1
|
Hippocampal Noradrenaline Is a Positive Regulator of Spatial Working Memory and Neurogenesis in the Rat. Int J Mol Sci 2023; 24:ijms24065613. [PMID: 36982688 PMCID: PMC10052298 DOI: 10.3390/ijms24065613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Loss of noradrenaline (NA)-rich afferents from the Locus Coeruleus (LC) ascending to the hippocampal formation has been reported to dramatically affect distinct aspects of cognitive function, in addition to reducing the proliferation of neural progenitors in the dentate gyrus. Here, the hypothesis that reinstating hippocampal noradrenergic neurotransmission with transplanted LC-derived neuroblasts would concurrently normalize both cognitive performance and adult hippocampal neurogenesis was investigated. Post-natal day (PD) 4 rats underwent selective immunolesioning of hippocampal noradrenergic afferents followed, 4 days later, by the bilateral intrahippocampal implantation of LC noradrenergic-rich or control cerebellar (CBL) neuroblasts. Starting from 4 weeks and up to about 9 months post-surgery, sensory-motor and spatial navigation abilities were evaluated, followed by post-mortem semiquantitative tissue analyses. All animals in the Control, Lesion, Noradrenergic Transplant and Control CBL Transplant groups exhibited normal sensory-motor function and were equally efficient in the reference memory version of the water maze task. By contrast, working memory abilities were seen to be consistently impaired in the Lesion-only and Control CBL-Transplanted rats, which also exhibited a virtually complete noradrenergic fiber depletion and a significant 62–65% reduction in proliferating 5-bromo-2′deoxyuridine (BrdU)-positive progenitors in the dentate gyrus. Notably, the noradrenergic reinnervation promoted by the grafted LC, but not cerebellar neuroblasts, significantly ameliorated working memory performance and reinstated a fairly normal density of proliferating progenitors. Thus, LC-derived noradrenergic inputs may act as positive regulators of hippocampus-dependent spatial working memory possibly via the concurrent maintenance of normal progenitor proliferation in the dentate gyrus.
Collapse
|
2
|
de Leo G, Gulino R, Coradazzi M, Leanza G. Acetylcholine and noradrenaline differentially regulate hippocampus-dependent spatial learning and memory. Brain Commun 2022; 5:fcac338. [PMID: 36632183 PMCID: PMC9825812 DOI: 10.1093/braincomms/fcac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Severe loss of cholinergic neurons in the basal forebrain nuclei and of noradrenergic neurons in the locus coeruleus are almost invariant histopathological hallmarks of Alzheimer's disease. However, the role of these transmitter systems in the spectrum of cognitive dysfunctions typical of the disease is still unclear, nor is it yet fully known whether do these systems interact and how. Selective ablation of either neuronal population, or both of them combined, were produced in developing animals to investigate their respective and/or concurrent contribution to spatial learning and memory, known to be severely affected in Alzheimer's disease. Single or double lesions were created in 4-8 days old rats by bilateral intraventricular infusion of two selective immunotoxins. At about 16 weeks of age, the animals underwent behavioural tests specifically designed to evaluate reference and working memory abilities, and their brains were later processed for quantitative morphological analyses. Animals with lesion to either system alone showed no significant reference memory deficits which, by contrast, were evident in the double-lesioned subjects. These animals could not adopt an efficient search strategy on a given testing day and were unable to transfer all relevant information to the next day, suggesting deficits in acquisition, storage and/or recall. Only animals with single noradrenergic or double lesions exhibited impaired working memory. Interestingly, ablation of cholinergic afferents to the hippocampus stimulated a robust ingrowth of thick fibres from the superior cervical ganglion which, however, did not appear to have contributed to the observed cognitive performance. Ascending cholinergic and noradrenergic afferents to the hippocampus and neocortex appear to be primarily involved in the regulation of different cognitive domains, but they may functionally interact, mainly at hippocampal level, for sustaining normal learning and memory. Moreover, these transmitter systems are likely to compensate for each other, but apparently not via ingrowing sympathetic fibres.
