1
|
Rad A, Weigl L, Steinecker-Frohnwieser B, Stadlmayr S, Millesi F, Haertinger M, Borger A, Supper P, Semmler L, Wolf S, Naghilou A, Weiss T, Kress HG, Radtke C. Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro. Cells 2024; 13:1544. [PMID: 39329728 PMCID: PMC11430304 DOI: 10.3390/cells13181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro. The aim of this study was to identify factors involved in transferring the observed NMRT-induced effects to SCs and consequently to DRG neurons. Conditioned media of NMRT-treated (CM NMRT) and untreated SCs (CM CTRL) were tested by beta-nerve growth factor (ßNGF) ELISA and multiplex cytokine panels to profile secreted factors. The expression of nociceptive transient receptor potential vanilloid 1 (TRPV1) channels was assessed and the intracellular calcium response in DRG neurons to high-potassium solution, capsaicin or adenosine triphosphate was measured mimicking noxious stimuli. NMRT induced the secretion of ßNGF and pro-regenerative-signaling factors. Blocking antibody experiments confirmed ßNGF as the main factor responsible for neurotrophic/neuritogenic effects of CM NMRT. The TRPV1 expression or sensitivity to specific stimuli was not altered, whereas the viability of cultured DRG neurons was increased. Positive effects of CM NMRT supernatant on DRG neurons are primarily mediated by increased ßNGF levels.
Collapse
Affiliation(s)
- Anda Rad
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lukas Weigl
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
| | | | - Sarah Stadlmayr
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Flavia Millesi
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Maximilian Haertinger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Anton Borger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Paul Supper
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lorenz Semmler
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Sonja Wolf
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Aida Naghilou
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamara Weiss
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Hans G. Kress
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Hofmanning 214, 8962 Groebming, Austria
| | - Christine Radtke
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| |
Collapse
|
2
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Kraev K, Geneva-Popova M, Hristov B, Uchikov P, Popova S, Kraeva M, Basheva-Kraeva Y, Sheytanov I, Petranova T, Stoyanova N, Atanassov M. Exploring the Novel Dimension of Immune Interactions in Pain: JAK Inhibitors' Pleiotropic Potential. Life (Basel) 2023; 13:1994. [PMID: 37895376 PMCID: PMC10608014 DOI: 10.3390/life13101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
This review explores the link between immune interactions and chronic pain, offering new perspectives on treatment. It focuses on Janus kinase (JAK) inhibitors' potential in pain management. Immune cells' communication with neurons shapes neuroinflammatory responses, and JAK inhibitors' effects on pain pathways are discussed, including cytokine suppression and microglial modulation. This review integrates studies from rheumatoid arthritis (RA) pain and central sensitization to highlight connections between immune interactions and pain. Studies on RA joint pain reveal the shift from cytokines to sensitization. Neurobiological investigations into central sensitization uncover shared pathways in chronic pain. Clinical evidence supports JAK inhibitors' efficacy on pain-related outcomes and their effects on neurons and immune cells. Challenges and future directions are outlined, including interdisciplinary collaboration and dosing optimization. Overall, this review highlights JAK inhibitors' potential to target immune-mediated pain pathways, underscoring the need for more research on immune-pain connections.
Collapse
Affiliation(s)
- Krasimir Kraev
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Mariela Geneva-Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Second Department of Internal Diseases, Section “Gastroenterology”, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Gastroenterology, University Hospital “Kaspela”, 4001 Plovdiv, Bulgaria
| | - Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Second Surgery Clinic, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Stanislava Popova
- Department of Propaedeutics of Internal Diseases “Prof. Dr. Anton Mitov”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital “St. George”, 4000 Plovdiv, Bulgaria
| | - Maria Kraeva
- Department of Otorhinolaryngology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordanka Basheva-Kraeva
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Ivan Sheytanov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Tzvetanka Petranova
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Medical Faculty, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Nina Stoyanova
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| | - Marin Atanassov
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria (M.A.)
| |
Collapse
|
4
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
5
|
Kelly KM, Smith JA, Mezuk B. Depression and interleukin-6 signaling: A Mendelian Randomization study. Brain Behav Immun 2021; 95:106-114. [PMID: 33631287 PMCID: PMC11081733 DOI: 10.1016/j.bbi.2021.02.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A large body of research has reported associations between depression and elevated interleukin-6 (IL-6), a cytokine with several roles including pro-inflammatory signaling. The nature and directionality of this relationship are not yet clear. In this study we use Mendelian Randomization to examine the possibility of a causal relationship between IL-6 and depressive symptoms, and to explore multiple signaling pathways that could serve as mechanisms for this relationship. METHODS This study uses a two-sample Mendelian Randomization design. Data come from the UK Biobank (n = 89,119) and published summary statistics from six existing GWAS analyses. The primary analysis focuses on the soluble interleukin-6 receptor (sIL-6R), which is involved in multiple signaling pathways. Exploratory analyses use C-reactive protein (CRP) and soluble glycoprotein 130 (sgp130) to further examine potential underlying mechanisms. RESULTS Results are consistent with a causal effect of sIL-6R on depression (PCA-IVW Odds Ratio: 1.023 (95% Confidence Interval: 1.006-1.039), p = 0.006). Exploratory analyses demonstrate that the relationship could be consistent with either decreased classical signaling or increased trans signaling as the underlying mechanism. DISCUSSION These results strengthen the body evidence implicating IL-6 signaling in depression. When compared with existing observational and animal findings, the direction of these results suggests involvement of IL-6 trans signaling. Further study is needed to examine whether IL6R genetic variants might influence IL-6 trans signaling in the brain, as well as to explore other potential pathways linking depression and inflammation.
Collapse
Affiliation(s)
- Kristen M Kelly
- Department of Epidemiology, School of Public Health, University of Michigan, United States; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, The Netherlands.
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, United States; Institute for Social Research, University of Michigan, United States
| | - Briana Mezuk
- Department of Epidemiology, School of Public Health, University of Michigan, United States; Institute for Social Research, University of Michigan, United States
| |
Collapse
|
6
|
Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021; 144:155582. [PMID: 34058569 DOI: 10.1016/j.cyto.2021.155582] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.
Collapse
Affiliation(s)
- Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Austria
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Austria.
| |
Collapse
|
7
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
8
|
Abstract
Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology.
Collapse
Affiliation(s)
- Masato Tamari
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Pediatrics, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Aaron M Ver Heul
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , .,Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Simon LS, Taylor PC, Choy EH, Sebba A, Quebe A, Knopp KL, Porreca F. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum 2020; 51:278-284. [PMID: 33412435 DOI: 10.1016/j.semarthrit.2020.10.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Pain is a manifestation of rheumatoid arthritis (RA) that is mediated by inflammatory and non-inflammatory mechanisms and negatively affects quality of life. Recent findings from a Phase 3 clinical trial showed that patients with RA who were treated with a Janus kinase 1 (Jak1) and Janus kinase 2 (Jak2) inhibitor achieved significantly greater improvements in pain than those treated with a tumor necrosis factor blocker; both treatments resulted in similar changes in standard clinical measures and markers of inflammation. These findings suggest that Jak1 and Jak2 inhibition may relieve pain in RA caused by inflammatory and non-inflammatory mechanisms and are consistent with the overarching involvement of the Jak-signal transducer and activator of transcription (Jak/STAT) pathway in mediating the action, expression, and regulation of a multitude of pro- and anti-inflammatory cytokines. In this review, we provide an overview of pain in RA, the underlying importance of cytokines regulated directly or indirectly by the Jak/STAT pathway, and therapeutic targeting of the Jak/STAT pathway in RA. As highlighted herein, multiple cytokines directly or indirectly regulated by the Jak/STAT pathway play important roles in mediating various mechanisms underlying pain in RA. Having a better understanding of these mechanisms may help clinicians make treatment decisions that optimize the control of inflammation and pain.
