1
|
Nabizadeh F, Zafari R, Mohamadi M, Maleki T, Fallahi MS, Rafiei N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2024; 51:24-37. [PMID: 38172026 DOI: 10.1016/j.neurad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In this systematic review and meta-analysis, we aimed to investigate the correlation between disability in patients with Multiple sclerosis (MS) measured by the Expanded Disability Status Scale (EDSS) and brain Magnetic Resonance Imaging (MRI) features to provide reliable results on which characteristics in the MRI can predict disability and prognosis of the disease. METHODS A systematic literature search was performed using three databases including PubMed, Scopus, and Web of Science. The selected peer-reviewed studies must report a correlation between EDSS scores and MRI features. The correlation coefficients of included studies were converted to the Fisher's z scale, and the results were pooled. RESULTS Overall, 105 studies A total of 16,613 patients with MS entered our study. We found no significant correlation between total brain volume and EDSS assessment (95 % CI: -0.37 to 0.08; z-score: -0.15). We examined the potential correlation between the volume of T1 and T2 lesions and the level of disability. A positive significant correlation was found (95 % CI: 0.19 to 0.43; z-score: 0.31), (95 % CI: 0.17 to 0.33; z-score: 0.25). We observed a significant correlation between white matter volume and EDSS score in patients with MS (95 % CI: -0.37 to -0.03; z-score: -0.21). Moreover, there was a significant negative correlation between gray matter volume and disability (95 % CI: -0.025 to -0.07; z-score: -0.16). CONCLUSION In conclusion, this systematic review and meta-analysis revealed that disability in patients with MS is linked to extensive changes in different brain regions, encompassing gray and white matter, as well as T1 and T2 weighted MRI lesions.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobin Mohamadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Maleki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Alatrash R, Golubenko M, Martynova E, Garanina E, Mukhamedshina Y, Khaiboullina S, Rizvanov A, Salafutdinov I, Arkhipova S. Genetically Engineered Artificial Microvesicles Carrying Nerve Growth Factor Restrains the Progression of Autoimmune Encephalomyelitis in an Experimental Mouse Model. Int J Mol Sci 2023; 24:ijms24098332. [PMID: 37176039 PMCID: PMC10179478 DOI: 10.3390/ijms24098332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is an incurable, progressive chronic autoimmune demyelinating disease. Therapy for MS is based on slowing down the processes of neurodegeneration and suppressing the immune system of patients. MS is accompanied by inflammation, axon-degeneration and neurogliosis in the central nervous system. One of the directions for a new effective treatment for MS is cellular, subcellular, as well as gene therapy. We investigated the therapeutic potential of adipose mesenchymal stem cell (ADMSC) derived, cytochalasin B induced artificial microvesicles (MVs) expressing nerve growth factor (NGF) on a mouse model of multiple sclerosis experimental autoimmune encephalomyelitis (EAE). These ADMSC-MVs-NGF were tested using histological, immunocytochemical and molecular genetic methods after being injected into the tail vein of animals on the 14th and 21st days post EAE induction. ADMSC-MVs-NGF contained the target protein inside the cytoplasm. Their injection into the caudal vein led to a significant decrease in neurogliosis at the 14th and 21st days post EAE induction. Artificial ADMSC-MVs-NGF stimulate axon regeneration and can modulate gliosis in the EAE model.
Collapse
Affiliation(s)
- Reem Alatrash
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Maria Golubenko
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ekaterina Garanina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
| | - Svetlana Arkhipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
3
|
Mina Y, Azodi S, Dubuche T, Andrada F, Osuorah I, Ohayon J, Cortese I, Wu T, Johnson KR, Reich DS, Nair G, Jacobson S. Cervical and thoracic cord atrophy in multiple sclerosis phenotypes: Quantification and correlation with clinical disability. NEUROIMAGE-CLINICAL 2021; 30:102680. [PMID: 34215150 PMCID: PMC8131917 DOI: 10.1016/j.nicl.2021.102680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/01/2022]
Abstract
Spinal cord atrophy is prevalent across multiple sclerosis phenotypes. It correlates with disability, especially in relapsing-remitting patients. This correlation can be demonstrated both cross-sectionally and longitudinally. Cervical atrophy is highly associated with disability and disease progression. Thoracic atrophy contributes to improved correlation and radiological subgrouping.
