1
|
Naseri Alavi SA, Habibi MA, Naseri Alavi SH, Zamani M, Kobets AJ. The Neutrophil-to-Lymphocyte Ratio in Patients with Spinal Cord Injury: A Narrative Review Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1567. [PMID: 39459357 PMCID: PMC11509609 DOI: 10.3390/medicina60101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Traumatic spinal cord injury (SCI) is a devastating condition that occurs in two phases: primary and secondary injury. These phases contribute to changes in blood vessels and the influx of inflammatory cells such as neutrophils and lymphocytes. The biomarker known as the neutrophil-to-lymphocyte ratio (NLR) has been suggested as being highly valuable in predicting outcomes for patients with traumatic brain injury, acute ischemic stroke, and traumatic spinal cord injury. Therefore, this review study aims to investigate the prognostic value of the NLR in predicting outcomes for patients with SCI. Materials and Methods: A thorough review of relevant articles was conducted using Mesh keywords in Medline via Embase, PubMed, Google Scholar, and Scopus from 2000 to 2023. The search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. After reviewing the articles and applying inclusion and exclusion criteria, only relevant articles were included in the study. Results: In the initial search, 41 papers were identified. After applying exclusion criteria, only three clinical studies remained for review. It is still debatable whether the NLR can serve as a cost-effective, readily available, and independent predictive factor for both mortality and recovery outcomes in patients with traumatic spinal cord injuries. Conclusions: Our study demonstrates that NLR, a readily available and inexpensive marker, can serve as an independent predictor of both mortality and recovery outcomes in patients with traumatic spinal cord injury. To reach a conclusive decision, additional data are required.
Collapse
Affiliation(s)
- Seyed Ahmad Naseri Alavi
- Department of Neurological Surgery, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Sciences, Tehran 1441987566, Iran;
| | - Seyed Hamed Naseri Alavi
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Mahsa Zamani
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4144666949, Iran; (S.H.N.A.); (M.Z.)
| | - Andrew J. Kobets
- Department of Neurological Surgery, Montefiore Medical, Bronx, NY 10467, USA;
| |
Collapse
|
2
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
3
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Li Y, Chen Y, Hu X, Ouyang F, Li J, Huang J, Ye J, Shan F, Luo Y, Yu S, Li Z, Yao F, Liu Y, Shi Y, Zheng M, Cheng L, Jing J. Fingolimod (FTY720) Hinders Interferon-γ-Mediated Fibrotic Scar Formation and Facilitates Neurological Recovery After Spinal Cord Injury. J Neurotrauma 2023; 40:2580-2595. [PMID: 36879472 DOI: 10.1089/neu.2022.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Following spinal cord injury (SCI), fibrotic scar inhibits axon regeneration and impairs neurological function recovery. It has been reported that T cell-derived interferon (IFN)-γ plays a pivotal role in promoting fibrotic scarring in neurodegenerative disease. However, the role of IFN-γ in fibrotic scar formation after SCI has not been declared. In this study, a spinal cord crush injury mouse was established. Western blot and immunofluorescence showed that IFN-γ was surrounded by fibroblasts at 3, 7, 14, and 28 days post-injury. Moreover, IFN-γ is mainly secreted by T cells after SCI. Further, in situ injection of IFN-γ into the normal spinal cord resulted in fibrotic scar formation and inflammation response at 7 days post-injection. After SCI, the intraperitoneal injection of fingolimod (FTY720), a sphingosine-1-phosphate receptor 1 (S1PR1) modulator and W146, an S1PR1 antagonist, significantly reduced T cell infiltration, attenuating fibrotic scarring via inhibiting IFN-γ/IFN-γR pathway, while in situ injection of IFN-γ diminished the effect of FTY720 on reducing fibrotic scarring. FTY720 treatment inhibited inflammation, decreased lesion size, and promoted neuroprotection and neurological recovery after SCI. These findings demonstrate that the inhibition of T cell-derived IFN-γ by FTY720 suppressed fibrotic scarring and contributed to neurological recovery after SCI.
Collapse
Affiliation(s)
- Yiteng Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yihao Chen
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuyang Hu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangru Ouyang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianjian Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinxin Huang
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jianan Ye
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangli Shan
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Luo
- Scientific Research and Experiment Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuisheng Yu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyu Li
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Yao
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanchang Liu
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi Shi
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meige Zheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Cheng
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Orthopedics, Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
6
|
Shafqat A, Albalkhi I, Magableh HM, Saleh T, Alkattan K, Yaqinuddin A. Tackling the glial scar in spinal cord regeneration: new discoveries and future directions. Front Cell Neurosci 2023; 17:1180825. [PMID: 37293626 PMCID: PMC10244598 DOI: 10.3389/fncel.2023.1180825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Axonal regeneration and functional recovery are poor after spinal cord injury (SCI), typified by the formation of an injury scar. While this scar was traditionally believed to be primarily responsible for axonal regeneration failure, current knowledge takes a more holistic approach that considers the intrinsic growth capacity of axons. Targeting the SCI scar has also not reproducibly yielded nearly the same efficacy in animal models compared to these neuron-directed approaches. These results suggest that the major reason behind central nervous system (CNS) regeneration failure is not the injury scar but a failure to stimulate axon growth adequately. These findings raise questions about whether targeting neuroinflammation and glial scarring still constitute viable translational avenues. We provide a comprehensive review of the dual role of neuroinflammation and scarring after SCI and how future research can produce therapeutic strategies targeting the hurdles to axonal regeneration posed by these processes without compromising neuroprotection.
Collapse
|
7
|
Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24087159. [PMID: 37108324 PMCID: PMC10138956 DOI: 10.3390/ijms24087159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Edema after spinal cord injury (SCI) is one of the first observations after the primary injury and lasts for few days after trauma. It has serious consequences on the affected tissue and can aggravate the initial devastating condition. To date, the mechanisms of the water content increase after SCI are not fully understood. Edema formation results in a combination of interdependent factors related to mechanical damage after the initial trauma progressing, along with the subacute and acute phases of the secondary lesion. These factors include mechanical disruption and subsequent inflammatory permeabilization of the blood spinal cord barrier, increase in the capillary permeability, deregulation in the hydrostatic pressure, electrolyte-imbalanced membranes and water uptake in the cells. Previous research has attempted to characterize edema formation by focusing mainly on brain swelling. The purpose of this review is to summarize the current understanding of the differences in edema formation in the spinal cord and brain, and to highlight the importance of elucidating the specific mechanisms of edema formation after SCI. Additionally, it outlines findings on the spatiotemporal evolution of edema after spinal cord lesion and provides a general overview of prospective treatment strategies by focusing on insights to prevent edema formation after SCI.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| |
Collapse
|
8
|
Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, Gao F, Yu Y, Du LJ, Li JJ. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res 2023; 18:750-755. [PMID: 36204831 PMCID: PMC9700087 DOI: 10.4103/1673-5374.353482] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The inability of damaged neurons to regenerate within the mature central nervous system (CNS) is a significant neuroscientific challenge. Astrocytes are an essential component of the CNS and participate in many physiological processes including blood-brain barrier formation, axon growth regulation, neuronal support, and higher cognitive functions such as memory. Recent reprogramming studies have confirmed that astrocytes in the mature CNS can be transformed into functional neurons. Building on in vitro work, many studies have demonstrated that astrocytes can be transformed into neurons in different disease models to replace damaged or lost cells. However, many findings in this field are controversial, as the source of new neurons has been questioned. This review summarizes progress in reprogramming astrocytes into neurons in vivo in animal models of spinal cord injury, brain injury, Huntington's disease, Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jia-Yi Liu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University; Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center; Chinese Institute of Rehabilitation Science; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
9
|
Glutathione in the Pons Is Associated With Clinical Status Improvements in Subacute Spinal Cord Injury. Invest Radiol 2023; 58:131-138. [PMID: 35926077 DOI: 10.1097/rli.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES In spinal cord injury (SCI), the primary mechanical injury is followed by secondary sequelae that develop over the subsequent months and manifests in biochemical, functional, and microstructural alterations, at the site of direct injury but also in the spinal cord tissue above and below the actual lesion site. Noninvasive magnetic resonance spectroscopy (MRS) can be used to assess biochemical modulation occurring in the secondary injury phase, in addition to and supporting conventional MRI, and might help predict and improve patient outcome. In this article, we aimed to examine the metabolic levels in the pons of subacute SCI by means of in vivo proton MRS at 3 T and explore the association to clinical scores. MATERIALS AND METHODS In this prospective study, between November 2015 and February 2018, single-voxel short-echo MRS data were acquired in healthy controls and in SCI subjects in the pons once during rehabilitation. Besides the single-point MRS examination, in addition, in participants with SCI, the clinical status (ie, motor, light touch, and pinprick scores) was assessed twice: (1) around the MRS session (approximately 10 weeks postinjury) and (2) before discharge (at approximately 9 months postinjury). The group differences were assessed with Kruskal-Wallis test, the post hoc comparison was assessed with Wilcoxon rank sum test, and the clinical correlations were conducted with Spearman rank correlation test. Bayes factor calculations completed the statistical part providing relevant evidence values. RESULTS Twenty healthy controls (median age, 50 years; interquartile range, 41-55 years; 18 men) and 18 subjects with traumatic SCI (median age, 50 years; interquartile range, 32-58 years; 16 men) are included. Group comparison showed an increase of total N -acetylaspartate and combined glutamate and glutamine levels in complete SCI and a reduction of total creatine in incomplete paraplegic SCI. The proton MRS-based glutathione levels at baseline correlate to the motor score improvement during rehabilitation in incomplete subacute SCI. CONCLUSIONS This exploratory study showed an association of the metabolite concentration of glutathione in the pons assessed at approximately 10 weeks after injury with the improvements of the motor score during the rehabilitation. Pontine glutathione levels in subjects with traumatic subacute incomplete SCI acquired remote from the injury site correlate to clinical score and might therefore be beneficial in the rehabilitation assessments.