Collapse
Affiliation(s)
| | - Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Ernest H Choy
- CREATE Centre, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Tucson, AZ 85718, USA.
| |
Collapse
|
10
|
Abstract
Biochemically, interleukin-6 belongs to the class of four-helical cytokines. The cytokine can be synthesised and secreted by many cells. It acts via a cell surface-expressed interleukin-6 receptor, which is not signalling competent. This receptor, when complexed with interleukin-6, associates with the signalling receptor glycoprotein 130 kDa (gp130), which becomes dimerised and initiates intracellular signalling via the Janus kinase/signal transducer and activator of transcription and rat sarcoma proto oncogene/mitogen-activated protein kinase/phosphoinositide-3 kinase pathways. Physiologically, interleukin-6 is involved in the regulation of haematopoiesis and the coordination of the innate and acquired immune systems. Additionally, interleukin-6 plays an important role in the regulation of metabolism, in neural development and survival, and in the development and maintenance of various cancers. Although interleukin-6 is mostly regarded as a pro-inflammatory cytokine, there are numerous examples of protective and regenerative functions of this cytokine. This review will explain the molecular mechanisms of the, in part opposing, activities of the cytokine interleukin-6.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-Universitaet zu Kiel, Olshausenstrasse 40, D24098 Kiel, Germany
| |
Collapse
|
11
|
Abe K, Chiba Y, Hattori S, Tamazawa A, Yoshimi A, Katsuse O, Suda A. Influence of plasma cytokine levels on the conversion risk from MCI to dementia in the Alzheimer's disease neuroimaging initiative database. J Neurol Sci 2020; 414:116829. [PMID: 32289574 DOI: 10.1016/j.jns.2020.116829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Kie Abe
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan
| | - Yuhei Chiba
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan.
| | - Saki Hattori
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan
| | | | - Asuka Yoshimi
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan
| | - Omi Katsuse
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan
| | - Akira Suda
- Yokohama City University, School of Medicine, Department of Psychiatry, Japan
| | | |
Collapse
|
12
|
Association of Variants in IL6-Related Genes with Lung Cancer Risk in Moroccan Population. Lung 2019; 197:601-608. [DOI: 10.1007/s00408-019-00261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
|
13
|
Wang X, Northcutt AL, Cochran TA, Zhang X, Fabisiak TJ, Haas ME, Amat J, Li H, Rice KC, Maier SF, Bachtell RK, Hutchinson MR, Watkins LR. Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. ACS Chem Neurosci 2019; 10:3622-3634. [PMID: 31282647 DOI: 10.1021/acschemneuro.9b00225] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Methamphetamine (METH) is a globally abused, highly addictive stimulant. While investigations of the rewarding and motivational effects of METH have focused on neuronal actions, increasing evidence suggests that METH can also target microglia, the innate immune cells of the central nervous system, causing release of proinflammatory mediators and therefore amplifying the reward changes in the neuronal activity induced by METH. However, how METH induces neuroinflammatory responses within the central nervous system (CNS) is unknown. Herein, we provide direct evidence that METH creates neuroinflammation, at least in part, via the activation of the innate immune Toll-like receptor 4 (TLR4). Biophysical studies revealed that METH bound to MD-2, the key coreceptor of TLR4. Molecular dynamics simulations showed METH binding stabilized the active heterotetramer (TLR4/MD-2)2 conformation. Classic TLR4 antagonists LPS-RS and TAK-242 attenuated METH induced NF-κB activation of microglia, whereas added MD-2 protein boosted METH-induced NF-κB activation. Systemically administered METH (1 mg/kg) was found to specifically up-regulate expression of both CD11b (microglial activation marker) and the proinflammatory cytokine interleukin 6 (IL-6) mRNAs in the ventral tegmental area (VTA), but not in either the nucleus accumbens shell (NAc) or prefrontal cortex (PFC). Systemic administration of a nonopioid, blood-brain barrier permeable TLR4 antagonist (+)-naloxone inhibited METH-induced activation of microglia and IL-6 mRNA overexpression in VTA. METH was found to increase conditioned place preference (CPP) as well as extracellular dopamine concentrations in the NAc, with both effects suppressed by the nonopioid TLR4 antagonist (+)-naloxone. Furthermore, intra-VTA injection of LPS-RS or IL-6 neutralizing antibody suppressed METH-induced elevation of extracellular NAc dopamine. Taken together, this series of studies demonstrate that METH-induced neuroinflammation is, at least in part, mediated by TLR4-IL6 signaling within the VTA, which has the downstream effect of elevating dopamine in the NAc shell. These results provide a novel understanding of the neurobiological mechanisms underlying acute METH reward that includes a critical role for central immune signaling and offers a new target for medication development for treating drug abuse.
Collapse
Affiliation(s)
- Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Alexis L. Northcutt
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Thomas A. Cochran
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Xiaozheng Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Timothy J. Fabisiak
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Mackenzie E. Haas
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Jose Amat
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Kenner C. Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892, United States
| | - Steven F. Maier
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Ryan K. Bachtell
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | | | - Linda R. Watkins
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford) 2019; 57:1885-1895. [PMID: 29186541 PMCID: PMC6199533 DOI: 10.1093/rheumatology/kex391] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 11/14/2022] Open
Abstract
RA is a chronic, systemic, autoimmune disease characterized by inflammation and degradation of the joints, causing significant negative impact on quality of life. In addition to joint disease, symptoms and co-morbidities associated with RA-namely pain, fatigue and mood disorders-are often as debilitating as the disease itself. The pro-inflammatory cytokine IL-6 plays a critical role in RA-associated pathology. However, a greater understanding of the translational effects of IL-6 outside of the immune system is needed. This review discusses our current understanding of emerging aspects of IL-6 in RA-associated pain, fatigue and mood disorders such as depression and anxiety. This review also describes the clinical effects of IL-6 inhibition on these symptoms and co-morbidities in patients with RA.
Collapse
Affiliation(s)
- Ernest H S Choy
- Section of Rheumatology, Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | |
Collapse
|
15
|
Crotti C, Biggioggero M, Becciolini A, Favalli EG. Sarilumab: patient-reported outcomes in rheumatoid arthritis. PATIENT-RELATED OUTCOME MEASURES 2018; 9:275-284. [PMID: 30154675 PMCID: PMC6108331 DOI: 10.2147/prom.s147286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few decades, strategies for the management of rheumatoid arthritis (RA) have been increasingly oriented toward more comprehensive control of the disease, taking into account even RA extra-articular manifestations, comorbidities, and the patient’s perception about the disease. The need for improving the shared decision-making process suggested by European League Against Rheumatism recommendations is leading to an increasing interest in the role of patient-reported outcomes (PROs) beside the usual more objective criteria for defining clinical response based on disease-activity composite indices. Measurement of such PROs as pain or fatigue may be significantly influenced by mood disorders often complicating RA, the pathogenesis of which is deeply interconnected with phlogistic processes mediated by proinflammatory cytokines. IL6 is a pleiotropic mediator involved in neuroendocrine and neuropsychological processes, besides its well known effects on immune, cardiovascular, and metabolic systems. Therefore, there is a growing body of evidence about the efficacy of IL6 blockade in PRO improvement in RA patients. Sarilumab is a monoclonal antibody binding both soluble and membrane-bound IL6Rα, inhibiting the IL6-mediated signaling pathway with favorable efficacy and safety profile. This review analyzes the importance of PROs in strategies for the management of RA and the pathogenic mechanisms linking IL6 with the patient’s perception of the disease. Moreover, the main findings from sarilumab randomized controlled trials are summarized in detail, emphasizing the potential role of this IL6 blocker in the holistic treatment of RA.