Collapse
Affiliation(s)
| | | | - Marino Coradazzi
- Neurogenesis and Repair Lab., B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Via Fleming 2, 34127 Trieste, Italy
| | - Giampiero Leanza
- Correspondence to: Giampiero Leanza Department of Drug and Health Sciences, University of Catania Via S. Sofia 64, 95125 Catania, Italy E-mail:
| |
Collapse
|
3
|
Pintus R, Riggi M, Cannarozzo C, Valeri A, de Leo G, Romano M, Gulino R, Leanza G. Essential role of hippocampal noradrenaline in the regulation of spatial working memory and TDP-43 tissue pathology. J Comp Neurol 2018; 526:1131-1147. [PMID: 29355945 DOI: 10.1002/cne.24397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
Extensive loss of noradrenaline-containing neurons and fibers is a nearly invariant feature of Alzheimer's Disease (AD). However, the exact noradrenergic contribution to cognitive and histopathological changes in AD is still unclear. Here, this issue was addressed following selective lesioning and intrahippocampal implantation of embryonic noradrenergic progenitors in developing rats. Starting from about 3 months and up to 12 months post-surgery, animals underwent behavioral tests to evaluate sensory-motor, as well as spatial learning and memory, followed by post-mortem morphometric analyses. At 9 months, Control, Lesioned and Lesion + Transplant animals exhibited equally efficient sensory-motor and reference memory performance. Interestingly, working memory abilities were seen severely impaired in Lesion-only rats and fully recovered in Transplanted rats, and appeared partly lost again 2 months after ablation of the implanted neuroblasts. Morphological analyses confirmed the almost total lesion-induced noradrenergic neuronal and terminal fiber loss, the near-normal reinnervation of the hippocampus promoted by the transplants, and its complete removal by the second lesion. Notably, the noradrenergic-rich transplants normalized also the nuclear expression of the transactive response DNA-binding protein 43 (TDP-43) in various hippocampal subregions, whose cytoplasmic (i.e., pathological) occurrence appeared dramatically increased as a result of the lesions. Thus, integrity of ascending noradrenergic inputs to the hippocampus may be required for the regulation of specific aspects of learning and memory and to prevent TDP-43 tissue pathology.
Collapse
Affiliation(s)
- Roberta Pintus
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Margherita Riggi
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Cecilia Cannarozzo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Andrea Valeri
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gioacchino de Leo
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giampiero Leanza
- B.R.A.I.N. Lab for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, Trieste, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
5
|
Ambriz-Tututi M, Monjaraz-Fuentes F, Drucker-Colín R. Chromaffin cell transplants: From the lab to the clinic. Life Sci 2012; 91:1243-51. [DOI: 10.1016/j.lfs.2012.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/13/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
|
6
|
Coradazzi M, Gulino R, Garozzo S, Leanza G. Selective lesion of the developing central noradrenergic system: short- and long-term effects and reinnervation by noradrenergic-rich tissue grafts. J Neurochem 2010; 114:761-71. [PMID: 20477936 DOI: 10.1111/j.1471-4159.2010.06800.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The possibility to selectively remove noradrenergic neurons in the locus coeruleus/subcoeruleus (LC/SubC) complex by the immunotoxin anti-dopamine-beta-hydroxylase (DBH)-saporin has offered a powerful tool to study the functional role of this projection system. In the present study, the anatomical consequences of selective lesions of the LC/SubC on descending noradrenergic projections during early postnatal development have been investigated following bilateral intraventricular injections of anti-DBH-saporin or 6-hydroxydopamine to immature (4 day