Collapse
|
10
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
11
|
Fisher ES, Amarante MA, Lowry N, Lotz S, Farjood F, Temple S, Hill CE, Kiehl TR. Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. J Neuroinflammation 2022; 19:266. [PMID: 36333772 PMCID: PMC9635187 DOI: 10.1186/s12974-022-02627-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Immune cells play crucial roles after spinal cord injury (SCI). However, incomplete knowledge of immune contributions to injury and repair hinders development of SCI therapies. We leveraged single-cell observations to describe key populations of immune cells present in the spinal cord and changes in their transcriptional profiles from uninjured to subacute and chronic stages of SCI.
Methods
Deep-read single-cell sequencing was performed on CD45+ cells from spinal cords of uninjured and injured Swiss-webster mice. After T9 thoracic contusion, cells were collected 3-, 7-, and 60-day post-injury (dpi). Subpopulations of CD45+ immune cells were identified informatically, and their transcriptional responses characterized with time. We compared gene expression in spinal cord microglia and B cell subpopulations with those in published models of disease and injury. Microglia were compared with Disease Associated Microglia (DAM) and Injury Responsive Microglia (IRM). B cells were compared to developmental lineage states and to an Amyotrophic Lateral Sclerosis (ALS) model.
Results
In uninjured and 7 dpi spinal cord, most CD45+ cells isolated were microglia while chronically B cells predominated. B cells accumulating in the spinal cord following injury included immature B to mature stages and were predominantly found in the injury zone. We defined diverse subtypes of microglia and B cells with altered gene expression with time after SCI. Spinal cord microglia gene expression indicates differences from brain microglia at rest and in inflammatory states. Expression analysis of signaling ligand–receptor partners identified microglia–B cell interactions at acute and chronic stages that may be involved in B cell recruitment, retention, and formation of ectopic lymphoid follicles.
Conclusions
Immune cell responses to SCI have region-specific aspects and evolve with time. Developmentally diverse populations of B cells accumulate in the spinal cord following injury. Microglia at subacute stages express B cell recruitment factors, while chronically, they express factors predicted to reduce B cell inflammatory state. In the injured spinal cord, B cells create ectopic lymphoid structures, and express secreted factors potentially acting on microglia. Our study predicts previously unidentified crosstalk between microglia and B cells post-injury at acute and chronic stages, revealing new potential targets of inflammatory responses for SCI repair warranting future functional analyses.
Collapse
|
12
|
Wang Z, Wu Z, Xie Z, Zhou W, Li M. Metformin Attenuates Ferroptosis and Promotes Functional Recovery of Spinal Cord Injury. World Neurosurg 2022; 167:e929-e939. [PMID: 36058489 DOI: 10.1016/j.wneu.2022.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ferroptosis is involved in traumatic spinal cord injury (SCI), and its inhibition may improve functional recovery after traumatic SCI. This study investigated whether metformin (Met) can have a neuroprotective effect in SCI repair by inhibiting ferroptosis. METHODS We assessed functional change to determine the long-term effects after intraperitoneal injection of Met in SCI rats with the Basso-Beattie-Bresnahan locomotor rating scale. Malondialdehyde level and relative expression of key proteins, inflammatory cytokines, and nuclear factor E2-related factor 2 signalling molecules were determined in SCI rats and PC12 cells exposed to FeCl3 solution. RESULTS Met treatment decreased the contents of malondialdehyde, regulated the levels of inflammatory factors, activated the nuclear factor E2-related factor 2 signalling pathway, and improved long-term outcomes by ameliorating SCI-induced locomotor deficits. In vitro studies further confirmed the beneficial and antiferroptotic actions of Met partly through activation of nuclear factor E2-related factor 2 signalling. CONCLUSION Met can have a neuroprotective effect on SCI repair partly through antiferroptotic effects.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiwu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
13
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
14
|
Bloom O, Tracey KJ, Pavlov VA. Exploring the vagus nerve and the inflammatory reflex for therapeutic benefit in chronic spinal cord injury. Curr Opin Neurol 2022; 35:249-257. [PMID: 35102123 PMCID: PMC9258775 DOI: 10.1097/wco.0000000000001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe features and implications of chronic systemic inflammation in individuals with spinal cord injury (SCI) and to summarize the growing therapeutic possibilities to explore the vagus nerve-mediated inflammatory reflex in this context. RECENT FINDINGS The discovery of the inflammatory reflex provides a rationale to explore neuromodulation modalities, that is, electrical vagus nerve stimulation and pharmacological cholinergic modalities to regulate inflammation after SCI. SUMMARY Inflammation in individuals with SCI may negatively impact functional recovery and medical consequences after SCI. Exploring the potential of the vagus nerve-based inflammatory reflex to restore autonomic regulation and control inflammation may provide a novel approach for functional improvement in SCI.
