1
|
Abstract
PURPOSE To investigate neuropathological changes in the superior colliculus in chronic traumatic encephalopathy. METHODS The densities of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, astrocytic tangles, and neuritic plaques, together with abnormally enlarged neurons, typical neurons, vacuolation, and frequency of contacts with blood vessels, were studied across the superior colliculus from pia mater to the periaqueductal gray in eight chronic traumatic encephalopathy and six control cases. RESULTS Tau-immunoreactive pathology was absent in the superior colliculus of controls but present in varying degrees in all chronic traumatic encephalopathy cases, significant densities of tau-immunoreactive neurofibrillary tangles, NT, or dot-like grains being present in three cases. No significant differences in overall density of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, enlarged neurons, vacuoles, or contacts with blood vessels were observed in control and chronic traumatic encephalopathy cases, but chronic traumatic encephalopathy cases had significantly lower mean densities of neurons. The distribution of surviving neurons across the superior colliculus suggested greater neuronal loss in intermediate and lower laminae in chronic traumatic encephalopathy. Changes in density of the tau-immunoreactive pathology across the laminae were variable, but in six chronic traumatic encephalopathy cases, densities of tau-immunoreactive neurofibrillary tangles, neuropil threads, or dot-like grains were significantly greater in intermediate and lower laminae. Pathological changes were not correlated with the distribution of blood vessels. CONCLUSIONS The data suggest significant pathology affecting the superior colliculus in a proportion of chronic traumatic encephalopathy cases with a laminar distribution which could compromise motor function rather than sensory analysis.
Collapse
|
2
|
Armstrong RA. Laminar degeneration of frontal and temporal cortex in Parkinson disease dementia. Neurol Sci 2017; 38:667-671. [PMID: 28181068 DOI: 10.1007/s10072-017-2828-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/23/2017] [Indexed: 11/28/2022]
Abstract
To investigate cortical laminar degeneration in Parkinson's disease (PD) with dementia (PDD). Changes in density of α-synuclein-immunoreactive Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG) together with surviving neurons, abnormally enlarged neurons (EN), vacuoles, and glial cell nuclei were measured across cortical laminae of frontal and temporal cortex in fifteen cases of PDD using quantitative methods and polynomial curve-fitting. Most frequently, LB and LN were distributed across all laminae, while LG were distributed in upper cortical laminae. Low densities of EN were present in most cases distributed across all cortical laminae. Densities of vacuoles and glia were greatest in upper and lower cortical laminae, respectively. In most gyri, there were no spatial correlations between the densities of LB, LN, and LG. Cortical degeneration of frontal and temporal lobes in PDD affects all cortical laminae. Laminar distributions may result from the spread of α-synuclein pathology from subcortical regions and subsequent spread via the cortico-cortical pathways. This spread may be a major factor in the development of dementia in PD.
Collapse
|
3
|
Armstrong RA. Cortical degeneration in frontotemporal lobar degeneration with TDP-43 proteinopathy caused byprogranulingene mutation. Int J Neurosci 2014; 124:894-903. [DOI: 10.3109/00207454.2014.890620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Armstrong RA, Kotzbauer PT, Perlmutter JS, Campbell MC, Hurth KM, Schmidt RE, Cairns NJ. A quantitative study of α-synuclein pathology in fifteen cases of dementia associated with Parkinson disease. J Neural Transm (Vienna) 2014; 121:171-81. [PMID: 23996276 PMCID: PMC4041534 DOI: 10.1007/s00702-013-1084-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 08/19/2013] [Indexed: 12/22/2022]
Abstract
The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB, respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sectors CA2/CA3 of the hippocampus, whereas middle frontal gyrus, sector CA1, and dentate gyrus were least affected. Low densities of vacuoles and EN were recorded in most regions. There were differences in the numerical density of neurons between regions, but no statistical difference between patients and controls. In the cortex, the density of LB and vacuoles was similar in upper and lower laminae, while the densities of LN and LG were greater in upper cortex. The densities of LB, LN, and LG were positively correlated. Principal components analysis suggested that DPD cases were heterogeneous with pathology primarily affecting either hippocampus or cortex. The data suggest in DPD: (1) ratio of LN and LG to LB varies between regions, (2) low densities of vacuoles and EN are present in most brain regions, (3) degeneration occurs across cortical laminae, upper laminae being particularly affected, (4) LB, LN and LG may represent degeneration of the same neurons, and (5) disease heterogeneity may result from variation in anatomical pathway affected by cell-to-cell transfer of α-synuclein.