Objective We sought to characterize spinal cord atrophy along the entire spinal cord in the major multiple sclerosis (MS) phenotypes, and evaluate its correlation with clinical disability. Methods Axial T1-weighted images were automatically reformatted at each point along the cord. Spinal cord cross‐sectional area (SCCSA) were calculated from C1-T10 vertebral body levels and profile plots were compared across phenotypes. Average values from C2-3, C4-5, and T4-9 regions were compared across phenotypes and correlated with clinical scores, and then categorized as atrophic/normal based on z-scores derived from controls, to compare clinical scores between subgroups. In a subset of relapsing-remitting cases with longitudinal scans these regions were compared to change in clinical scores. Results The cross-sectional study consisted of 149 adults diagnosed with relapsing-remitting MS (RRMS), 49 with secondary-progressive MS (SPMS), 58 with primary-progressive MS (PPMS) and 48 controls. The longitudinal study included 78 RRMS cases. Compared to controls, all MS groups had smaller average regions except RRMS in T4-9 region. In all MS groups, SCCSA from all regions, particularly the cervical cord, correlated with most clinical measures. In the RRMS cohort, 22% of cases had at least one atrophic region, whereas in progressive MS the rate was almost 70%. Longitudinal analysis showed correlation between clinical disability and cervical cord thinning. Conclusions Spinal cord atrophy was prevalent across MS phenotypes, with regional measures from the RRMS cohort and the progressive cohort, including SPMS and PPMS, being correlated with disability. Longitudinal changes in the spinal cord were documented in RRMS cases, making it a potential marker for disease progression. While cervical SCCSA correlated with most disability and progression measures, inclusion of thoracic measurements improved this correlation and allowed for better subgrouping of spinal cord phenotypes. Cord atrophy is an important and easily obtainable imaging marker of clinical and sub-clinical progression in all MS phenotypes, and such measures can play a key role in patient selection for clinical trials.
Collapse
Affiliation(s)
- Yair Mina
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shila Azodi
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States; Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tsemacha Dubuche
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Frances Andrada
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ikesinachi Osuorah
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Tianxia Wu
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Govind Nair
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States; Quantitative MRI Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
4
|
Pérez-Miralles FC, Prefasi D, García-Merino A, Ara JR, Izquierdo G, Meca-Lallana V, Gascón-Giménez F, Martínez-Ginés ML, Ramió-Torrentà L, Costa-Frossard L, Fernández Ó, Moreno-García S, Maurino J, Carreres-Polo J, Casanova B. Brain region volumes and their relationship with disability progression and cognitive function in primary progressive multiple sclerosis. Brain Behav 2021; 11:e02044. [PMID: 33486890 PMCID: PMC8035443 DOI: 10.1002/brb3.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Evidence on regional changes resulting from neurodegenerative processes underlying primary progressive multiple sclerosis (PPMS) is still limited. We assessed brain region volumes and their relationship with disability progression and cognitive function in PPMS patients. METHODS This was an MRI analysis of 43 patients from the prospective Understanding Primary Progressive Multiple Sclerosis (UPPMS) cohort study. MRI scans were performed within 3 months before enrollment and at month 12. RESULTS Gray matter volume of declive and white matter volumes adjacent to left straight gyrus, right calcarine sulcus, and right inferior occipital gyrus significantly decreased from baseline to month 12. Baseline white matter volumes adjacent to right amygdala and left cuneus significantly differed between patients with and without disability progression, as well as baseline gray matter volumes of left cuneus, right parahippocampal gyrus, right insula, left superior frontal gyrus, declive, right inferior temporal gyrus, right superior temporal gyrus (pole), and right calcarine sulcus. Baseline gray matter volumes of right cuneus and right superior temporal gyrus positively correlated with 12-month Selective Reminding Test and Word List Generation performance, respectively. Gray matter changes in right superior semilunar lobe and white matter adjacent to left declive and right cerebellar tonsil also positively correlated with Word List Generation scores, while white matter change in left inferior semilunar lobe positively correlated with Symbol Digit Modalities Test performance after 12 months. CONCLUSIONS White and gray matter volumes of specific brain regions could predict disability progression and cognitive performance of PPMS patients after one year.