Collapse
Affiliation(s)
- Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset
- Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
| |
Collapse
|
15
|
Gong S, Wu C, Köhler F, Meixensberger J, Schopow N, Kallendrusch S. Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase Family: Novel Prognostic Biomarkers and Tumor Microenvironment Regulators for Lower-Grade Glioma. Front Cell Neurosci 2022; 16:838548. [PMID: 35250490 PMCID: PMC8894330 DOI: 10.3389/fncel.2022.838548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lower-grade glioma (LGG) is a group of tumors arising from the cells of the central nervous system. Although various therapy interventions are used, the prognosis remains different. Novel biomarkers are needed for the prognosis of disease and novel therapeutic strategies in LGG. The procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family contains three members and is related to multiple cancers, yet it was not investigated in LGG. Data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) cohorts were used to analyze the role of PLOD in LGG. As the PLOD family is involved in processes, such as tumor formation and cancer metastasis, we focused on its relationship to the tumor microenvironment (TME) in LGG. A high expression of the PLOD family relates to poor prognosis and high infiltration of immune cells within the TME. The expression level of the PLOD family might become a novel biomarker for prognosis and is a potential target for individual treatment decisions in LGG.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- *Correspondence: Changwu Wu,
| | | | | | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- Department of Orthopedics, Trauma and Plastic Surgery, Sarcoma Center, University Hospital Leipzig, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
- Department of Medicine, Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
16
|
Wang B, Chang M, Zhang R, Wo J, Wu B, Zhang H, Zhou Z, Li Z, Zhang F, Zhong C, Tang S, Yang S, Sun G. Spinal cord injury target-immunotherapy with TNF-α autoregulated and feedback-controlled human umbilical cord mesenchymal stem cell derived exosomes remodelled by CRISPR/Cas9 plasmid. BIOMATERIALS ADVANCES 2022; 133:112624. [PMID: 35525736 DOI: 10.1016/j.msec.2021.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
Human umbilical cord mesenchymal stem cell (hucMSC) derived exosomes (EXOs) have been investigated as a new treatment for spinal cord injury (SCI) because of their anti-inflammatory, anti-apoptotic, angiogenesis-promoting, and axonal regeneration properties. The CAQK peptide found in the brains of mice and humans after trauma has recently been found to specifically bind to the injured site after SCI. Thus, we developed a nanocarrier system called EXO-C@P based on hucMSC exosomes remodelled by the CRISPR/Cas9 plasmid to control inflammation and modified by the CAQK peptide. EXO-C@P was shown to effectively accumulate at the injury site and saturate the macrophages to significantly reduce the expression of inflammatory cytokines in a mouse model of SCI. Moreover, EXO-C@P treatment improved the performance of mice in behavioural assessments and upregulated soluble tumour necrosis factor receptor-1 (sTNFR1) in serum and at the trauma site after SCI surgery, but lowered the proportion of iNOS+ cells and the concentration of proinflammatory factors. In conclusion, EXO-C@P provides an effective alternative to multiple topical administration and drug delivery approaches for the treatment of SCI. STATEMENT OF SIGNIFICANCE: SCI is a serious disease characterised by a high incidence, high disability rate, and high medical costs, and has become a global medical problem. Several studies have shown that the inflammatory response is the critical inducer of secondary injury after SCI. The inflammatory cytokine TNF-α is considered to be one of the most significant therapeutic targets for autoimmune diseases. Antibodies targeting TNF-α and sTNFR1 are capable of neutralising free TNF-α. In this study, exosomes in the CRISPR/Cas9 system were used to establish stem cells with an autoregulated and feedback-controlled TNF-α response, with these cells secreting sTNFR1, which neutralised TNF-α and antagonised the inflammation stimulated by TNF-α. Moreover, the plasmid was combined with CAQK, which targeted the injury site and promoted the recovery of SCI function.
Collapse
Affiliation(s)
- Baocheng Wang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Minmin Chang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Renwen Zhang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Jin Wo
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Bowen Wu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhigang Zhou
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Zhizhong Li
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Cheng Zhong
- The Affiliated Hospital (Jiangmen Traditional Chinese Medicine Hospital), Jinan University, Guangzhou 510632, China
| | - Shujie Tang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| | - Shuxian Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Immunomodulatory and regenerative effects of the full and fractioned adipose tissue derived stem cells secretome in spinal cord injury. Exp Neurol 2022; 351:113989. [DOI: 10.1016/j.expneurol.2022.113989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
|
18
|
Hodgetts SI, Lovett SJ, Baron-Heeris D, Fogliani A, Sturm M, Van den Heuvel C, Harvey AR. Effects of amyloid precursor protein peptide APP96-110, alone or with human mesenchymal stromal cells, on recovery after spinal cord injury. Neural Regen Res 2021; 17:1376-1386. [PMID: 34782585 PMCID: PMC8643048 DOI: 10.4103/1673-5374.327357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Delivery of a peptide (APP96-110), derived from amyloid precursor protein (APP), has been shown to elicit neuroprotective effects following cerebral stroke and traumatic brain injury. In this study, the effect of APP96-110 or a mutant version of this peptide (mAPP96-110) was assessed following moderate (200 kdyn, (2 N)) thoracic contusive spinal cord injury (SCI) in adult Nude rats. Animals received a single tail vein injection of APP96-110 or mAPP96-110 at 30 minutes post-SCI and were then assessed for functional improvements over the next 8 weeks. A cohort of animals also received transplants of either viable or non-viable human mesenchymal stromal cells (hMSCs) into the SC lesion site at one week post-injury to assess the effect of combining intravenous APP96-110 delivery with hMSC treatment. Rats were perfused 8 weeks post-SCI and longitudinal sections of spinal cord analyzed for a number of factors including hMSC viability, cyst size, axonal regrowth, glial reactivity and macrophage activation. Analysis of sensorimotor function revealed occasional significant differences between groups using Ladderwalk or Ratwalk tests, however there were no consistent improvements in functional outcome after any of the treatments. mAPP96-110 alone, and APP96-110 in combination with both viable and non-viable hMSCs significantly reduced cyst size compared to SCI alone. Combined treatments with donor hMSCs also significantly increased βIII tubulin+, glial fibrillary acidic protein (GFAP+) and laminin+ expression, and decreased ED1+ expression in tissues. This preliminary study demonstrates that intravenous delivery of APP96-110 peptide has selective, modest neuroprotective effects following SCI, which may be enhanced when combined with hMSC transplantation. However, the effects are less pronounced and less consistent compared to the protective morphological and cognitive impact that this same peptide has on neuronal survival and behaviour after stroke and traumatic brain injury. Thus while the efficacy of a particular therapeutic approach in one CNS injury model may provide justification for its use in other neurotrauma models, similar outcomes may not necessarily occur and more targeted approaches suited to location and severity are required. All animal experiments were approved by The University of Western Australia Animal Ethics Committee (RA3/100/1460) on April 12, 2016.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Sarah J Lovett
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - D Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - A Fogliani
- School of Human Sciences, The University of Western Australia (UWA), Perth, WA, Australia
| | - Marian Sturm
- Cell and Tissue Therapies WA (CTTWA), Royal Perth Hospital, Perth, WA, Australia
| | - C Van den Heuvel
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA); Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
19
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
20
|
Abstract
Microglia are the resident immune cells of the central nervous system. Microglial progenitors are generated in the yolk sac during the early embryonic stage. Once microglia enter the brain primordium, these cells colonize the structure through migration and proliferation during brain development. Microglia account for a minor population among the total cells that constitute the developing cortex, but they can associate with many surrounding neural lineage cells by extending their filopodia and through their broad migration capacity. Of note, microglia change their distribution in a stage-dependent manner in the developing brain: microglia are homogenously distributed in the pallium in the early and late embryonic stages, whereas these cells are transiently absent from the cortical plate (CP) from embryonic day (E) 15 to E16 and colonize the ventricular zone (VZ), subventricular zone (SVZ), and intermediate zone (IZ). Previous studies have reported that microglia positioned in the VZ/SVZ/IZ play multiple roles in neural lineage cells, such as regulating neurogenesis, cell survival and neuronal circuit formation. In addition to microglial functions in the zones in which microglia are replenished, these cells indirectly contribute to the proper maturation of post-migratory neurons by exiting the CP during the mid-embryonic stage. Overall, microglial time-dependent distributional changes are necessary to provide particular functions that are required in specific regions. This review summarizes recent advances in the understanding of microglial colonization and multifaceted functions in the developing brain, especially focusing on the embryonic stage, and discuss the molecular mechanisms underlying microglial behaviors.
Collapse
|
21
|
Lawley KS, Rech RR, Elenwa F, Han G, Perez Gomez AA, Amstalden K, Welsh CJ, Young CR, Threadgill DW, Brinkmeyer-Langford CL. Host genetic diversity drives variable central nervous system lesion distribution in chronic phase of Theiler's Murine Encephalomyelitis Virus (TMEV) infection. PLoS One 2021; 16:e0256370. [PMID: 34415947 PMCID: PMC8378701 DOI: 10.1371/journal.pone.0256370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Host genetic background is a significant driver of the variability in neurological responses to viral infection. Here, we leverage the genetically diverse Collaborative Cross (CC) mouse resource to better understand how chronic infection by Theiler's Murine Encephalomyelitis Virus (TMEV) elicits diverse clinical and morphologic changes in the central nervous system (CNS). We characterized the TMEV-induced clinical phenotype responses, and associated lesion distributions in the CNS, in six CC mouse strains over a 90 day infection period. We observed varying degrees of motor impairment in these strains, as measured by delayed righting reflex, paresis, paralysis, seizures, limb clasping, ruffling, and encephalitis phenotypes. All strains developed neuroparenchymal necrosis and mineralization in the brain, primarily localized to the hippocampal regions. Two of the six strains presented with axonal degeneration with myelin loss of the nerve roots in the lumbar spinal cord. Moreover, we statistically correlated lesion distribution with overall frequencies of clinical phenotypes and phenotype progression to better understand how and where TMEV targets the CNS, based on genetic background. Specifically, we assessed lesion distribution in relation to the clinical progression of these phenotypes from early to late TMEV disease, finding significant relationships between progression and lesion distribution. Finally, we identified quantitative trait loci associated with frequency of lesions in a particular brain region, revealing several loci of interest for future study: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1). Together, these results indicate that the genetic background influences the type and severity of clinical phenotypes, phenotypic resilience to TMEV, and the lesion distribution across strains.