Collapse
Affiliation(s)
- Chiara Crotti
- Department of Clinical Sciences and Health Community, University of Milan.,Division of Rheumatology, Gaetano Pini Institute, Milan, Italy
| | | | | | | |
Collapse
|
16
|
Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford) 2018; 57:ii43-ii50. [DOI: 10.1093/rheumatology/kex513] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2059-2070. [DOI: 10.1016/j.bbamcr.2017.07.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
|
18
|
Interleukin-6-Mediated Induced Pluripotent Stem Cell (iPSC)-Derived Neural Differentiation. Mol Neurobiol 2017; 55:3513-3522. [PMID: 28509081 DOI: 10.1007/s12035-017-0594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
In an aging society with an increasing threat to higher brain cognitive functions due to dementia, it becomes imperative to identify new molecular remedies for supporting adult neurogenesis. Interleukin-6 (IL-6) is a promising cytokine that can support neurogenesis under conditions of neurodegeneration, and neuron replacement is eventually possible due to its agonistic acting soluble receptor sIL-6R. Here, we report that activation of the IL-6-signal transducer and activator of transcription 3 (STAT3) axis is neurogenic and has potential therapeutic applications for the treatment of neurodegenerative diseases such as Parkinson's disease (PD).
Collapse
|
19
|
Abstract
Interleukin-6 is a cytokine involved in the regulation of the immune system and the central nervous system. Interleukin-6 binds to an interleukin-6 receptor, and then associates with a dimer of the ubiquitously expressed gp130 receptor subunit, which initiates intracellular signaling. The interleukin-6 receptor is found in a soluble form, which is generated by proteolytic cleavage and also to a minor extent by translation from an alternatively spliced mRNA. The complex of interleukin-6 bound to the interleukin-6 receptor can stimulate cells, which only express gp130. Such cells are not responsive to interleukin-6 alone. We have for the first time identified the molecular basis of pro-and anti-inflammatory properties of interleukin-6 and we have defined the generation of the soluble IL-6R as a crucial point in the regulation between these two properties. Furthermore, we have deduced a therapeutic principle, which enables us to exclusively block the pro-inflammatory activities of this important cytokine.
Collapse
Affiliation(s)
- Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|
20
|
Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems. Biomolecules 2015; 5:2073-100. [PMID: 26371053 PMCID: PMC4598789 DOI: 10.3390/biom5032073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.
Collapse
|
21
|
Palus M, Formanová P, Salát J, Žampachová E, Elsterová J, Růžek D. Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: identification of novel inflammatory markers with implications for pathogenesis. J Med Virol 2015; 87:885-92. [PMID: 25675945 DOI: 10.1002/jmv.24140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a leading human neuroinfection in Europe and northeastern Asia. However, the pathophysiology of TBE is not understood completely. This study sought to determine the specific serum mediators that are associated with acute TBE. The levels of 30 cytokines, chemokines, and growth factors were measured in serum samples from 87 patients with clinically and serologically confirmed acute TBE and from 32 control subjects using the Cytokine Human Magnetic 30-Plex Panel for the Luminex platform. Serum levels of the monoamine neurotransmitters serotonin, dopamine, and noradrenaline were measured via enzyme-linked immunosorbent assay. TBE virus infection elicited increased levels of the pro-inflammatory cytokines interleukin (IL)-6, IL-8, and IL-12. TBE patients had higher IL-12:IL-4 and IL-12:IL-10 ratios than control patients, reflecting the global pro-inflammatory cytokine balance. Serum levels of the monoamine neurotransmitters serotonin, dopamine, and noradrenaline were significantly lower in TBE patients than in the control group. Most interestingly, increased levels of hepatocyte growth factor and vascular endothelial growth factor were observed in TBE patients; these proteins may be novel and mechanistically important inflammatory biomarkers of TBE.
Collapse
Affiliation(s)
- Martin Palus
- Department of Virology, Veterinary Research Institute, Brno, Czech Republic; Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Nadella R, Voutilainen MH, Saarma M, Gonzalez-Barrios JA, Leon-Chavez BA, Jiménez JMD, Jiménez SHD, Escobedo L, Martinez-Fong D. Transient transfection of human CDNF gene reduces the 6-hydroxydopamine-induced neuroinflammation in the rat substantia nigra. J Neuroinflammation 2014; 11:209. [PMID: 25511018 PMCID: PMC4275959 DOI: 10.1186/s12974-014-0209-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson's disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical period of inflammation after a single intrastriatal 6-OHDA injection in the rat. METHODS At day 15 after lesion, the plasmids p3xNBRE-hCDNF or p3xNBRE-EGFP, coding for enhanced green florescent protein (EGFP), were transfected into the rat substantia nigra (SN) using neurotensin (NTS)-polyplex. At day 15 post-transfection, we measured nitrite and lipoperoxide levels in the SN. We used ELISA to quantify the levels of TNF-α, IL-1β, IL-6, endogenous rat CDNF (rCDNF) and hCDNF. We also used qRT-PCR to measure rCDNF and hCDNF transcripts, and immunofluorescence assays to evaluate iNOS, CDNF and glial cells (microglia, astrocytes and Neuron/Glial type 2 (NG2) cells). Intact SNs were additional controls. RESULTS In the SN, 6-OHDA triggered nitrosative stress, increased inflammatory cytokines levels, and activated the multipotent progenitor NG2 cells, which convert into astrocytes to produce rCDNF. In comparison with the hemiparkinsonian rats that were transfected with the EGFP gene or without transfection, 6-OHDA treatment and p3xNBRE-hCDNF transfection increased the conversion of NG2 cells into astrocytes resulting in 4-fold increase in the rCDNF protein levels. The overexpressed CDNF reduced nitrosative stress, glial markers and IL-6 levels in the SN, but not TNF-α and IL-1β levels. CONCLUSION Our results show the anti-inflammatory effect of CDNF in a 6-OHDA rat of Parkinson's disease. Our results also suggest the possible participation of TNF-α, IL-1β and IL-6 in rCDNF production by astrocytes, supporting their anti-inflammatory role.
Collapse
Affiliation(s)
- Rasajna Nadella
- Programa de Doctorado en Nanociencias y Nanotecnología; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México. .,Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| | - Merja H Voutilainen
- Institute of Biotechnology, PO Box 56, Viikki Biocenter, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, PO Box 56, Viikki Biocenter, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Juan A Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional '1° de Octubre', ISSSTE, Av. Instituto Politécnico Nacional # 1667, Magdalena de las Salinas, CP 02800, México, DF, México.
| | - Bertha A Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio S/N, Ciudad Universitaria Edif. 105A, CP 72570, Puebla, PUE, México.
| | - Judith M Dueñas Jiménez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Av. Juárez 976, Colonia Centro, CP 44100, Guadalajara, Jalisco, México.
| | - Sergio H Dueñas Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Av. Juárez 976, Colonia Centro, CP 44100, Guadalajara, Jalisco, México.