Collapse
Affiliation(s)
| | | | - Antonio García-Merino
- Department of Neurology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - José Ramón Ara
- Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Guillermo Izquierdo
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | | | | | | | - Lluis Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari Josep Trueta and Hospital Santa Caterina, IDIBGI, Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | | | - Óscar Fernández
- Department of Neurology, Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Sara Moreno-García
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Maurino
- Department of Medical, Roche Farma S.A, Madrid, Spain
| | - Joan Carreres-Polo
- Department of Radiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| |
Collapse
|
5
|
Casserly C, Seyman EE, Alcaide-Leon P, Guenette M, Lyons C, Sankar S, Svendrovski A, Baral S, Oh J. Spinal Cord Atrophy in Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Neuroimaging 2018; 28:556-586. [PMID: 30102003 DOI: 10.1111/jon.12553] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord atrophy (SCA) is an important emerging outcome measure in multiple sclerosis (MS); however, there is limited consensus on the magnitude and rate of atrophy. The objective of this study was to synthesize the available data on measures of SCA in MS. METHODS Using published guidelines, relevant literature databases were searched between 1977 and 2017 for case-control or cohort studies reporting a quantitative measure of SCA in MS patients. Random-effects models pooled cross-sectional measures and longitudinal rates of SCA in MS and healthy controls (HCs). Student's t-test assessed differences between pooled measures in patient subgroups. Heterogeneity was assessed using DerSimonian and Laird's Q-test and the I 2 -index. RESULTS A total of 1,465 studies were retrieved including 94 that met inclusion and exclusion criteria. Pooled estimates of mean cervical spinal cord (SC) cross-sectional area (CSA) in all MS patients, relapsing-remitting MS (RRMS), all progressive MS, secondary progressive MS (SPMS), primary-progressive MS (PPMS), and HC were: 73.07 mm2 (95% CI [71.52-74.62]), 78.88 mm2 (95% CI [76.92-80.85]), 69.72 mm2 (95% CI [67.96-71.48]), 68.55 mm2 (95% CI [65.43-71.66]), 70.98 mm2 (95% CI [68.78-73.19]), and 80.87 mm2 (95% C I [78.70-83.04]), respectively. Pooled SC-CSA was greater in HC versus MS (P < .001) and RRMS versus progressive MS (P < .001). SCA showed moderate correlations with global disability in cross-sectional studies (r-value with disability score range [-.75 to -.22]). In longitudinal studies, the pooled annual rate of SCA was 1.78%/year (95%CI [1.28-2.27]). CONCLUSIONS The SC is atrophied in MS. The magnitude of SCA is greater in progressive versus relapsing forms and correlates with clinical disability. The pooled estimate of annual rate of SCA is greater than reported rates of brain atrophy in MS. These results demonstrate that SCA is highly relevant as an imaging outcome in MS clinical trials.
Collapse
Affiliation(s)
- Courtney Casserly
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Estelle E Seyman
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Paula Alcaide-Leon
- Division of Neuroradiology, Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Melanie Guenette
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Carrie Lyons
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Sankar
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Anton Svendrovski
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Baral
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
6
|
Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol 2012; 123:627-38. [PMID: 22327362 DOI: 10.1007/s00401-012-0953-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS), the most frequent demyelinating disease, is characterized by a variable disease course. The majority of patients starts with relapsing remitting (RR) disease; approximately 50-60% of these patients progress to secondary progressive (SP) disease. Only about 15% of the patients develop a progressive disease course from onset, termed primary progressive multiple sclerosis (PPMS); the underlying pathogenic mechanisms responsible for onset of the disease with either PPMS or relapsing remitting multiple sclerosis (RRMS) are unknown. Patients with PPMS do not show a female predominance and usually have a later onset of disease compared to patients with RRMS. Monozygous twins can be concordant or discordant for disease courses indicating that the disease course is not only genetically determined. Primary progressive multiple sclerosis and secondary progressive multiple sclerosis (SPMS) share many similarities in imaging and pathological findings. Differences observed among the different disease courses are more of a quantitative than qualitative nature suggesting that the different phenotypes are part of a disease spectrum modulated by individual genetic predisposition and environmental influences. In this review, we summarize the knowledge regarding the clinical, epidemiological, imaging, and pathological characteristics of PPMS and compare those characteristics with RRMS and SPMS.
Collapse
|
7
|
Ukkonen M, Vahvelainen T, Hämäläinen P, Dastidar P, Elovaara I. Cognitive dysfunction in primary progressive multiple sclerosis: a neuropsychological and MRI study. Mult Scler 2009; 15:1055-61. [DOI: 10.1177/1352458509106231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although cognitive dysfunction is known to occur in multiple sclerosis (MS), only few studies have reported cognitive performance in patients with primary progressive MS (PPMS). To find out the pattern of cognitive performance in PPMS, 28 PPMS patients underwent an extensive battery of neuropsychological tests. The results were compared to those of healthy controls ( n = 20) and patients with secondary progressive MS (SPMS, n = 28). Furthermore, the results of neuropsychological tests in PPMS were correlated to magnetic resonance imaging findings. Our study showed that the PPMS patients have deficits in several cognitive domains when compared to age-matched and education-matched controls, but the cognitive impairment in the PPMS and SPMS patients appeared to be similar. Cognitive deficits in PPMS patients correlated with diffuse brain lesion, T1- and T2-lesion load, but no correlations were found with atrophy.