old) rats. Administration of increasing doses (0.25-1.0 microg) of the immunotoxin produced, about 5 weeks later, a dose-dependent loss of DBH-immunoreactive neurons in the LC/SubC complex (approximately 45-90%) paralleled by a similar reduction of noradrenergic innervation in the terminal territories in the lumbar spinal cord. Even at the highest dose used (1.0 microg) the immunotoxin did not produce any detectable effects on dopaminergic, adrenergic, serotonergic or cholinergic neuronal populations, which, by contrast, were markedly reduced after administration of 6-hydroxydopamine. The approximately 90% noradrenergic depletion induced by 0.5 and 1.0 microg of anti-DBH-saporin remained virtually unchanged at 40 weeks post-lesion. Conversely, the approximately 45% reduction of spinal innervation density estimated at 5 weeks in animals injected with the lowest dose (0.25 microg) of the immunotoxin was seen recovered up to near-normal levels at 40 weeks, possibly as a result of the intrinsic plasticity of the developing noradrenergic system. A similar reinnervation in the lumbar spinal cord was also seen promoted by grafts of fetal LC tissue implanted at the postnatal day 8 (i.e. 4 days after the lesion with 0.5 microg of anti-DBH-saporin). In these animals, the number of surviving neurons in the grafts and the magnitude of the reinnervation, with fibers extending in both the grey and white matter for considerable distances, were seen higher than those reported in previous studies using adult recipients. This would suggest that the functional interactions between the grafted tissue and the host may recapitulate the events normally occurring during the ontogenesis of the coeruleo-spinal projection system, and can therefore be developmentally regulated. Thus, the neonatal anti-DBH-saporin lesion model, with the possibility to produce graded noradrenergic depletions, holds promises as a most valuable tool to address issues of compensatory reinnervation and functional recovery in the severed CNS as well as to elucidate the mechanisms governing long-distance axon growth from transplanted neural precursors.
Collapse
Affiliation(s)
- Marino Coradazzi
- BRAIN Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | |
Collapse
|
7
|
Berglöf E, Strömberg I. Locus coeruleus promotes survival of dopamine neurons in ventral mesencephalon. An in oculo grafting study. Exp Neurol 2009; 216:158-65. [DOI: 10.1016/j.expneurol.2008.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
8
|
McAdoo DJ, Wu P. Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 2008; 90:282-96. [PMID: 18436292 DOI: 10.1016/j.pbb.2008.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Central nervous system (CNS) insults elevate endogenous toxins and alter levels of indicators of metabolic disorder. These contribute to neurotrauma, neurodegenerative diseases and chronic pain and are possible targets for pharmaceutical treatment. Microdialysis samples substances in the extracellular space for chemical analysis. It has demonstrated that toxic levels of glutamate are released and that toxic levels of the reactive species O(2)(-), H(2)O(2), HO. NO and HOONO are generated upon CNS injury. Agent administration by microdialysis can also help elucidate mechanisms of damage and protection, and to identify targets for clinical application. Microdialysis sampling indicates that circuits descending from the brain to the spinal cord transmit and modulate pain signals by releasing neurotransmitter amines and amino acids. Efforts are under way to develop microdialysis into a technique for intensive care monitoring and predicting outcomes of brain insults. Finally, microdialysis sampling has demonstrated in vivo elevation of glial cell line-derived neurotrophic factor following grafting of primed fetal human neural stem cells into brain-injured rats, the first in vivo demonstration of the release of a neurotrophic factor by grafted stem cells. This increased release correlated with significantly improved spatial learning and memory.