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| | - Daniel Martinez-Fong
- Programa de Doctorado en Nanociencias y Nanotecnología; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México. .,Departamento de Fisiología, Biofísica y Neurociencias; CINVESTAV, Av. Instituto Politécnico Nacional # 2508, San Pedro Zacatenco, CP 07360, México, DF, México.
| |
Collapse
|
23
|
Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol 2014; 10:720-7. [PMID: 25136784 DOI: 10.1038/nrrheum.2014.127] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-6 has been linked to numerous diseases associated with inflammation, including rheumatoid arthritis, inflammatory bowel disease, vasculitis and several types of cancer. Moreover, IL-6 is important in the induction of hepatic acute-phase proteins for the trafficking of acute and chronic inflammatory cells, the differentiation of adaptive T-cell responses, and tissue regeneration and homeostatic regulation. Studies have investigated IL-6 biology using cell-bound IL-6 receptors expressed predominantly on hepatocytes and certain haematopoietic cells versus activation mediated by IL-6 and soluble IL-6 receptors via a second protein, gp130, which is expressed throughout the body. Advances in this research elucidating the differential effects of IL-6 activation provide important insights into the role of IL-6 in health and disease, as well as its potential as a therapeutic target. Knowledge of the basic biology of IL-6 and its signalling pathways can better inform both the research agenda for IL-6-based targeted therapies as well as the clinical use of strategies affecting IL-6-mediated inflammation. This Review covers novel, emerging aspects of the biology of IL-6, which might lead to more specific blockade of IL-6 signalling without compromising the protective function of this cytokine in the body's defence against infections.
Collapse
Affiliation(s)
- Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stefan Rose-John
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| |
Collapse
|
24
|
Circadian rhythmicity, variability and correlation of interleukin-6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology 2014; 44:71-82. [PMID: 24767621 DOI: 10.1016/j.psyneuen.2014.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is a cytokine with pleiotropic actions in both the periphery of the body and the central nervous system (CNS). Altered IL-6 secretion has been associated with inflammatory dysregulation and several adverse health consequences. However, little is known about the physiological circadian characteristics and dynamic inter-correlation between circulating and CNS IL-6 levels in humans, or their significance. METHODS Simultaneous assessment of plasma and cerebrospinal fluid (CSF) IL-6 levels was performed hourly in 11 healthy male volunteers over 24h, to characterize physiological IL-6 secretion levels in both compartments. RESULTS IL-6 levels showed considerable within- and between-subject variability in both plasma and CSF, with plasma/CSF ratios revealing consistently higher levels in the CSF. Both CSF and plasma IL-6 levels showed a distinctive circadian variation, with CSF IL-6 levels exhibiting a main 24h, and plasma a biphasic 12h, circadian component. Plasma peaks were roughly at 4 p.m. and 4 a.m., while the CSF peak was at around 7 p.m. There was no correlation between coincident CSF and plasma IL-6 values, but evidence for significant correlations at a negative 7-8h time lag. CONCLUSIONS This study provides evidence in humans for a circadian IL-6 rhythm in CSF and confirms prior observations reporting a plasma biphasic circadian pattern. Our results indicate differential IL-6 regulation across the two compartments and are consistent with local production of IL-6 in the CNS. Possible physiological significance is discussed and implications for further research are highlighted.
Collapse
|
25
|
Scheller J, Garbers C, Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 2013; 26:2-12. [PMID: 24325804 DOI: 10.1016/j.smim.2013.11.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/16/2022]
Abstract
Cytokines receptors exist in membrane bound and soluble form. A soluble form of the human IL-6R is generated by limited proteolysis and alternative splicing. The complex of IL-6 and soluble IL-6R stimulates target cells not stimulated by IL-6 alone, since they do not express the membrane bound IL-6R. We have named this process trans-signaling. Soluble gp130 is the natural inhibitor of IL-6/soluble IL-6R complex responses. Recombinant soluble gp130 protein is a molecular tool to discriminate between gp130 responses via membrane bound and soluble IL-6R responses. Neutralizing monoclonal antibodies for global blockade of IL-6 signaling and the sgp130Fc protein for selective blockade of IL-6 trans-signaling have been used in several animal models of human diseases. Using the sgp130Fc protein or sgp130Fc transgenic mice we demonstrate in models of inflammatory bowel disease, peritonitis, rheumatoid arthritis, atherosclerosis pancreatitis, colon cancer, ovarian cancer and pancreatic cancer, that IL-6 trans-signaling via the soluble IL-6R is the crucial step in the development and the progression of the disease. Therefore, sgp130Fc is a novel therapeutic agent for the treatment of chronic inflammatory diseases and cancer and it undergoes phase I clinical trials as an anti-inflammatory drug since June 2013.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Garbers
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
26
|
Knüpfer H, Preiss R. Lack of knowledge: breast cancer and the soluble interleukin-6 receptor. ACTA ACUST UNITED AC 2013; 5:177-80. [PMID: 21049067 DOI: 10.1159/000314248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cytokines are and may be used as therapeutic targets in cancer therapy. In breast cancer, interleukin (IL)-6 is associated with different features of tumor biology like metastasis, certain stages, and decreased survival. It is now an established fact that signaling via the soluble IL-6 receptor (sIL-6R) («transsignaling») is an important process in the IL-6 machinery. METHODS AND RESULTS In this mini-review, we discover that published knowledge about sIL-6R serum levels in breast cancer patients is sparse and, furthermore, most in vitro data merely show that tumor cells produce the sIL-6R endogenously. CONCLUSIONS Therefore, a lot of research is still necessary to analyze the significance of the sIL-6R and therefore the transsignaling process in breast tumors. More knowledge about the sIL-6R in breast cancer would give insights into its putative role as blood marker of active tumor disease. Secondly, the sIL-6R may be useful in breast cancer as a new therapeutic pathway. If, as suggested by the literature, IL-6 mediates the aggressiveness and the growth of breast tumors, elevated circulating levels of IL-6 and its receptor may identify patients for whom the IL-6 complex is a therapeutic target.
Collapse
Affiliation(s)
- Heike Knüpfer
- Institute of Clinical Pharmacology, University of Leipzig, Germany
| | | |
Collapse
|
27
|
Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci 2013; 14:13931-57. [PMID: 23880850 PMCID: PMC3742226 DOI: 10.3390/ijms140713931] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.
Collapse
Affiliation(s)
- Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat 13060, Kuwait; E-Mail:
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671 Manama, Bahrain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +973-1723-7300
| |
Collapse
|
28
|
Girotti M, Donegan JJ, Morilak DA. Influence of hypothalamic IL-6/gp130 receptor signaling on the HPA axis response to chronic stress. Psychoneuroendocrinology 2013; 38:1158-69. [PMID: 23218517 PMCID: PMC3609893 DOI: 10.1016/j.psyneuen.2012.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 01/30/2023]
Abstract
Abnormal basal activity and stress-evoked reactivity of the hypothalamic-pituitary-adrenal (HPA) axis are often seen in depression, implicating HPA axis dysfunction as a potentially causative or exacerbating factor. Chronic stress is also a factor in depression, but it is not known what may underlie the shift from adaptive to maladaptive HPA activity over the course of chronic stress. Interleukin 6 (IL-6), a stress-inducible cytokine that signals through gp130 and IL-6Rα receptors to activate the JAK/STAT3 signaling cascade, is elevated in some subtypes of depression, and may have a modulatory effect on HPA activation, raising the possibility that IL-6 contributes to depression through effects on the HPA axis. In this study, we examined the effects of three different stress modalities, acute footshock, chronic intermittent cold (CIC) stress and chronic unpredictable stress (CUS) on IL-6 signaling in the hypothalamus. We also investigated whether IL-6 modulates the HPA response to chronic stress, by blocking IL-6 signaling in the brain during CIC stress using either a neutralizing antibody or an inhibitor of STAT3 phosphorylation. We show that IL-6 and STAT3 in the hypothalamus are activated in response to footshock and CUS. We also found that basal IL-6 signaling through the JAK/STAT3 pathway is required for the sustained CORT response to chronic, but not acute, cold stress and therefore is a potential determinant of plasticity in the HPA axis specifically during chronic stress exposure.