Collapse
Affiliation(s)
- M Ukkonen
- Department of Neurology and Rehabilition, Tampere University Hospital, Tampere, Finland; Medical School, University of Tampere, Tampere, Finland; National Graduate School of Clinical Investigation, Finland
| | - T Vahvelainen
- Department of Neurology and Rehabilition, Tampere University Hospital, Tampere, Finland
| | - P Hämäläinen
- Masku Neurological Rehabilitation Centre. Masku, Finland
| | - P Dastidar
- Department of Diagnostic Imaging, Tampere University Hospital, Tampere, Finland
| | - I Elovaara
- Department of Neurology and Rehabilition, Tampere University Hospital, Tampere, Finland; National Graduate School of Clinical Investigation, Finland
| |
Collapse
|
8
|
Edwards LJ, Tench CR, Gilmore CP, Evangelou N, Constantinescu CS. Multiple sclerosis findings in the spinal cord. Expert Rev Neurother 2007; 7:1203-11. [PMID: 17868018 DOI: 10.1586/14737175.7.9.1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The spinal cord is commonly affected by acute demyelinating lesions, chronic tissue loss and atrophy in multiple sclerosis, and is a clinically eloquent site. Historically, however, more attention has been focussed on the analysis and contribution of brain lesions. In this review, we discuss some of the key findings from MRI analysis and histopathological examination of the spinal cord, and how they relate to the clinical characteristics of this common and disabling disease.
Collapse
Affiliation(s)
- L J Edwards
- Division of Clinical Neurology, University of Nottingham, Queen's Medical Centre, B Floor Medical School, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
9
|
Boyd LA, Vidoni ED, Daly JJ. Answering the call: the influence of neuroimaging and electrophysiological evidence on rehabilitation. Phys Ther 2007; 87:684-703. [PMID: 17429001 DOI: 10.2522/ptj.20060164] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional recovery after brain damage or disease is dependent on the neuroplastic capability of the cortex and the nonaffected brain. Following cortical injury in the motor and sensory regions, the adjacent spared neural tissues and related areas undergo modifications that are required in order to drive more normal motor control. Current rehabilitation models seek to stimulate functional recovery by capitalizing on the inherent potential of the brain for positive reorganization after neurological injury or disease. This article discusses how neuroimaging and electrophysiological data can inform clinical practice; representative data from the modalities of functional magnetic resonance imaging, diffusion tensor imaging, magnetoencephalography, electroencephalography, and positron emission tomography are cited. Data from a variety of central nervous system disease and damage models are presented to illustrate how rehabilitation practices are beginning to be shaped and informed by neuroimaging and electrophysiological data.
Collapse
Affiliation(s)
- Lara A Boyd
- School of Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5.
| | | | | |
Collapse
|
10
|
Ukkonen M, Wu K, Reipert B, Dastidar P, Elovaara I. Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis. Mult Scler 2007; 13:701-7. [PMID: 17613596 DOI: 10.1177/1352458506075378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We evaluated the utility of adhesion molecule (AM) and cytokine/chemokine expressions in blood and cerebrospinal fluid (CSF) as markers of disease activity in primary progressive multiple sclerosis (PPMS). METHODS The expressions of AMs and the levels of 17 cytokines in patients with PPMS (n = 25) were compared with those in secondary progressive MS (SPMS) (n = 18) and controls (n =11) and correlated with the volumes of focal and atrophic changes on MRI. RESULTS The expressions of very late activation antigen 4 (VLA-4), lymphocyte function-associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) in blood and CSF were higher in PPMS than in controls. Comparison between PPMS and SPMS showed higher levels of ICAM-1 in blood and CSF in PPMS, while the level of the vascular adhesion molecule (VCAM-1) was higher only in blood. There was no difference in the levels of cytokines in serum or CSF between PPMS and SPMS or controls, but evidence suggesting intrathecal synthesis of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) was found in PPMS. The expressions of CSF VLA-4 in PPMS correlated with the total volume of cerebral lesions and the number of diffuse brain lesions in MRI, while the amount of LFA-1 in CSF correlated with the number of spinal T2 lesions. The level of serum MIP-1beta correlated with the T2 lesion load and EDSS score in PPMS. CONCLUSIONS The upregulated expressions of AMs in blood and CSF and evidence for intrathecal synthesis of MCP-1 and IL-8 in PPMS indicate the importance of inflammatory changes in the pathogenesis of PPMS.