Collapse
Affiliation(s)
- Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Raquel R. Rech
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
| | - Faith Elenwa
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Gang Han
- Texas A&M University, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, College Station, TX, United States of America
- School of Public Health, College Station, TX, United States of America
| | - Aracely A. Perez Gomez
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Department of Veterinary Pathobiology, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
| | - David W. Threadgill
- Texas A&M University, College Station, TX, United States of America
- Department of Molecular and Cellular Medicine, College Station, TX, United States of America
| | - Candice L. Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College Station, TX, United States of America
- College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Texas A&M University, College Station, TX, United States of America
- Texas A&M Institute for Neuroscience, College Station, TX, United States of America
| |
Collapse
|
22
|
Pavic G, Petzsch P, Jansen R, Raba K, Rychlik N, Simiantonakis I, Küry P, Göttle P, Köhrer K, Hartung HP, Meuth SG, Jander S, Gliem M. Microglia contributes to remyelination in cerebral but not spinal cord ischemia. Glia 2021; 69:2739-2751. [PMID: 34390590 DOI: 10.1002/glia.24068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
Inflammation after injury of the central nervous system (CNS) is increasingly viewed as a therapeutic target. However, comparative studies in different CNS compartments are sparse. To date only few studies based on immunohistochemical data and all referring to mechanical injury have directly compared inflammation in different CNS compartments. These studies revealed that inflammation is more pronounced in spinal cord than in brain. Therefore, it is unclear whether concepts and treatments established in the cerebral cortex can be transferred to spinal cord lesions and vice versa or whether immunological treatments must be adapted to different CNS compartments. By use of transcriptomic and flow cytometry analysis of equally sized photothrombotically induced lesions in the cerebral cortex and the spinal cord, we could document an overall comparable inflammatory reaction and repair activity in brain and spinal cord between day 1 and day 7 after ischemia. However, remyelination was increased after cerebral versus spinal cord ischemia which is in line with increased remyelination in gray matter in previous analyses and was accompanied by microglia dominated inflammation opposed to monocytes/macrophages dominated inflammation after spinal cord ischemia. Interestingly remyelination could be reduced by microglia and not hematogenous macrophage depletion. Our results show that despite different cellular composition of the postischemic infiltrate the inflammatory response in cerebral cortex and spinal cord are comparable between day 1 and day 7. A striking difference was higher remyelination capacity in the cerebral cortex, which seems to be supported by microglia dominance.
Collapse
Affiliation(s)
- Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Robin Jansen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nicole Rychlik
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Jander
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
23
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Cross CG, Payne AH, Hawryluk GW, Haag-Roeger R, Cheeniyil R, Brady D, Odéen H, Minoshima S, Cross DJ, Anzai Y. Technical Note: Quantification of blood-spinal cord barrier permeability after application of magnetic resonance-guided focused ultrasound in spinal cord injury. Med Phys 2021; 48:4395-4401. [PMID: 33999427 DOI: 10.1002/mp.14947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To demonstrate that magnetic resonance-guided focused ultrasound (MRgFUS) facilitates blood-spinal cord barrier (BSCB) permeability and develop observer-independent MRI quantification of BSCB permeability after MRgFUS for spinal cord injury (SCI). METHODS Noninjured Sprague-Dawley rats (n = 3) underwent MRgFUS and were administered Evans blue post-MRgFUS to confirm BSCB opening. Absorbance was measured by spectrophotometry and correlated with its corresponding image intensity. Rats (n = 21) underwent T8-T10 laminectomy and extradural compression of the spinal cord (23g weighted aneurysm-type clip, 1 min). The intervention group (n = 11) was placed on a preclinical MRgFUS system, administered microbubbles (Optison, 0.2 mL/kg), and received 3 MRgFUS sonications (25 ms bursts, 1 Hz pulses for 3 min, 3 acoustic W, approximately 1.0-2.1 MPa peak pressure as measured via hydrophone). The sham group (n = 10) received equivalent procedures with no sonications. T1w MRI was obtained both pre- and post-MRgFUS BSCB opening. Spinal cords were segmented manually or semiautomatically and a Pearson correlation with P ≤ 0.001 was used to correlate the two segmentation methods. MRgFUS sonication and control regions intensity values were evaluated with a paired t-test with a P ≤ 0.01. RESULTS Semiautomatic segmentation reduced computational time by 95% and was correlated with manual segmentation (Pearson = 0.92, P < 0.001, n = 71 regions). In the noninjured rat group, Evans blue absorbance correlated with image intensity in the MRgFUS and control regions (Pearson = 0.82, P = 0.02, n = 6). In rats that underwent the SCI procedure, an increase in signal intensity in the MRgFUS targeted region relative to control was seen in all SCI rats (10.65 ± 12.4%, range: 0.96-43.9%, n = 11, P = 0.002). SCI sham MRgFUS revealed no change (0.63 ± 0.52%, 95% CI 0.320.95, n = 10). This result was significant between both groups (P = 0.003). CONCLUSION The implemented semiautomatic segmentation procedure improved data analysis efficiency. Quantitative methods using contrast-enhanced MRI with histological validation are sensitive for detection of blood-spinal cord barrier opening induced by magnetic resonance-guided focused ultrasound.
Collapse
Affiliation(s)
- Chloe G Cross
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Riley Haag-Roeger
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rahul Cheeniyil
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dalton Brady
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Donna J Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Yoshimi Anzai
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Javdani M, Ghorbani R, Hashemnia M. Histopathological Evaluation of Spinal Cord with Experimental Traumatic Injury Following Implantation of a Controlled Released Drug Delivery System of Chitosan Hydrogel Loaded with Selenium Nanoparticle. Biol Trace Elem Res 2021; 199:2677-2686. [PMID: 32959339 DOI: 10.1007/s12011-020-02395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to evaluate the neuroprotective effect of local implantation of a controlled delivery system of chitosan hydrogel loaded with selenium nanoparticles in rats with spinal cord injury (SCI). For this purpose, 60 adult female rats were randomly divided into three equal groups. In all three groups, SCI was induced by aneurysm clamping at the level of thoracic vertebrae under inhaled anesthesia with isoflurane. In one group after spinal cord injury, chitosan hydrogels loaded with selenium nanoparticles (treatment group), and in the other group, only chitosan hydrogels (positive control group) were placed at the site of injury. In the last group (negative control), no material was placed in the injury site. Hematoxylin-eosin and glial fibrillary acidic protein (GFAP) staining evaluated histological changes at the site of injury on days 3, 7, 21, and 28 after surgery. Evaluations show that hemorrhage and inflammation also have a marked decrease in inflammatory cells at different times in the treatment group. This decrease was also seen in the chitosan group but was less severe than in the treatment group. The formation of nerve fibers was also observed in the treatment group over time of injury. Immunohistochemical studies of damaged tissue showed higher expression of GFAP protein in the astrocytes of the treatment group than in the other two groups and the chitosan group compared with the negative control group. A controlled drug delivery system containing selenium nanoparticles seems to play a role in the protection of nerve cells through its anti-inflammatory effect.
Collapse
Affiliation(s)
- Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, 115, Shahrekord, Iran.
| | - Roya Ghorbani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, 115, Shahrekord, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
26
|
Sefiani A, Geoffroy CG. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021; 15:682259. [PMID: 34220440 PMCID: PMC8249862 DOI: 10.3389/fnins.2021.682259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Currently there are approximately 291,000 people suffering from a spinal cord injury (SCI) in the United States. SCI is associated with traumatic changes in mobility and neuralgia, as well as many other long-term chronic health complications, including metabolic disorders, diabetes mellitus, non-alcoholic steatohepatitis, osteoporosis, and elevated inflammatory markers. Due to medical advances, patients with SCI survive much longer than previously. This increase in life expectancy exposes them to novel neurological complications such as memory loss, cognitive decline, depression, and Alzheimer's disease. In fact, these usually age-associated disorders are more prevalent in people living with SCI. A common factor of these disorders is the reduction in hippocampal neurogenesis. Inflammation, which is elevated after SCI, plays a major role in modulating hippocampal neurogenesis. While there is no clear consensus on the mechanism of the decline in hippocampal neurogenesis and cognition after SCI, we will examine in this review how SCI-induced inflammation could modulate hippocampal neurogenesis and provoke age-associated neurological disorders. Thereafter, we will discuss possible therapeutic options which may mitigate the influence of SCI associated complications on hippocampal neurogenesis.