Collapse
Affiliation(s)
| | | | - David A Morilak
- Corresponding author: D. A. Morilak, Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229 Ph.: 210-567-4174, Fax: 210-567-4300,
| |
Collapse
|
29
|
Braun O, Dewitz C, Möller-Hackbarth K, Scheller J, Schiffelholz T, Baier PC, Rose-John S. Effects of Blockade of Peripheral Interleukin-6 Trans-Signaling on Hippocampus-Dependent and Independent Memory in Mice. J Interferon Cytokine Res 2013; 33:254-60. [DOI: 10.1089/jir.2012.0096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Olga Braun
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christin Dewitz
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology-II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schiffelholz
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Christian Baier
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
30
|
Abstract
Interleukin-6 (IL-6) is a cytokine which is involved in many inflammatory processes and in the development of cancer. In addition, IL-6 has been shown to be important for the induction of hepatic acute-phase proteins, for the regeneration of the liver and for the stimulation of B-cells. IL-6 binds to a transmembrane IL-6 receptor (IL-6R), which is present on hepatocytes and some leukocytes. The complex of IL-6 and IL-6R associates with a second protein, gp130, which is expressed on all cells of the body. Since neither IL-6 nor IL-6R has a measurable affinity for gp130, cells, which do not express IL-6R, are not responsive to the cytokine IL-6. It could be shown, however, that a naturally occurring soluble IL-6R (sIL-6R) in complex with IL-6 can bind to gp130 on cells with no IL-6R expression. Therefore, cells shedding the sIL-6R render cells, which only express gp130, responsive to the cytokine. This process has been called trans-signaling. In the present chapter, we summarize the known activities of IL-6 with a special emphasis on regenerative activities, which often depend on the sIL-6R. A designer cytokine called Hyper-IL-6, which is a fusion protein of IL-6 and the sIL-6R, can mimic IL-6 trans-signaling responses in vitro and in vivo with considerably higher efficacy than the combination of the natural proteins IL-6 and sIL-6R. We present recent examples from animal models in which the therapeutic potential of Hyper-IL-6 has been evaluated. We propose that Hyper-IL-6 can be used to induce potent regeneration responses in liver, kidney, and other tissues and therefore will be a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Eithan Galun
- Goldyne Savad Inst. of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | |
Collapse
|
31
|
Quintana A, Erta M, Ferrer B, Comes G, Giralt M, Hidalgo J. Astrocyte-specific deficiency of interleukin-6 and its receptor reveal specific roles in survival, body weight and behavior. Brain Behav Immun 2013; 27:162-73. [PMID: 23085146 DOI: 10.1016/j.bbi.2012.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/01/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022] Open
Abstract
Interleukin-6 (IL-6) is a major cytokine which controls not only the immune system but also exhibits many other functions including effects in the central nervous system (CNS). IL-6 is known to be produced by different cells in the CNS, and all the major CNS do respond to IL-6, which makes it difficult to dissect the specific roles of each cell type when assessing the role of IL-6 in the brain. We have produced for the first time floxed mice for IL-6 and have crossed them with GFAP-Cre mice to delete IL-6 in astrocytes (Ast-IL-6 KO mice), and have compared their phenotype with that of mice with deletion of IL-6 receptor in astrocytes (Ast-IL6R KO mice). Our results indicate a major prosurvival role of the astrocyte IL-6 system at early ages (intrauterine life), which was also involved to various degrees in the control of adult body weight, locomotor activity, anxiety and exploratory behaviors. In some occasions deleting IL-6R in astrocytes mimicked the phenotype of Ast-IL-6 KO mice (i.e. activity), while in others the opposite was observed (i.e. exploration), suggesting autocrine and paracrine (presumably on neurons) roles of astrocyte IL-6. Our results suggest important roles of the astrocyte IL-6 system on normal brain physiology, in some cases totally unexpected from previous results with total IL-6 KO mice.
Collapse
Affiliation(s)
- Albert Quintana
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 2012; 241:159-68. [PMID: 23261764 DOI: 10.1016/j.expneurol.2012.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6.
Collapse
Affiliation(s)
- Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8:1254-66. [PMID: 23136554 PMCID: PMC3491449 DOI: 10.7150/ijbs.4679] [Citation(s) in RCA: 778] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/19/2012] [Indexed: 12/21/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differentiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the immune response, but with many critical roles in major physiological systems including the nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons and glial cells), and in the response of mature neurons and glial cells in normal conditions and following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotrophin-like fashion, and seemingly makes understandable why the cytokine family that it belongs to is known as neuropoietins. Its expression is affected in several of the main brain diseases, and animal models strongly suggest that IL-6 could have a role in the observed neuropathology and that therefore it is a clear target of strategic therapies.
Collapse
Affiliation(s)
- María Erta
- Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Cytokines that promote nerve regeneration. Exp Neurol 2012; 238:101-6. [PMID: 22981450 DOI: 10.1016/j.expneurol.2012.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/01/2012] [Accepted: 08/11/2012] [Indexed: 11/21/2022]
|
35
|
Zigmond RE. gp130 cytokines are positive signals triggering changes in gene expression and axon outgrowth in peripheral neurons following injury. Front Mol Neurosci 2012; 4:62. [PMID: 22319466 PMCID: PMC3262188 DOI: 10.3389/fnmol.2011.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/28/2011] [Indexed: 01/24/2023] Open
Abstract
Adult peripheral neurons, in contrast to adult central neurons, are capable of regeneration after axonal damage. Much attention has focused on the changes that accompany this regeneration in two places, the distal nerve segment (where phagocytosis of axonal debris, changes in the surface properties of Schwann cells, and induction of growth factors and cytokines occur) and the neuronal cell body (where dramatic changes in cell morphology and gene expression occur). The changes in the axotomized cell body are often referred to as the "cell body response." The focus of the current review is a family of cytokines, the glycoprotein 130 (gp130) cytokines, which produce their actions through a common gp130 signaling receptor and which function as injury signals for axotomized peripheral neurons, triggering changes in gene expression and in neurite outgrowth. These cytokines play important roles in the responses of sympathetic, sensory, and motor neurons to injury. The best studied of these cytokines in this context are leukemia inhibitory factor (LIF) and interleukin (IL)-6, but experiments with conditional gp130 knockout animals suggest that other members of this family, not yet determined, are also involved. The primary gp130 signaling pathway shown to be involved is the activation of Janus kinase (JAK) and the transcription factors Signal Transducers and Activators of Transcription (STAT), though other downstream pathways such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) may also play a role. gp130 signaling may involve paracrine, retrograde, and autocrine actions of these cytokines. Recent studies suggest that manipulation of this cytokine system can also stimulate regeneration by injured central neurons.
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences, Case Western Reserve University, ClevelandOH, USA
| |
Collapse
|
36
|
Wang H, Wang K, Zhong X, Dai Y, Qiu W, Wu A, Hu X. Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation 2012; 19:304-8. [PMID: 22777162 DOI: 10.1159/000339302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND IL-6 is a proinflammatory cytokine which is involved in the maintenance of the humoral response in various autoimmune disorders. Cerebrospinal fluid (CSF) IL-6 has shown to be increased in neuromyelitis optica (NMO). The soluble form of IL-6 receptor (sIL-6R), which links to IL-6, can activate biological responses in cells. Whether or not sIL-6R is altered in NMO has not been clarified. OBJECTIVE To measure CSF IL-6 and sIL-6R in NMO and multiple sclerosis (MS) patients, and investigate whether IL-6 and sIL-6R have possible uses as sensitive biomarkers for diseases activity. METHODS CSF concentrations of IL-6 and sIL-6R were measured by an ELISA in NMO (n = 22) and MS (n = 18) patients, as well as control subjects (n = 14). RESULTS The concentration of IL-6 levels were higher in NMO compared to MS (p = 0.032) and the controls (p = 0.023). The levels of sIL-6R were also higher in NMO compared to MS (p = 0.002) and the controls (p < 0.001). CSF sIL-6R was associated with an Expanded Disability Status Scale score in NMO (p = 0.005) but not in MS (p = 0.891). In the MS subgroup, sIL-6R concentrations were associated with CSF white blood cells (p = 0.034). CONCLUSIONS Our study revealed that CSF sIL-6R was increased in NMO patients, and correlated with clinical presentations.