Collapse
|
5
|
Armstrong RA, Hamilton RL, Mackenzie IRA, Hedreen J, Cairns NJ. Laminar distribution of the pathological changes in sporadic frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy: a quantitative study using polynomial curve fitting. Neuropathol Appl Neurobiol 2013; 39:335-47. [PMID: 22804696 DOI: 10.1111/j.1365-2990.2012.01291.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. METHODS Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. RESULTS Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. CONCLUSIONS Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP.
Collapse
Affiliation(s)
- R A Armstrong
- Vision Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | | | | | |
Collapse
|
6
|
Armstrong RA, Carter D, Cairns NJ. A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 2012; 38:25-38. [PMID: 21696412 DOI: 10.1111/j.1365-2990.2011.01188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To further characterize the neuropathology of the heterogeneous molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). METHODS We quantified the neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe using a phosphorylation-independent TDP-43 antibody in 32 cases of FTLD-TDP comprising sporadic and familial cases, with associated pathology such as hippocampal sclerosis (HS) or Alzheimer's disease (AD), and four neuropathological subtypes using TDP-43 immunohistochemistry. Analysis of variance (anova) was used to compare differences between the various groups of cases. RESULTS These data from FTLD-TDP cases demonstrate quantitative differences in pathological features between: (i) regions of the frontal and temporal lobe; (ii) upper and lower cortex; (iii) sporadic and progranulin (GRN) mutation cases; (iv) cases with and without AD or HS; and (v) between assigned subtypes. CONCLUSIONS The data confirm that the dentate gyrus is a major site of neuropathology in FTLD-TDP and that most laminae of the cerebral cortex are affected. GRN mutation cases are quantitatively different from sporadic cases, while cases with associated HS and AD have increased densities of dystrophic neurites and abnormally enlarged neurones respectively. There is little correlation between the subjective assessment of subtypes and the more objective quantitative data.
Collapse
|
7
|
Armstrong RA, Gearing M, Bigio EH, Cruz-Sanchez FF, Duyckaerts C, Mackenzie IRA, Perry RH, Skullerud K, Yokoo H, Cairns NJ. The spectrum and severity of FUS-immunoreactive inclusions in the frontal and temporal lobes of ten cases of neuronal intermediate filament inclusion disease. Acta Neuropathol 2011; 121:219-28. [PMID: 20886222 DOI: 10.1007/s00401-010-0753-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 12/13/2022]
Abstract
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than α-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than α-internexin IHC.
Collapse
|
8
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
9
|
Armstrong RA, Ellis W, Hamilton RL, Mackenzie IRA, Hedreen J, Gearing M, Montine T, Vonsattel JP, Head E, Lieberman AP, Cairns NJ. Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm (Vienna) 2010; 117:227-39. [PMID: 20012109 PMCID: PMC2830004 DOI: 10.1007/s00702-009-0350-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Studies suggest that frontotemporal lobar degeneration with transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is heterogeneous with division into four or five subtypes. To determine the degree of heterogeneity and the validity of the subtypes, we studied neuropathological variation within the frontal and temporal lobes of 94 cases of FTLD-TDP using quantitative estimates of density and principal components analysis (PCA). A PCA based on the density of TDP-43 immunoreactive neuronal cytoplasmic inclusions, oligodendroglial inclusions, neuronal intranuclear inclusions, and dystrophic neurites, surviving neurons, enlarged neurons, and vacuolation suggested that cases were not segregated into distinct subtypes. Variation in the density of the vacuoles was the greatest source of variation between cases. A PCA based on TDP-43 pathology alone suggested that cases of FTLD-TDP with progranulin (GRN) mutation segregated to some degree. The pathological phenotype of all four subtypes overlapped but subtypes 1 and 4 were the most distinctive. Cases with coexisting motor neuron disease (MND) or hippocampal sclerosis (HS) also appeared to segregate to some extent. We suggest: (1) pathological variation in FTLD-TDP is best described as a 'continuum' without clearly distinct subtypes, (2) vacuolation was the single greatest source of variation and reflects the 'stage' of the disease, and (3) within the FTLD-TDP 'continuum' cases with GRN mutation and with coexisting MND or HS may have a more distinctive pathology.