Collapse
|
27
|
Morimoto K, Eguchi R, Kitano T, Otsuguro KI. Alpha and beta adrenoceptors activate interleukin-6 transcription through different pathways in cultured astrocytes from rat spinal cord. Cytokine 2021; 142:155497. [PMID: 33770644 DOI: 10.1016/j.cyto.2021.155497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
In brain astrocytes, noradrenaline (NA) has been shown to up-regulate IL-6 production via β-adrenoceptors (ARs). However, the underlying intracellular mechanisms for this regulation are not clear, and it remains unknown whether α-ARs are involved. In this study, we investigated the AR-mediated regulation of IL-6 mRNA levels in the cultured astrocytes from rat spinal cord. NA, the α1-agonist phenylephrine, and the β-agonist isoproterenol increased IL-6 mRNA levels. The phenylephrine-induced IL-6 increase was accompanied by an increase in ERK phosphorylation, and these effects were blocked by inhibitors of PKC and ERK. The isoproterenol-induced IL-6 increase was accompanied by an increase in CREB phosphorylation, and these effects were blocked by a PKA inhibitor. Our results indicate that IL-6 increases by α1- and β-ARs are mediated via the PKC/ERK and cAMP/PKA/CREB pathways, respectively. Moreover, conditioned medium collected from astrocytes treated with the α2-AR agonist dexmedetomidine, increased IL-6 mRNA in other astrocytes. In this study, we elucidate that α1- and α2-ARs, in addition to β-ARs, promote IL-6 transcription through different pathways in spinal cord astrocytes.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Spinal Cord/cytology
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- Rats
Collapse
Affiliation(s)
- Kohei Morimoto
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Taisuke Kitano
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
28
|
Ivan DC, Walthert S, Berve K, Steudler J, Locatelli G. Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Front Immunol 2021; 11:609921. [PMID: 33746939 PMCID: PMC7973121 DOI: 10.3389/fimmu.2020.609921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/02/2023] Open
Abstract
The central nervous system (CNS) parenchyma is enclosed and protected by a multilayered system of cellular and acellular barriers, functionally separating glia and neurons from peripheral circulation and blood-borne immune cells. Populating these borders as dynamic observers, CNS-resident macrophages contribute to organ homeostasis. Upon autoimmune, traumatic or neurodegenerative inflammation, these phagocytes start playing additional roles as immune regulators contributing to disease evolution. At the same time, pathological CNS conditions drive the migration and recruitment of blood-borne monocyte-derived cells across distinct local gateways. This invasion process drastically increases border complexity and can lead to parenchymal infiltration of blood-borne phagocytes playing a direct role both in damage and in tissue repair. While recent studies and technical advancements have highlighted the extreme heterogeneity of these resident and CNS-invading cells, both the compartment-specific mechanism of invasion and the functional specification of intruding and resident cells remain unclear. This review illustrates the complexity of mononuclear phagocytes at CNS interfaces, indicating how further studies of CNS border dynamics are crucially needed to shed light on local and systemic regulation of CNS functions and dysfunctions.
Collapse
|
29
|
Blume C, Geiger MF, Müller M, Clusmann H, Mainz V, Kalder J, Brandenburg LO, Mueller CA. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep 2021; 11:2497. [PMID: 33510227 PMCID: PMC7843718 DOI: 10.1038/s41598-021-81766-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Endogenous immune mediated reactions of inflammation and angiogenesis are components of the spinal cord injury in patients with degenerative cervical myelopathy (DCM). The aim of this study was to identify alteration of certain mediators participating in angiogenetic and inflammatory reactions in patients with DCM. A consecutive series of 42 patients with DCM and indication for surgical decompression were enrolled for the study. 28 DCM patients were included, as CSF samples were taken preoperatively. We enrolled 42 patients requiring surgery for a thoracic abdominal aortic aneurysm (TAAA) as neurologically healthy controls. In 38 TAAA patients, CSF samples were taken prior to surgery and thus included. We evaluated the neurological status of patients and controls prior to surgery including NDI and mJOA. Protein-concentrations of factors with a crucial role in inflammation and angiogenesis were measured in CSF via ELISA testing (pg/ml): Angiopoietin 2, VEGF-A and C, RANTES, IL 1 beta and IL 8. Additionally, evaluated the status of the blood-spinal cord barrier (BSCB) by Reibers´diagnostic in all participants. Groups evidently differed in their neurological status (mJOA: DCM 10.1 ± 3.3, TAAA 17.3 ± 1.2, p < .001; NDI: DCM 47.4 ± 19.7, TAAA 5.3 ± 8.6, p < .001). There were no particular differences in age and gender distribution. However, we detected statistically significant differences in concentrations of mediators between the groups: Angiopoietin 2 (DCM 267.1.4 ± 81.9, TAAA 408.6 ± 177.1, p < .001) and VEGF C (DCM 152.2 ± 96.1, TAAA 222.4 ± 140.3, p = .04). DCM patients presented a mild to moderate BSCB disruption, controls had no signs of impairment. In patients with DCM, we measured decreased concentrations of angiogenic mediators. These results correspond to findings of immune mediated secondary harm in acute spinal cord injury. Reduced angiogenic activity could be a relevant part of the pathogenesis of DCM and secondary harm to the spinal cord.
Collapse
Affiliation(s)
- Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
| | - M F Geiger
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - M Müller
- Department of Neuroradiology, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - V Mainz
- Department of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany
| | - J Kalder
- Department of Vascular Surgery, Gießen University, Rudolf-Buchheim-str. 7, 35392, Gießen, Germany
| | - L O Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany
| | - C A Mueller
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
30
|
Mao XW, Nishiyama NC, Byrum SD, Stanbouly S, Jones T, Holley J, Sridharan V, Boerma M, Tackett AJ, Willey JS, Pecaut MJ, Delp MD. Spaceflight induces oxidative damage to blood-brain barrier integrity in a mouse model. FASEB J 2020; 34:15516-15530. [PMID: 32981077 PMCID: PMC8191453 DOI: 10.1096/fj.202001754r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Many factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity. Ten-week-old male C57BL/6 mice were launched to the International Space Station (ISS) for 35 days as part of Space-X 12 mission. Ground control (GC) mice were maintained on Earth in flight hardware cages. Within 38 ± 4 hours after returning from the ISS, mice were euthanized and brain tissues were collected for analysis. Quantitative assessment of brain tissue demonstrated that spaceflight caused an up to 2.2-fold increase in apoptosis in the hippocampus compared to the control group. Immunohistochemical analysis of the mouse brain revealed an increased expression of aquaporin4 (AQP4) in the flight hippocampus compared to the controls. There was also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BBB-related tight junction protein, Zonula occludens-1 (ZO-1). These results indicate a disturbance of BBB integrity. Quantitative proteomic analysis showed significant alterations in pathways responsible for neurovascular integrity, mitochondrial function, neuronal structure, protein/organelle transport, and metabolism in the brain after spaceflight. Changes in pathways associated with adhesion and molecular remodeling were also documented. These data indicate that long-term spaceflight may have pathological and functional consequences associated with neurovascular damage and late neurodegeneration.