Collapse
Affiliation(s)
- Honghao Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
37
|
An autocrine neuronal interleukin-6 loop mediates chloride accumulation and NKCC1 phosphorylation in axotomized sensory neurons. J Neurosci 2011; 31:13516-26. [PMID: 21940443 DOI: 10.1523/jneurosci.3382-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cation-chloride cotransporter NKCC1 plays a fundamental role in the central and peripheral nervous systems by setting the value of intracellular chloride concentration. Following peripheral nerve injury, NKCC1 phosphorylation-induced chloride accumulation contributes to neurite regrowth of sensory neurons. However, the molecules and signaling pathways that regulate NKCC1 activity remain to be identified. Functional analysis of cotransporter activity revealed that inhibition of endogenously produced cytokine interleukin-6 (IL-6), with anti-mouse IL-6 antibody or in IL-6⁻/⁻ mice, prevented chloride accumulation in a subset of axotomized neurons. Nerve injury upregulated the transcript and protein levels of IL-6 receptor in myelinated, TrkB-positive sensory neurons of murine lumbar dorsal root ganglia. Expression of phospho-NKCC1 was observed mainly in sensory neurons expressing IL-6 receptor and was absent from IL-6⁻/⁻ dorsal root ganglia. The use of IL-6 receptor blocking-function antibody or soluble IL-6 receptor, together with pharmacological inhibition of Janus kinase, confirmed the role of neuronal IL-6 signaling in chloride accumulation and neurite growth of a subset of axotomized sensory neurons. Cell-specific expression of interleukin-6 receptor under pathophysiological conditions is therefore a cellular response by which IL-6 contributes to nerve regeneration through neuronal NKCC1 phosphorylation and chloride accumulation.
Collapse
|
38
|
Traum D, Timothee P, Silver J, Rose-John S, Ernst M, LaRosa DF. IL-10-induced gp130 expression in mouse mast cells permits IL-6 trans-signaling. J Leukoc Biol 2011; 91:427-35. [PMID: 22140267 DOI: 10.1189/jlb.0411209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It is reported that human and mouse mast cells express the IL-27R, which consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Although it has been proposed that IL-27 may negatively regulate mast cell-dependent, immediate hypersensitivity responses directly, this has yet to be examined specifically. We found that mouse BMMC and primary peritoneal mast cells are unresponsive to IL-27. Consistent with this, gp130 protein in resting BMMC was not on the cell surface to a measurable degree but was found intracellularly, and data are consistent with incompletely processed N-linked glycosylation. Furthermore, BMMC constitutively expressed SOCS3, a major negative regulator of gp130 signaling. However, BMMC stimulation with IL-10 and consequential STAT3 activation increased gp130 expression, which resulted in a functional gp130 receptor on the BMMC cell surface. IL-10 has not been previously shown to regulate gp130 expression, which on the BMMC surface, permitted IL-6 trans-signaling, found to increase survival under limiting conditions and enhance IL-13 and TNF-α secretion. This study identifies factors that regulate mouse mast cell gp130 expression and signaling and makes conspicuous the limitations of using cultured mouse mast cells to study the effects of the IL-6/IL-12 cytokine family on mast cell biology.
Collapse
Affiliation(s)
- Daniel Traum
- Department of Medicine, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
39
|
März-Weiss P, Kunz D, Bimmler D, Berkemeier C, Özbek S, Dimitriades-Schmutz B, Haybaeck J, Otten U, Graf R. Expression of pancreatitis-associated protein after traumatic brain injury: a mechanism potentially contributing to neuroprotection in human brain. Cell Mol Neurobiol 2011; 31:1141-9. [PMID: 21643999 PMCID: PMC11498531 DOI: 10.1007/s10571-011-9715-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/20/2011] [Indexed: 12/20/2022]
Abstract
Neuronal cell death after severe traumatic brain injury (TBI) is caused by a complex interplay of pathological mechanisms including excitotoxicity, oxidative stress, mitochondrial dysfunction, extensive neuroinflammation, and ischemia-reperfusion injury. Pancreatitis-associated protein I (PAP I/reg2) was reported to be a survival factor for peripheral neurons, particularly sensory and motor neurons. In rat brains, by experimental TBI as well as by kainic acid induced brain seizure, PAP I and PAP III were found to be up-regulated in central neurons. In this study, we performed immunohistochemical staining in postmortem human brain from patients who died after severe TBI to demonstrate PAP expression on protein level in cerebellar Purkinje cells, pyramidal and granular neurons in cerebral cortex, and cortical neurons in the fore- and mid-brain. In primary cultures of rat brain cortical, hippocampal, and cerebellar neurons, we found neuroprotective effects for PAP I on H(2)O(2)-induced oxidative stress. Moreover, serum K(+)-deprivation induces apoptotic cell death in 55% of cerebellar granule neurons (CGN), whereas upon treatment with PAP I only 32% of CGN are apoptotic. Using Western blot analyses, we compared protein phosphorylation in neuronal signaling pathways activated by PAP I versus Interleukin-6 (IL-6). We found a rapid activation of Akt-kinase phosphorylation by PAP I with a peak at 15 min, whereas IL-6 induces Akt-phosphorylation lasting longer than 30 min. Phosphorylation of MAP-42/44 kinases is stimulated in a comparable fashion. Both, IL-6 and PAP I increase phosphorylation of NFκB for activation of gene transcription, whereas only IL-6 recruits STAT3 phosphorylation, indicating that STAT3 is not a target of PAP I transcription activation in brain neurons. Application of the Akt-inhibitor Wortmanin reveals only a partial inhibition of PAP I-dependent protection of CGN from H(2)O(2)-induced oxidative stress. Based on our findings, we suggest that PAP I is a long lasting neurotrophic signal for central neurons. The neuroprotective effects parallel those that have been described for effects of PAP I in ciliary neurotrophic factor (CNTF)-mediated survival of sensory and motor neurons. PAP I may act in autocrine and/or paracrine fashion and thus may contribute to endogenous protective mechanisms relevant under harmful conditions like oxidative stress, brain injury, or neurodegeneration.
Collapse
Affiliation(s)
- Pia März-Weiss
- Translational Research, Hoffmann-LaRoche Ltd, Grenzacherstrasse, 4070 Basel, Switzerland
| | - Dieter Kunz
- Institute of Physiology, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland
| | - Daniel Bimmler
- Pancreatitis Research Laboratory, Department of Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Caroline Berkemeier
- Institute of Physiology, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland
| | - Suat Özbek
- Institute for Molecular Evolution and Genomics, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Johannes Haybaeck
- Institute of Neuropathology, University Hospital Zürich, 8091 Zürich, Switzerland
- Institute of Pathology, Medical University Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Uwe Otten
- Institute of Physiology, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland
| | - Rolf Graf
- Pancreatitis Research Laboratory, Department of Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
40
|
Quarta S, Vogl C, Constantin CE, Üçeyler N, Sommer C, Kress M. Genetic evidence for an essential role of neuronally expressed IL-6 signal transducer gp130 in the induction and maintenance of experimentally induced mechanical hypersensitivity in vivo and in vitro. Mol Pain 2011; 7:73. [PMID: 21951917 PMCID: PMC3197546 DOI: 10.1186/1744-8069-7-73] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/27/2011] [Indexed: 11/29/2022] Open
Abstract
Tenderness and mechanical allodynia are key symptoms of malignant tumor, inflammation and neuropathy. The proinflammatory cytokine interleukin-6 (IL-6) is causally involved in all three pathologies. IL-6 not only regulates innate immunity and inflammation but also causes nociceptor sensitization and hyperalgesia. In general and in most cell types including immune cells and sensory neurons, IL-6 binds soluble μ receptor subunits which heteromerizes with membrane bound IL-6 signal transducer gp130. In the present study, we used a conditional knock-out strategy to investigate the importance of signal transducer gp130 expressed in C nociceptors for the generation and maintenance of mechanical hypersensitivity. Nociceptors were sensitized to mechanical stimuli by experimental tumor and this nociceptor sensitization was preserved at later stages of the pathology in control mice. However, in mice with a conditional deletion of gp130 in Nav1.8 expressing nociceptors mechanical hypersensitivity by experimental tumor, nerve injury or inflammation recovery was not preserved in the maintenance phase and nociceptors exhibited normal mechanical thresholds comparable to untreated mice. Together, the results argue for IL-6 signal transducer gp130 as an essential prerequisite in nociceptors for long-term mechanical hypersensitivity associated with cancer, inflammation and nerve injury.
