)
- Rachel Pinto
- Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag no. 6, Newtown, NSW 2042, Australia
| | - Quing Xui Tang
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA
| | - Warwick J Britton
- Department of Medicine, University of Sydney, NSW 2006, Australia
- Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag no. 6, Newtown, NSW 2042, Australia
| | - Thomas S Leyh
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA
| | - James A Triccas
- Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag no. 6, Newtown, NSW 2042, Australia
| |
Collapse
|
16
|
Abstract
Pathogenic mycobacteria, including the causative agents of tuberculosis and leprosy, are responsible for considerable morbidity and mortality worldwide. A hallmark of these pathogens is their tendency to establish chronic infections that produce similar pathologies in a variety of hosts. During infection, mycobacteria reside in macrophages and induce the formation of granulomas, organized immune complexes of differentiated macrophages, lymphocytes, and other cells. This review summarizes our understanding of Mycobacterium-host cell interactions, the bacterial-granuloma interface, and mechanisms of bacterial virulence and persistence. In addition, we highlight current controversies and unanswered questions in these areas.
Collapse
Affiliation(s)
- Christine L Cosma
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
17
|
Abstract
Tuberculosis remains a major cause of mortality and physical and economic deprivation worldwide. There have been significant recent advances in our understanding of the Mycobacterium tuberculosis genome, mycobacterial genetics and the host determinants of protective immunity. Nevertheless, the challenge is to harness this information to develop a more effective vaccine than BCG, the attenuated strain of Mycobacterium bovis derived by Calmette and Guérin nearly 90 years ago. Some of the limitations of BCG include the waning of the protective immunity with time, reduced effectiveness against pulmonary tuberculosis compared to disseminated disease, and the problems of a live vaccine in immuno-compromised subjects. Two broad approaches to vaccine development are being pursued. New live vaccines include either attenuated strains of Mycobacterium tuberculosis produced by random mutagenesis or targeted deletion of putative virulence factors, or by genetic manipulation of BCG to express new antigens or cytokines. The second approach utilizes non-viable subunit vaccines to deliver immunodominant mycobacterial antigens. Both protein and DNA vaccines induce partial protection against experimental tuberculosis infection in mice, however, their efficacy has generally been equivalent to or less than that of BCG. The comparative effects of cytokine adjuvants and vaccines targeting antigen presenting cells on enhancing protection will be discussed. Coimmunization with plasmid interleukin-12 and a DNA vaccine expressing Antigen 85B, a major secreted protein, was as protective as BCG. The combination of priming with DNA-85B and boosting with BCG was superior to BCG alone. Therefore it is possible to achieve a greater level of protection against tuberculosis than with BCG, and this highlights the potential for new tuberculosis vaccines in humans.
Collapse
Affiliation(s)
- Warwick J Britton
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.
| | | |
Collapse
|
18
|
Braunstein M, Bardarov SS, Jacobs WR. Genetic methods for deciphering virulence determinants of Mycobacterium tuberculosis. Methods Enzymol 2003; 358:67-99. [PMID: 12474379 DOI: 10.1016/s0076-6879(02)58081-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
19
|
Abstract
Mycobacterium tuberculosis has demonstrated remarkable ability to survive in diverse conditions encountered during the infection process. These involve surviving the bactericidal stresses within the macrophage, the anaerobic and nutritionally altered environment of the granuloma, and the metabolically inactive latent state. Understanding the molecular basis of this adaptive behavior lies in the identification of genes (or virulence determinants) specifically expressed under these varied conditions. Transcriptional control plays a key role in regulating gene expression in response to environmental signals. However, even after decades of investigation our knowledge about the function of these regulatory mechanisms in mycobacteria remains meagre. But the elucidation of the genome sequence and implementation of sophisticated molecular genetic approaches to this organism have made a revolutionary impact on the study of mycobacterial pathogenesis. Deletion and complementation of individual genes can be done at will facilitating the comparative analysis of mutants and wild-type strains. Novel and powerful technologies such as DNA microarrays, fluorescent beacons and proteomics have made possible the analysis of the expression levels of multiple genes in in vitro systems. More technically challenging uses of these techniques is being undertaken to explore pathogen gene expression within the host. This will lead to the identification of virulence factors and give definitive insight into their regulatory signals.
Collapse
Affiliation(s)
- J Mehrotra
- Department of International Health, Center for Tuberculosis Research, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
20
|
Triccas JA, Gicquel B. Analysis of stress- and host cell-induced expression of the Mycobacterium tuberculosis inorganic pyrophosphatase. BMC Microbiol 2001; 1:3. [PMID: 11339880 PMCID: PMC31412 DOI: 10.1186/1471-2180-1-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2001] [Accepted: 04/24/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The gene encoding the inorganic pyrophosphatase (PPase) of the intracellular pathogen Legionella pneumophila is induced during intracellular infection, but is constitutively expressed in Escherichia coli. The causative agent of tuberculosis, Mycobacterium tuberculosis, contains a well conserved copy of PPase. We sought to determine if expression of the M. tuberculosis PPase is regulated by the intracellular environment. RESULTS A strain of Mycobacterium bovis bacille Calmette-Guérin (BCG) was constructed in which the Aequoria victoria green fluorescent protein (GFP) is controlled by the promoter of the M. tuberculosis ppa gene. After prolonged exposure of the recombinant BCG strain within murine bone-marrow-derived macrophages, there was no observed increased activity of the ppa promoter. Furthermore, there was no change in promoter activity after exposure to various stress stimuli such as reduced pH, osmotic shock, nutrient limitation or oxidative stress. CONCLUSIONS These results suggest that macrophage induction of ppa is not a general phenomenon among intracellular pathogens.
Collapse
Affiliation(s)
- James A Triccas
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No 6, Newtown, NSW, 2042, Australia
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
21
|
Mollenkopf H, Dietrich G, Kaufmann SH. Intracellular bacteria as targets and carriers for vaccination. Biol Chem 2001; 382:521-32. [PMID: 11405217 DOI: 10.1515/bc.2001.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review we discuss intracellular bacteria as targets and carriers for vaccines. For clarity and ease of comprehension, we focus on three microbes, Mycobacterium tuberculosis, Listeria monocytogenes and Salmonella, with an emphasis on tuberculosis, one of the leading causes of death from infectious disease. Novel vaccination strategies against these pathogens are currently being considered. One approach favors the use of live attenuated vaccines and vaccine carrier strains thereof, either for heterologous antigen presentation or DNA vaccine delivery. This strategy includes both the improvement of attenuated vaccine strains as well as the 'de novo' generation of attenuated variants of virulent pathogens. An alternative strategy relies on the application of subunit immunizations, either as nucleic acid vaccines or protein antigens of the pathogen. Finally, we present a short summary of the vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- H Mollenkopf
- Max-Planck-Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | |
Collapse
|