Collapse
Affiliation(s)
- Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Nina C Nishiyama
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Tamako Jones
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Jacob Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
31
|
Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. J Neurosci 2020; 40:9103-9120. [PMID: 33051350 DOI: 10.1523/jneurosci.0131-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are dynamic immunosurveillance cells in the CNS. Whether microglia are protective or pathologic is context dependent; the outcome varies as a function of time relative to the stimulus, activation state of neighboring cells in the microenvironment or within progression of a particular disease. Although brain microglia can be "primed" using bacterial lipopolysaccharide (LPS)/endotoxin, it is unknown whether LPS delivered systemically can also induce neuroprotective microglia in the spinal cord. Here, we show that serial systemic injections of LPS (1 mg/kg, i.p., daily) for 4 consecutive days (LPSx4) consistently elicit a reactive spinal cord microglia response marked by dramatic morphologic changes, increased production of IL-1, and enhanced proliferation without triggering leukocyte recruitment or overt neuropathology. Following LPSx4, reactive microglia frequently contact spinal cord endothelial cells. Targeted ablation or selective expression of IL-1 and IL-1 receptor (IL-1R) in either microglia or endothelia reveal that IL-1-dependent signaling between these cells mediates microglia activation. Using a mouse model of ischemic spinal cord injury in male and female mice, we show that preoperative LPSx4 provides complete protection from ischemia-induced neuron loss and hindlimb paralysis. Neuroprotection is partly reversed by either pharmacological elimination of microglia or selective removal of IL-1R in microglia or endothelia. These data indicate that spinal cord microglia are amenable to therapeutic reprogramming via systemic manipulation and that this potential can be harnessed to protect the spinal cord from injury.SIGNIFICANCE STATEMENT Data in this report indicate that a neuroprotective spinal cord microglia response can be triggered by daily systemic injections of LPS over a period of 4 d (LPSx4). The LPSx4 regimen induces morphologic transformation and enhances proliferation of spinal cord microglia without causing neuropathology. Using advanced transgenic mouse technology, we show that IL-1-dependent microglia-endothelia cross talk is necessary for eliciting this spinal cord microglia phenotype and also for conferring optimal protection to spinal motor neurons from ischemic spinal cord injury (ISCI). Collectively, these novel data show that it is possible to consistently elicit spinal cord microglia via systemic delivery of inflammogens to achieve a therapeutically effective neuroprotective response against ISCI.
Collapse
|
32
|
Chu TH, Cummins K, Stys PK. Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. J Alzheimers Dis 2020; 77:1315-1330. [PMID: 32925040 DOI: 10.3233/jad-200387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Axonal injury has been implicated in the development of amyloid-β in experimental brain injuries and clinical cases. The anatomy of the spinal cord provides a tractable model for examining the effects of trauma on amyloid deposition. OBJECTIVE Our goal was to examine the effects of axonal injury on plaque formation and clearance using wild type and 5xFAD transgenic Alzheimer's disease mice. METHODS We contused the spinal cord at the T12 spinal level at 10 weeks, an age at which no amyloid plaques spontaneously accumulate in 5xFAD mice. We then explored plaque clearance by impacting spinal cords in 27-week-old 5xFAD mice where amyloid deposition is already well established. We also examined the cellular expression of one of the most prominent amyloid-β degradation enzymes, neprilysin, at the lesion site. RESULTS No plaques were found in wild type animals at any time points examined. Injury in 5xFAD prevented plaque deposition rostral and caudal to the lesion when the cords were examined at 2 and 4 months after the impact, whereas age-matched naïve 5xFAD mice showed extensive amyloid plaque deposition. A massive reduction in the number of plaques around the lesion was found as early as 7 days after the impact, preceded by neprilysin upregulation in astrocytes at 3 days after injury. At 7 days after injury, the majority of amyloid was found inside microglia/macrophages. CONCLUSION These observations suggest that the efficient amyloid clearance after injury in the cord may be driven by the orchestrated efforts of astroglial and immune cells.
Collapse
Affiliation(s)
- Tak-Ho Chu
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen Cummins
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Li Y, Ritzel RM, Khan N, Cao T, He J, Lei Z, Matyas JJ, Sabirzhanov B, Liu S, Li H, Stoica BA, Loane DJ, Faden AI, Wu J. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Am J Cancer Res 2020; 10:11376-11403. [PMID: 33052221 PMCID: PMC7545988 DOI: 10.7150/thno.49199] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropsychological deficits, including impairments in learning and memory, occur after spinal cord injury (SCI). In experimental SCI models, we and others have reported that such changes reflect sustained microglia activation in the brain that is associated with progressive neurodegeneration. In the present study, we examined the effect of pharmacological depletion of microglia on posttraumatic cognition, depressive-like behavior, and brain pathology after SCI in mice. Methods: Young adult male C57BL/6 mice were subjected to moderate/severe thoracic spinal cord contusion. Microglial depletion was induced with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 administered starting either 3 weeks before injury or one day post-injury and continuing through 6 weeks after SCI. Neuroinflammation in the injured spinal cord and brain was assessed using flow cytometry and NanoString technology. Neurological function was evaluated using a battery of neurobehavioral tests including motor function, cognition, and depression. Lesion volume and neuronal counts were quantified by unbiased stereology. Results: Flow cytometry analysis demonstrated that PLX5622 pre-treatment significantly reduced the number of microglia, as well as infiltrating monocytes and neutrophils, and decreased reactive oxygen species production in these cells from injured spinal cord at 2-days post-injury. Post-injury PLX5622 treatment reduced both CD45int microglia and CD45hi myeloid counts at 7-days. Following six weeks of PLX5622 treatment, there were substantial changes in the spinal cord and brain transcriptomes, including those involved in neuroinflammation. These alterations were associated with improved neuronal survival in the brain and neurological recovery. Conclusion: These findings indicate that pharmacological microglia-deletion reduces neuroinflammation in the injured spinal cord and brain, improving recovery of cognition, depressive-like behavior, and motor function.
Collapse
|
34
|
Tariq MB, Wu OC, Agulnick MA, Kasliwal MK. The 100 Most-Cited Papers in Traumatic Injury of the Spine. Neurol India 2020; 68:741-759. [PMID: 32859810 DOI: 10.4103/0028-3886.293470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Traumatic injury to the spine can be a complex diagnostic and therapeutic entity often with devastating consequences. Outside of the isolated vertebral column injury costs; annual costs associated with spinal cord injury (SCI) are estimated to exceed $9.7 billion. Objective To identify the 100 most-cited articles on spine trauma. Methods The Thomson Reuters Web of Science citation indexing service was queried. The articles were sorted by times cited in descending order. Two independent reviewers reviewed the article titles and abstracts to identify the top 100 most-cited articles. Results The top 100 articles were found to be cited between 108 (articles #99-100) and 1595 times (article #1). The most-cited basic science article was cited 340 times (#12 on the top 100 list). The oldest article on the top 100 list was from 1953 and most recent from 2012. The number of patients, when applicable, in a study ranged from 9 (article #34) to 34,069 (article #5). Top 100 articles were published in 41 different journals with a wide range of specialities and fields most commonly multidisciplinary. Basic science research encompassed 34 of the 100 articles on the list. Conclusions We present the 100 most-cited articles in spinal trauma with emphases on important contributions from both basic science and clinical research across a wide range of authors, specialties, patient populations, and countries. Recognizing some of the most important contributions in the field of spinal trauma may provide insight and guide future work.