Collapse
Affiliation(s)
- David J McAdoo
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, United States.
| | | |
Collapse
|
9
|
Gulino R, Cataudella T, Casamenti F, Pepeu G, Stanzani S, Leanza G. Acetylcholine release from fetal tissue homotopically grafted to the motoneuron-depleted lumbar spinal cord. An in vivo microdialysis study in the awake rat. Exp Neurol 2007; 204:326-38. [PMID: 17234186 DOI: 10.1016/j.expneurol.2006.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/16/2006] [Accepted: 11/18/2006] [Indexed: 01/19/2023]
Abstract
Grafts of spinal cord (SC) tissue can survive and develop into the severed SC, but no conclusive data are available concerning the functional activity of transplanted neurons. In the present study, suspensions of prelabeled embryonic ventral SC tissue were grafted to the lumbar SC of rats with motoneuron loss induced by perinatal injection of volkensin. Eight to ten months post-grafting, acetylcholine (ACh) release was measured by microdialysis in awake rats, under either basal or stimulated conditions. In normal animals, baseline ACh output averaged 1.6 pmol/30 microl, it exhibited a 4-fold increase after KCl-induced depolarization or handling, and it was completely inhibited by tetrodotoxin administration. Moreover, ACh levels did not change following acute SC transection performed under anesthesia during ongoing dialysis, suggesting an intrinsic source for spinal ACh. Treatment with volkensin produced a severe (>85%) motoneuronal loss accompanied by a similar reduction in baseline ACh release and almost completely abolished effects of depolarization or handling. In transplanted animals, many motoneuron-like labeled cells were found within and just outside the graft area, but apparently in no case were they able to extend fibers towards the denervated muscle. However, the grafts restored baseline ACh output up to near-normal levels and responded with significantly increased release to depolarization, but not to handling. The present findings indicate that spinal neuroblasts can survive and develop within the motoneuron-depleted SC and release ACh in a near-normal, but apparently non-regulated, manner. This may be of importance for future studies involving intraspinal stem cell grafts.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Cenci MA, Kalén P. Serotonin release from mesencephalic raphe neurons grafted to the 5,7-dihydroxytryptamine-lesioned rat hippocampus: effects of behavioral activation and stress. Exp Neurol 2000; 164:351-61. [PMID: 10915574 DOI: 10.1006/exnr.2000.7433] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplants of fetal midbrain raphe neurons into the adult brain have been shown to promote recovery of complex behavioral deficits in several experimental models, but the mechanisms underlying these effects are only partially understood. In the present study, we have used a well-characterized model system to ascertain whether midbrain raphe graft can display behaviorally relevant changes in transmitter release and/or metabolism. Fetal mesencephalic raphe neurons were grafted unilaterally into the hippocampus previously deprived of its innate serotonergic innervation by intraventricular injections of 5,7-dihydroxytryptamine. The contralateral hippocampus remained as a nongrafted, lesioned control. Microdialysis probes were implanted in the hippocampus 5-7 months postgrafting. Under baseline conditions, extracellular levels of serotonin were similar to normal in the grafted hippocampi, but undetectable on the contralateral, nongrafted side. Levels of the serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were markedly higher than normal in the grafted hippocampi, but dramatically reduced on the contralateral nongrafted side. Handling stimulation (gentle stroking of a rat's fur and tail for 15 min) induced a 64% increase in serotonin output in the intact rats and a small but significant 12% increase in the grafted animals. Non-noxious tail-pinch (15 min) enhanced serotonin release by 86% in the intact rats and 28% in the grafted ones. Extracellular 5-HIAA levels remained unchanged during both handling and tail-pinch in both the intact and the grafted rats. Forced immobilization of the rats for 15 min induced a transient 124% increase in extracellular serotonin levels in the intact rats and a significant 19% increase in the grafted animals, whereas swimming in temperate water (25-30 degrees C; 15 min) induced no detectable changes in serotonin output in any of the groups. 5-HIAA levels remained unchanged during forced immobilization, but were significantly reduced during the swimming session in both the intact (-38%) and grafted (-15%) animals. The present results indicate that median raphe grafts can become functionally integrated in the denervated host hippocampus and respond by altered indole output when the animal is exposed to different types of environmental challenges.
Collapse
Affiliation(s)
- M A Cenci
- Department of Physiological Sciences, University of Lund, Sölvegatan, 17, S-223 62, Sweden
| | | |
Collapse
|