Collapse
|
10
|
Pera M, Martínez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A, Clos M. Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 2009; 40:217-24. [DOI: 10.1016/j.mcn.2008.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 11/16/2022] Open
|
11
|
Hu W, Kieseier B, Frohman E, Eagar TN, Rosenberg RN, Hartung HP, Stüve O. Prion proteins: Physiological functions and role in neurological disorders. J Neurol Sci 2008; 264:1-8. [PMID: 17707411 DOI: 10.1016/j.jns.2007.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/01/2007] [Accepted: 06/08/2007] [Indexed: 02/01/2023]
Abstract
Stanley Prusiner was the first to promote the concept of misfolded proteins as a cause for neurological disease. It has since been shown by him and other investigators that the scrapie isoform of prion protein (PrP(Sc)) functions as an infectious agent in numerous human and non-human disorders of the central nervous system (CNS). Interestingly, other organ systems appear to be less affected, and do not appear to lead to major co-morbidities. The physiological function of the endogenous cellular form of the prion protein (PrP(C)) is much less clear. It is intriguing that PrP(c) is expressed on most tissues in mammals, suggesting not only biological functions outside the CNS, but also a role other than the propagation of its misfolded isotype. In this review, we summarize accumulating in vitro and in vivo evidence regarding the physiological functions of PrP(C) in the nervous system, as well as in lymphoid organs.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9036, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Muñoz-Torrero D, Camps P. Huprines for Alzheimer's disease drug development. Expert Opin Drug Discov 2007; 3:65-81. [DOI: 10.1517/17460441.3.1.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Pera M, Román S, Ratia M, Camps P, Muñoz-Torrero D, Colombo L, Manzoni C, Salmona M, Badia A, Clos MV. Acetylcholinesterase triggers the aggregation of PrP 106–126. Biochem Biophys Res Commun 2006; 346:89-94. [PMID: 16750169 DOI: 10.1016/j.bbrc.2006.04.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 04/30/2006] [Indexed: 11/20/2022]
Abstract
Acetylcholinesterase (AChE), a senile plaque component, promotes amyloid-beta-protein (Abeta) fibril formation in vitro. The presence of prion protein (PrP) in Alzheimer's disease (AD) senile plaques prompted us to assess if AChE could trigger the PrP peptides aggregation as well. Consequently, the efficacy of AChE on the PrP peptide spanning-residues 106-126 aggregation containing a coumarin fluorescence probe (coumarin-PrP 106-126) was studied. Kinetics of coumarin-PrP 106-126 aggregation showed a significant increase of maximum size of aggregates (MSA), which was dependent on AChE concentration. AChE-PrP 106-126 aggregates showed the tinctorial and optical amyloid properties as determined by polarized light and electronic microscopy analysis. A remarkable inhibition of MSA was obtained with propidium iodide, suggesting that AChE triggers PrP 106-126 and Abeta aggregation through a similar mechanism. Huprines (AChE inhibitors) also significantly decreased MSA induced by AChE as well, unveiling the potential interest for some AChE inhibitors as a novel class of potential anti-prion drugs.
Collapse
Affiliation(s)
- M Pera
- Departament de Farmacologia, de Terapèutica i de Toxicología, Institut Neurociències, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Armstrong RA, Cairns NJ, Ironside JW, Lantos PL. Does the neuropathology of human patients with variant Creutzfeldt-Jakob disease reflect haematogenous spread of the disease? Neurosci Lett 2003; 348:37-40. [PMID: 12893420 DOI: 10.1016/s0304-3940(03)00696-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To test the hypothesis that the distribution of the pathology in variant Creutzfeldt-Jakob disease (vCJD) represents haematogenous spread of the disease, we studied the spatial correlation between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles in the cerebral cortex, hippocampus, dentate gyrus, and cerebellum of 11 cases of the disease. In the majority of areas, there were no significant spatial correlations between either the vacuolation or the diffuse type of PrP deposit and the blood vessels. By contrast, a consistent pattern of spatial correlation was observed between the florid PrP deposits and blood vessels mainly in the cerebral cortex. The frequency of positive spatial correlations was similar in different anatomical areas of the cerebral cortex and in the upper compared with the lower laminae. Hence, with the exception of the florid deposits, the data do not demonstrate a spatial relationship between the pathological features of vCJD and blood vessels. The spatial correlation of the florid deposits and blood vessels may be attributable to factors associated with the blood vessels that promote the aggregation of PrP to form a condensed core rather than reflecting the haematogenous spread of the disease.
Collapse
Affiliation(s)
- R A Armstrong
- Vision Sciences, Aston University, Birmingham, B4 7ET, UK.
| | | | | | | |
Collapse
|