Collapse
Affiliation(s)
- Maritta Ukkonen
- Department of Neurology, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | |
Collapse
|
11
|
Ruseckaite R, Maddess T, Danta G, Lueck CJ, James AC. Sparse multifocal stimuli for the detection of multiple sclerosis. Ann Neurol 2005; 57:904-13. [PMID: 15929047 DOI: 10.1002/ana.20504] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We compared the diagnostic capabilities of contrast reversal and sparse pattern pulse stimulation for dichoptic multifocal visual evoked potentials (mfVEPs) measured in normal subjects and multiple sclerosis (MS) patients. Multifocal responses were obtained from 27 normal subjects and 50 relapsing-remitting patients, 26 of whom had experienced optic neuritis (ON+). The patient groups were matched for length of disease and number of clinical attacks. Compared with the responses of normal subjects those of MS patients had significantly smaller response amplitudes, lower signal-to-noise ratios, more complex response waveforms, and longer response delays. The effects were larger for sparser stimuli. Sensitivities and specificities for the different stimulus types were estimated from receiver operator characteristic (ROC) plots. Bootstrap estimates of the accuracies of the ROCs for the most promising measure, the template delays, indicated the sparsest stimulus would deliver 92% sensitivity at a false-positive rate of 0%. In contrast, at 92% sensitivity the conventional mfVEP stimulus misdiagnosed more than 20% of the normal population. The results were similar for patients with no history of ON (ON-). In performing well in patients with no history of ON, the sparse mfVEPs seem to measure progressive damage associated with axon and gray matter losses rather than damage associated with a history of serious inflammation.
Collapse
Affiliation(s)
- Rasa Ruseckaite
- Centre for Visual Sciences, Research School of Biological Sciences, Canberra, Australia.
| | | | | | | | | |
Collapse
|
12
|
Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, Zhang GX, Rostami A, Pleasure D. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. ACTA ACUST UNITED AC 2005; 128:1877-86. [PMID: 15901645 DOI: 10.1093/brain/awh550] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using adult male C57BL/6 mice that express a yellow fluorescent protein transgene in their motor neurons, we induced experimental autoimmune encephalomyelitis (EAE) by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide) in complete Freund's adjuvant (CFA). Control mice of the same transgenic strain received CFA without MOG peptide. Early in the course of their illness, the EAE mice showed lumbosacral spinal cord inflammation, demyelination and axonal fragmentation. By 14 weeks post-MOG peptide, these abnormalities were much less prominent, but the mice remained weak and, as in patients with progressive multiple sclerosis, spinal cord atrophy had developed. There was no significant loss of lumbar spinal cord motor neurons in the MOG peptide-EAE mice. However, early in the course of the illness, motor neuron dendrites were disrupted and motor neuron expression of hypophosphorylated neurofilament-H (hypoP-NF-H) immunoreactivity was diminished. By 14 weeks post-MOG peptide, hypoP-NF-H expression had returned to normal, but motor neuron dendritic abnormalities persisted and motor neuron perikaryal atrophy had appeared. We hypothesize that these motor neuron abnormalities contribute to weakness in this form of EAE and speculate that similar motor neuron abnormalities are present in patients with progressive multiple sclerosis.
Collapse
Affiliation(s)
- P G Bannerman
- Neurology Research, Abramson Pediatric Research Center, Children's Hospital of Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Erkinjuntti T, Román G, Gauthier S. Treatment of vascular dementia-evidence from clinical trials with cholinesterase inhibitors. Neurol Res 2004; 26:603-5. [PMID: 15265282 DOI: 10.1179/01610425017631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cerebrovascular disease (CVD), as well as secondary ischemic brain injury from cardiovascular disease, are common causes of dementia and cognitive decline in the elderly. Also, CVD frequently contributes to cognitive loss in patients with Alzheimer's disease (AD). Progress in understanding the pathogenetic mechanism involved in vascular cognitive impairment and vascular dementia (VaD) has resulted in promising treatments of these conditions. Cholinergic deficits in VaD are due to ischemia of basal forebrain nuclei and of cholinergic pathways and can be treated with the use of the cholinesterase inhibitors used in AD. Controlled clinical trials with donepezil, galantamine, and rivastigmine in VaD, as well as in patients with AD plus CVD, have demonstrated improvement in cognition, behavior and activities of daily living.
Collapse
|
14
|
Zivadinov R, Bakshi R. Central Nervous System Atrophy and Clinical Status in Multiple Sclerosis. J Neuroimaging 2004. [DOI: 10.1111/j.1552-6569.2004.tb00276.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|