Collapse
Affiliation(s)
- Serena Quarta
- Div. Physiology, DPMP, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Paoletta A, Arnaldi G, Papa R, Boscaro M, Tirabassi G. Intrapituitary cytokines in Cushing's disease: do they play a role? Pituitary 2011; 14:236-41. [PMID: 21181277 DOI: 10.1007/s11102-010-0285-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A large body of in vitro evidence shows that cytokines influence the hypothalamic-pituitary-adrenal axis both in physiological conditions and in Cushing's disease (CD). In order to study in vivo the role of intrapituitary cytokines in CD, we assayed two cytokines known for their action on the pituitary, i.e. interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), and also soluble interleukin-6 receptor (sIL-6R), important for the neural activities of IL-6, in a carefully selected sample of subjects affected by CD undergoing bilateral inferior petrosal sinus sampling. Similarly to ACTH, all cytokines basally showed a higher concentration in the ipsilateral sinus compared to the controlateral one and to that of peripheral blood; after CRH infusion, both ipsilaterally and controlaterally, IL-6 and sIL-6R values increased compared to basal ones, while IL-1β increased significantly up to 5 min after CRH and then decreased significantly compared to basal values in subsequent measurements; peripherically no significant variations in the cytokines were observed after CRH. Again similarly to ACTH, the three cytokines presented a higher increase ipsilaterally than controlaterally; moreover all three interleukins in the ipsilateral sinuses showed positive and significant correlations between their basal value and that of basal ACTH. These findings allow us to hypothesize that the central production of IL-1β and IL-6 could be involved in ACTH hypersecretion which occurs in CD: more specifically, we hypothesize that these cytokines are produced directly by the corticotroph adenoma and have the task of enhancing tumoral secretion of ACTH with an autocrine-paracrine mechanism.
Collapse
|
42
|
Burton MD, Sparkman NL, Johnson RW. Inhibition of interleukin-6 trans-signaling in the brain facilitates recovery from lipopolysaccharide-induced sickness behavior. J Neuroinflammation 2011; 8:54. [PMID: 21595956 PMCID: PMC3113341 DOI: 10.1186/1742-2094-8-54] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin (IL)-6 is produced in the brain during peripheral infection and plays an important but poorly understood role in sickness behavior. Therefore, this study investigated the capacity of soluble gp130 (sgp130), a natural inhibitor of the IL-6 trans-signaling pathway to regulate IL-6 production in microglia and neurons in vitro and its effects on lipopolysaccharide (LPS)-induced sickness behavior in vivo. Methods A murine microglia (BV.2) and neuronal cell line (Neuro.2A) were used to study the effects of stimulating and inhibiting the IL-6 signaling pathway in vitro. In vivo, adult (3-6 mo) BALB/c mice received an intracerebroventricular (ICV) injection of sgp130 followed by an intraperitoneal (i.p.) injection of LPS, and sickness behavior and markers of neuroinflammation were measured. Results Soluble gp130 attenuated IL-6- and LPS-stimulated IL-6 receptor (IL-6R) activation along with IL-6 protein release in both microglial (BV.2) and neuronal (Neuro.2A) cell types in vitro. Moreover, in vivo experiments showed that sgp130 facilitated recovery from LPS-induced sickness, and this sgp130-associated recovery was paralleled by reduced IL-6 receptor signaling, mRNA, and protein levels of IL-6 in the hippocampus. Conclusions Taken together, the results show that sgp130 may exert an anti-inflammatory effect on microglia and neurons by inhibiting IL-6 binding. These data indicate that sgp130 inhibits the LPS-induced IL-6 trans-signal and show IL-6 and its receptor are involved in maintaining sickness behavior.
Collapse
Affiliation(s)
- Michael D Burton
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, Urbana, 7 Animal Sciences Lab 1207 W, Gregory Dr, Urbana, IL 61801, USA
| | | | | |
Collapse
|
43
|
The pro- and anti-inflammatory properties of the cytokine interleukin-6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:878-88. [PMID: 21296109 DOI: 10.1016/j.bbamcr.2011.01.034] [Citation(s) in RCA: 2260] [Impact Index Per Article: 161.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Interleukin-6 is a cytokine not only involved in inflammation and infection responses but also in the regulation of metabolic, regenerative, and neural processes. In classic signaling, interleukin-6 stimulates target cells via a membrane bound interleukin-6 receptor, which upon ligand binding associates with the signaling receptor protein gp130. Gp130 dimerizes, leading to the activation of Janus kinases and subsequent phosphorylation of tyrosine residues within the cytoplasmic portion of gp130. This leads to the engagement of phosphatase Src homology domains containing tyrosin phosphatase-2 (SHP-2) and activation of the ras/raf/Mitogen-activated protein (MAP) kinase (MAPK) pathway. In addition, signal transducer and activator of transcription factors are recruited, which are phosphorylated, and consequently dimerize whereupon they translocate into the nucleus and activate target genes. Interestingly, only few cells express membrane bound interleukin-6 receptor whereas all cells display gp130 on the cell surface. While cells, which only express gp130, are not responsive to interleukin-6 alone, they can respond to a complex of interleukin-6 bound to a naturally occurring soluble form of the interleukin-6 receptor. Therefore, the generation of soluble form of the interleukin-6 receptor dramatically enlarges the spectrum of interleukin-6 target cells. This process has been named trans-signaling. Here, we review the involvement of both signaling modes in the biology of interleukin-6. It turns out that regenerative or anti-inflammatory activities of interleukin-6 are mediated by classic signaling whereas pro-inflammatory responses of interleukin-6 are rather mediated by trans-signaling. This is important since therapeutic blockade of interleukin-6 by the neutralizing anti-interleukin-6 receptor monoclonal antibody tocilizumab has recently been approved for the treatment of inflammatory diseases. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
44
|
Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S. Interleukin-6, a mental cytokine. ACTA ACUST UNITED AC 2011; 67:157-83. [PMID: 21238488 DOI: 10.1016/j.brainresrev.2011.01.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
Almost a quarter of a century ago, interleukin-6 (IL-6) was discovered as an inflammatory cytokine involved in B cell differentiation. Today, IL-6 is recognized to be a highly versatile cytokine, with pleiotropic actions not only in immune cells, but also in other cell types, such as cells of the central nervous system (CNS). The first evidence implicating IL-6 in brain-related processes originated from its dysregulated expression in several neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. In addition, IL-6 was shown to be involved in multiple physiological CNS processes such as neuron homeostasis, astrogliogenesis and neuronal differentiation. The molecular mechanisms underlying IL-6 functions in the brain have only recently started to emerge. In this review, an overview of the latest discoveries concerning the actions of IL-6 in the nervous system is provided. The central position of IL-6 in the neuroinflammatory reaction pattern, and more specifically, the role of IL-6 in specific neurodegenerative processes, which accompany Alzheimer's disease, multiple sclerosis and excitotoxicity, are discussed. It is evident that IL-6 has a dichotomic action in the CNS, displaying neurotrophic properties on the one hand, and detrimental actions on the other. This is in agreement with its central role in neuroinflammation, which evolved as a beneficial process, aimed at maintaining tissue homeostasis, but which can become malignant when exaggerated. In this perspective, it is not surprising that 'well-meant' actions of IL-6 are often causing harm instead of leading to recovery.