Collapse
Affiliation(s)
- Muhammad B Tariq
- Department of Orthopedic Surgery, NYU-Winthrop Hospital, Mineola, New York; Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Osmond C Wu
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Marc A Agulnick
- Department of Orthopedic Surgery, NYU-Winthrop Hospital, Mineola, New York, USA
| | - Manish K Kasliwal
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
36
|
Bidirectional modulation of TNF-α transcription via α- and β-adrenoceptors in cultured astrocytes from rat spinal cord. Biochem Biophys Res Commun 2020; 528:78-84. [DOI: 10.1016/j.bbrc.2020.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
|
37
|
Yang T, Dai Y, Chen G, Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front Cell Neurosci 2020; 14:78. [PMID: 32317938 PMCID: PMC7147295 DOI: 10.3389/fncel.2020.00078] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Recovery from spinal cord injury (SCI) remains an unsolved problem. As a major component of the SCI lesion, the glial scar is primarily composed of scar-forming astrocytes and plays a crucial role in spinal cord regeneration. In recent years, it has become increasingly accepted that the glial scar plays a dual role in SCI recovery. However, the underlying mechanisms of this dual role are complex and need further clarification. This dual role also makes it difficult to manipulate the glial scar for therapeutic purposes. Here, we briefly discuss glial scar formation and some representative components associated with scar-forming astrocytes. Then, we analyze the dual role of the glial scar in a dynamic perspective with special attention to scar-forming astrocytes to explore the underlying mechanisms of this dual role. Finally, taking the dual role of the glial scar into account, we provide several pieces of advice on novel therapeutic strategies targeting the glial scar and scar-forming astrocytes.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.,Medical School of Nantong University, Nantong, China
| | - YuJuan Dai
- Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Department of Tissue and Embryology, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Applying univariate vs. multivariate statistics to investigate therapeutic efficacy in (pre)clinical trials: A Monte Carlo simulation study on the example of a controlled preclinical neurotrauma trial. PLoS One 2020; 15:e0230798. [PMID: 32214370 PMCID: PMC7098614 DOI: 10.1371/journal.pone.0230798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small sample sizes combined with multiple correlated endpoints pose a major challenge in the statistical analysis of preclinical neurotrauma studies. The standard approach of applying univariate tests on individual response variables has the advantage of simplicity of interpretation, but it fails to account for the covariance/correlation in the data. In contrast, multivariate statistical techniques might more adequately capture the multi-dimensional pathophysiological pattern of neurotrauma and therefore provide increased sensitivity to detect treatment effects. RESULTS We systematically evaluated the performance of univariate ANOVA, Welch's ANOVA and linear mixed effects models versus the multivariate techniques, ANOVA on principal component scores and MANOVA tests by manipulating factors such as sample and effect size, normality and homogeneity of variance in computer simulations. Linear mixed effects models demonstrated the highest power when variance between groups was equal or variance ratio was 1:2. In contrast, Welch's ANOVA outperformed the remaining methods with extreme variance heterogeneity. However, power only reached acceptable levels of 80% in the case of large simulated effect sizes and at least 20 measurements per group or moderate effects with at least 40 replicates per group. In addition, we evaluated the capacity of the ordination techniques, principal component analysis (PCA), redundancy analysis (RDA), linear discriminant analysis (LDA), and partial least squares discriminant analysis (PLS-DA) to capture patterns of treatment effects without formal hypothesis testing. While LDA suffered from a high false positive rate due to multicollinearity, PCA, RDA, and PLS-DA were robust and PLS-DA outperformed PCA and RDA in capturing a true treatment effect pattern. CONCLUSIONS Multivariate tests do not provide an appreciable increase in power compared to univariate techniques to detect group differences in preclinical studies. However, PLS-DA seems to be a useful ordination technique to explore treatment effect patterns without formal hypothesis testing.
Collapse
|
39
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
40
|
Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 2020; 12:572090. [PMID: 33173502 PMCID: PMC7538701 DOI: 10.3389/fnagi.2020.572090] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) are characterized by progressive neuronal death and neurological dysfunction, leading to increased disability and a loss of cognitive or motor functions. Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have neurodegeneration as a primary feature. However, in other CNS diseases such as multiple sclerosis, stroke, traumatic brain injury, and spinal cord injury, neurodegeneration follows another insult, such as demyelination or ischaemia. Although there are different primary causes to these diseases, they all share a hallmark of neuroinflammation. Neuroinflammation can occur through the activation of resident immune cells such as microglia, cells of the innate and adaptive peripheral immune system, meningeal inflammation and autoantibodies directed toward components of the CNS. Despite chronic inflammation being pathogenic in these diseases, local inflammation after insult can also promote endogenous regenerative processes in the CNS, which are key to slowing disease progression. The normal aging process in the healthy brain is associated with a decline in physiological function, a steady increase in levels of neuroinflammation, brain shrinkage, and memory deficits. Likewise, aging is also a key contributor to the progression and exacerbation of neurodegenerative diseases. As there are associated co-morbidities within an aging population, pinpointing the precise relationship between aging and neurodegenerative disease progression can be a challenge. The CNS has historically been considered an isolated, "immune privileged" site, however, there is mounting evidence that adaptive immune cells are present in the CNS of both healthy individuals and diseased patients. Adaptive immune cells have also been implicated in both the degeneration and regeneration of the CNS. In this review, we will discuss the key role of the adaptive immune system in CNS degeneration and regeneration, with a focus on how aging influences this crosstalk.
Collapse
Affiliation(s)
- Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Jessica A. White
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Alerie G. de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Alerie G. de la Fuente,
| |
Collapse
|
41
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
42
|
Xuan FL, Chithanathan K, Lilleväli K, Yuan X, Tian L. Differences of Microglia in the Brain and the Spinal Cord. Front Cell Neurosci 2019; 13:504. [PMID: 31803021 PMCID: PMC6868492 DOI: 10.3389/fncel.2019.00504] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
Microglia were previously regarded as a homogenous myeloid cell lineage in the mammalian central nervous system (CNS). However, accumulating evidences show that microglia in the brain and SC are quite different in development, cellular phenotypes and biological functions. Although this is a very interesting phenomenon, the underlying mechanisms and its significance for neurological diseases in association with behavioral and cognitive changes are still unclear. How microglia differ between these two regions and whether such diversity may contribute to CNS development and functions as well as neurological diseases will be discussed in this Perspective.
Collapse
Affiliation(s)
- Fang-Ling Xuan
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Keerthana Chithanathan
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Li Tian
- Department of Physiology, Faculty of Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Psychiatry Research Centre, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
43
|
Vaillancourt M, Chia P, Medzikovic L, Cao N, Ruffenach G, Younessi D, Umar S. Experimental Pulmonary Hypertension Is Associated With Neuroinflammation in the Spinal Cord. Front Physiol 2019; 10:1186. [PMID: 31616310 PMCID: PMC6764190 DOI: 10.3389/fphys.2019.01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Rationale Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. Methods/Results PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). Conclusion We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nancy Cao
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Younessi
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019; 10:3879. [PMID: 31462640 PMCID: PMC6713740 DOI: 10.1038/s41467-019-11707-7] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/25/2019] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury results in severe and irreversible loss of function. The injury triggers a complex cascade of inflammatory and pathological processes, culminating in formation of a scar. While traditionally referred to as a glial scar, the spinal injury scar in fact comprises multiple cellular and extracellular components. This multidimensional nature should be considered when aiming to understand the role of scarring in limiting tissue repair and recovery. In this Review we discuss recent advances in understanding the composition and phenotypic characteristics of the spinal injury scar, the oversimplification of defining the scar in binary terms as good or bad, and the development of therapeutic approaches to target scar components to enable improved functional outcome after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK.
| | - Emily R Burnside
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), Guy's Campus, London Bridge, London, SE1 1UL, UK
| |
Collapse
|
45
|
Gu Y, Cheng X, Huang X, Yuan Y, Qin S, Tan Z, Wang D, Hu X, He C, Su Z. Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair. Brain Behav Immun 2019; 80:394-405. [PMID: 30959174 DOI: 10.1016/j.bbi.2019.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocytes become reactive in response to spinal cord injury (SCI) and ultimately form a histologically apparent glial scar at the lesion site. It is controversial whether astrocytic scar is detrimental or beneficial to the axonal regeneration and SCI repair. Therefore, much effort has focused on understanding the functions of reactive astrocytes. Here, we used a lentivirus-mediated herpes simplex thymidine kinase/ganciclovir (HSVtk/GCV) system to selectively kill scar-forming reactive proliferating astrocytes. The suicide gene expression was regulated by human glial fibrillary acidic protein (hGFAP) promoter, which is active primarily in astrocytes. Conditional ablation of reactive astrocytes in a mouse SCI model with crush injury impeded glial scar formation and resulted in widespread infiltration of inflammatory cells, increased neuronal loss, and severe tissue degeneration, which ultimately led to the failure of spontaneous functional recovery. These results suggest that reactive proliferating astrocytes play key roles in the healing process after SCI, shedding light on the potential benefit for the repair after central nervous system (CNS) injury.
Collapse
Affiliation(s)
- Yakun Gu
- Center for Brain Disorders Research, Capital Medical University, Center of NeuralInjury and Repair, Beijing Institute for Brain Disorders, Beijing, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xueyan Cheng
- Center for Brain Disorders Research, Capital Medical University, Center of NeuralInjury and Repair, Beijing Institute for Brain Disorders, Beijing, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China; Department of Neurological Surgery, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Cheng He
- Center for Brain Disorders Research, Capital Medical University, Center of NeuralInjury and Repair, Beijing Institute for Brain Disorders, Beijing, China; Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Second Military Medical University, Shanghai, China.
| |
Collapse
|
46
|
Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion. Exp Neurol 2019; 321:113015. [PMID: 31326353 DOI: 10.1016/j.expneurol.2019.113015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Spared corticospinal tract (CST) and proprioceptive afferent (PA) axons sprout after injury and contribute to rewiring spinal circuits, affecting motor recovery. Loss of CST connections post-injury results in corticospinal signal loss and associated reduction in spinal activity. We investigated the role of activity loss and injury on CST and PA sprouting. To understand activity-dependence after injury, we compared CST and PA sprouting after motor cortex (MCX) inactivation, produced by chronic MCX muscimol microinfusion, with sprouting after a CST lesion produced by pyramidal tract section (PTx). Activity suppression, which does not produce a lesion, is sufficient to trigger CST axon outgrowth from the active side to cross the midline and to enter the inactivated side of the spinal cord, to the same extent as PTx. Activity loss was insufficient to drive significant CST gray matter axon elongation, an effect of PTx. Activity suppression triggered presynaptic site formation, but less than PTx. Activity loss triggered PA sprouting, as PTx. To understand injury-dependent sprouting further, we blocked microglial activation and associated inflammation after PTX by chronic minocycline administration after PTx. Minocycline inhibited myelin debris phagocytosis contralateral to PTx and abolished CST axon elongation, formation of presynaptic sites, and PA sprouting, but not CST axon outgrowth from the active side to cross the midline. Our findings suggest sprouting after injury has a strong activity dependence and that microglial activation after injury supports axonal elongation and presynaptic site formation. Combining spinal activity support and inflammation control is potentially more effective in promoting functional restoration than either alone.
Collapse
|
47
|
Rezaee L, Manaheji H, Haghparast A. Role of spinal glial cells in excitability of wide dynamic range neurons and the development of neuropathic pain with the L5 spinal nerve transection in the rats: Behavioral and electrophysiological study. Physiol Behav 2019; 209:112597. [PMID: 31271834 DOI: 10.1016/j.physbeh.2019.112597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 12/24/2022]
Abstract
The activation of glial cells affects the neuronal excitability in the spinal cord. Therefore, in this study, we tried to find out the modulatory role of spinal glial cells in the excitability of wide dynamic range (WDR) neurons, induction of the long-term potentiation (LTP) and development of neuropathic pain by L5 spinal nerve transection model in the rats. Forty-eight adult male Wistar rats were used to measure the paw withdrawal threshold to mechanical stimuli and also, to carry out the spinal extracellular single unit recording experiments. In these experiments, spinal nerve ligation (SNL) and a daily injection of propentofylline (1 mg/kg, ip) as a glial cell inhibitor agent, 1 h following nerve ligation during 7-day post-SNL period, were performed. Our findings showed that the mechanical allodynia, and synaptically-evoked firing were caused LTP in the Aδ-fiber, C-fiber and lesser in the Aβ-fiber after high frequency stimulation. Daily injection of propentofylline considerably decreased LTP induction in the Aδ- and C-fibers (P < .001). It was concluded that glial cell activation mediates LTP induction in the spinal cord following peripheral nerve injury. It seems that pain modulatory role of glial cells is partly parallel to changes in neural excitability of the WDR neurons in the dorsal horn of spinal cord.
Collapse
Affiliation(s)
- Laleh Rezaee
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Guo L, Lv J, Huang YF, Hao DJ, Liu JJ. Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: A microarray-based analysis in a mouse model. Neural Regen Res 2019; 14:1262-1270. [PMID: 30804258 PMCID: PMC6425843 DOI: 10.4103/1673-5374.251335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury, which may affect the microenvironment of the damaged site. Microarray analysis provides a new opportunity for investigating diagnosis, treatment, and prognosis of spinal cord injury. However, differentially expressed genes are not consistent among studies, and many key genes and signaling pathways have not yet been accurately studied. GSE5296 was retrieved from the Gene Expression Omnibus DataSet. Differentially expressed genes were obtained using R/Bioconductor software (expression changed at least two-fold; P < 0.05). Database for Annotation, Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors. The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease. In total, this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5, 4, and 24 hours, and 3, 7, and 28 days after spinal cord injury. The number of downregulated genes was smaller than the number of upregulated genes at each time point. Database for Annotation, Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord. Additionally, expression levels of these inflammation-related genes were maintained for at least 28 days. Moreover, 399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes. Among the 10 upregulated differentially expressed genes with the highest degrees of distribution, six genes were transcription factors. Among these transcription factors, ATF3 showed the greatest change. ATF3 was upregulated within 30 minutes, and its expression levels remained high at 28 days after spinal cord injury. These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.
Collapse
Affiliation(s)
- Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Yun-Fei Huang
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ding-Jun Hao
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Ji-Jun Liu
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
49
|
Sun G, Yang S, Cai H, Shu Y, Han Q, Wang B, Li Z, Zhou L, Gao Q, Yin Z. Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. J Colloid Interface Sci 2019; 549:50-62. [PMID: 31015056 DOI: 10.1016/j.jcis.2019.04.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) can cause locomotor dysfunctions and sensory deficits. Evidence shows that functional nanodrugs can regulate macrophage polarization and promote anti-inflammatory cytokine expression, which is feasible in SCI immunotherapeutic treatments. Molybdenum disulfide (MoS2) nanomaterials have garnered great attention as potential carriers for therapeutic payload. Herein, we synthesize MoS2@PEG (MoS2 = molybdenum disulfide, PEG = poly (ethylene glycol)) nanoflowers as an effective carrier for loading etanercept (ET) to treat SCI. We characterize drug loading and release properties of MoS2@PEG in vitro and demonstrate that ET-loading MoS2@PEG obviously inhibits the expression of M1-related pro-inflammatory markers (TNF-α, CD86 and iNOS), while promoting M2-related anti-inflammatory markers (Agr1, CD206 and IL-10) levels. In vivo, the mouse model of SCI shows that long-circulating ET-MoS2@PEG nanodrugs can effectively extravasate into the injured spinal cord up to 96 h after SCI, and promote macrophages towards M2 type polarization. As a result, the ET-loading MoS2@PEG administration in mice can protect survival motor neurons, thus, reducing injured areas at central lesion sites, and significantly improving locomotor recovery. This study demonstrates the anti-inflammatory and neuroprotective activities of ET-MoS2@PEG and promising utility of MoS2 nanomaterial-mediated drug delivery.
Collapse
Affiliation(s)
- Guodong Sun
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China
| | - Shuxian Yang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yijin Shu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Baocheng Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
50
|
Leitzen E, Raddatz BB, Jin W, Goebbels S, Nave KA, Baumgärtner W, Hansmann F. Virus-triggered spinal cord demyelination is followed by a peripheral neuropathy resembling features of Guillain-Barré Syndrome. Sci Rep 2019; 9:4588. [PMID: 30872675 PMCID: PMC6418285 DOI: 10.1038/s41598-019-40964-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/27/2019] [Indexed: 12/29/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV)-induces a demyelinating disease in the spinal cord (SC) of susceptible but not in resistant (B6) mouse strains. The aim of the present study was to induce SC demyelination and a peripheral neuropathy in resistant mice by switching the infection site from cerebrum to SC. B6 mice were intraspinally inoculated with TMEV. Infected mice showed clinical signs starting at 7 days post infection (dpi). Histopathology revealed a mononuclear myelitis, centred on the injection site at 3 dpi with subsequent antero- and retrograde spread, accompanied by demyelination and axonal damage within the SC. Virus protein was detected in the SC at all time points. SC inflammation decreased until the end of the investigation period (28 dpi). Concurrent with the amelioration of SC inflammation, the emergence of a peripheral neuropathy, characterized by axonal damage, demyelination and macrophage infiltration, contributing to persistent clinical sings, was observed. Intraspinal TMEV infection of resistant mice induced inflammation, demyelination and delayed viral clearance in the spinal cord and more interestingly, subsequent, virus-triggered inflammation and degeneration within the PN associated with dramatic and progressive clinical signs. The lesions observed in the PN resemble important features of Guillain-Barré syndrome, especially of acute motor/motor-sensory axonal forms.
Collapse
Affiliation(s)
- Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Barbara B Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Wen Jin
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Klaus-Armin Nave
- Center for Systems Neuroscience, Hannover, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|