Collapse
Affiliation(s)
- Anneleen Spooren
- Laboratory of Eukaryotic Signal Transduction and Gene Expression, University of Ghent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chalaris A, Garbers C, Rabe B, Rose-John S, Scheller J. The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol 2010; 90:484-94. [PMID: 21145125 DOI: 10.1016/j.ejcb.2010.10.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 02/04/2023] Open
Abstract
Soluble cytokine receptors are frequently found in human serum, most of them possessing antagonistic properties. The Interleukin 6 receptor (IL-6R) is found as a transmembrane protein on hepatocytes and subsets of leukocytes, but soluble isoforms of the IL-6R (sIL-6R) are generated by alternative splicing or by limited proteolysis of the ADisintegrin And Metalloproteinases (ADAM) gene family members ADAM10 and ADAM17. Importantly, the sIL-6R in complex with its ligand Interleukin 6 (IL-6) has agonistic functions and requires cells expressing the signal transducing ß-receptor gp130 but not the membrane-bound IL-6R. We have called this process IL-6 trans-signaling. Naturally occurring isoforms of soluble gp130 (sgp130), which are generated by alternative splicing, are natural inhibitors of IL-6 trans-signaling, leaving IL-6 classic signaling via the membrane-bound IL-6R unaffected. We used recombinant sgp130Fc protein and recently generated transgenic mice expressing high levels of sgp130Fc to discriminate between classic and trans-signaling in vivo, and demonstrated that IL-6 trans-signaling is critically involved in generation and maintenance of several inflammatory and autoimmune diseases including chronic inflammatory bowel disease, rheumatoid arthritis, peritonitis and asthma, as well as inflammation-induced colon cancer.
Collapse
Affiliation(s)
- Athena Chalaris
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstraße 40, Kiel, Germany
| | | | | | | | | |
Collapse
|
46
|
Mechanisms involved in IL-6-induced muscular mechanical hyperalgesia in mice. Pain 2010; 151:345-355. [DOI: 10.1016/j.pain.2010.07.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 07/06/2010] [Accepted: 07/15/2010] [Indexed: 01/19/2023]
|
47
|
Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. ACTA ACUST UNITED AC 2010; 6:73-83. [DOI: 10.1017/s1740925x10000074] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing body of evidence that cytokines contribute to both induction and maintenance of neuropathic pain derived from changes in dorsal root ganglia (DRG), including the activity of the primary sensory neurons and their satellite glial cells (SGC). We used immunofluorescence andin situhybridization methods to provide evidence that chronic constriction injury (CCI) of the sciatic nerve induces synthesis of interleukin-6 (IL-6) in SGC, elevation of IL-6 receptor (IL-6R) and activation of signal transducer and activator of transcription 3 (STAT3) signalling. Unilateral CCI of the rat sciatic nerve induced mechanoallodynia and thermal hyperalgesia in ipsilateral hind paws, but contralateral paws exhibited only temporal changes of sensitivity. We demonstrated that IL-6 mRNA and protein, which were expressed at very low levels in naïve DRG, were bilaterally increased not only in L4-L5 DRG neurons but also in SGC activated by unilateral CCI. Besides IL-6, substantial increase of IL-6R and pSTAT3 expression occurred in SGC following CCI, however, IL-6R associated protein, gp130 levels did not change. The results may suggest that unilateral CCI of the sciatic nerve induces bilateral activation of SGC in L4-L5 DRG to transduce IL-6 signalling during neuroinflammation.
Collapse
|
48
|
Abstract
Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-delta via Gab1/2/PI(3)K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.
Collapse
|
49
|
IL-6-trans-signalling increases rapid-eye-movement sleep in rats. Eur J Pharmacol 2009; 613:141-5. [PMID: 19383497 DOI: 10.1016/j.ejphar.2009.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/31/2009] [Accepted: 04/08/2009] [Indexed: 02/04/2023]
Abstract
Interleukin 6 (IL-6), a cytokine of the gp130-signalling-family, plays an important role in immediate immunological functions, in metabolism and in the central nervous system. IL-6-signalling is mediated by classic-signalling via the membrane bound IL-6 receptor or by IL-6-trans-signalling via the soluble IL-6 receptor. Whereas the receptor subunit gp130 is ubiquitously expressed within the body, IL-6 receptor expression is restricted to distinct cell populations. Within the brain parenchyma the IL-6 receptor is sparsely expressed, and therefore the brain is mostly dependent on IL-6-trans-signalling in its response to IL-6. Recently we have shown that IL-6-trans-signalling but not classic-signalling plays a pivotal role in the establishment and maintenance of chronic inflammation and cancer, whereas its role in sleep regulation has not been studied so far. We reasoned that the IL-6-trans-signalling mimetic Hyper-IL-6 which in contrast to IL-6 alone can activate almost all cells of the brain might have a profound effect on sleep regulation and performed sleep recordings with rats injected with recombinant Hyper-IL-6. In the present study, the i.c.v. administration of the designer cytokine Hyper-IL-6 into rats at dark onset increased the amount of rapid-eye-movement sleep (REM sleep) but did not affect non-rapid-eye-movement sleep (non-REM sleep). Our data define a new role of IL-6-trans-signalling in sleep regulation.
Collapse
|
50
|
Kunz D, Walker G, Bedoucha M, Certa U, März-Weiss P, Dimitriades-Schmutz B, Otten U. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells. BMC Genomics 2009; 10:90. [PMID: 19239705 PMCID: PMC2657914 DOI: 10.1186/1471-2164-10-90] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/24/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6) and the neurotrophin (NT) Nerve Growth Factor (NGF) for neuronal differentiation. RESULTS The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes.A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold), regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold), growth differentiation factor 15 (GDF15; 80-fold), platelet-derived growth factor alpha (PDGFA; 69-fold), growth hormone releasing hormone (GHRH; 30-fold), adenylate cyclase activating polypeptide (PACAP; 20-fold) and hepatocyte growth factor (HGF; 5-fold). NGF recruits GDF15 (131-fold), transforming growth factor beta 1 (TGFB1; 101-fold) and brain-derived neurotrophic factor (BDNF; 89-fold). Both stimuli activate growth-associated protein 43 (GAP-43) indicating that PC12 cells undergo substantial neuronal differentiation.Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold) and early growth response 1 (Egr1/Zif268; 3-fold) known to play key roles in neuronal differentiation.Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell adhesion, small molecule biochemistry aiming at changing intracellular concentrations of second messengers such as Ca2+ and cAMP as well as expression of enzymes involved in posttranslational modification of proteins. CONCLUSION The current data provide novel candidate genes involved in neuronal differentiation, notably for the neuropoietic cytokine IL-6. Our findings may also have impact on the clinical treatment of peripheral nerve injury. Local application of a designer cytokine such as H-IL-6 with drastically enhanced bioactivity in combination with NTs may generate a potent reparative microenvironment.
Collapse
Affiliation(s)
- Dieter Kunz
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|