1
|
Markos A, Kubovciak J, Mikula Mrstakova S, Zitova A, Paces J, Machacova S, Kozmik-Jr Z, Kozmik Z, Kozmikova I. Cell type and regulatory analysis in amphioxus illuminates evolutionary origin of the vertebrate head. Nat Commun 2024; 15:8859. [PMID: 39402029 PMCID: PMC11473876 DOI: 10.1038/s41467-024-52938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/25/2024] [Indexed: 10/17/2024] Open
Abstract
To shed light on the enigmatic origin of the vertebrate head, our study employs an integrated approach that combines single-cell transcriptomics, perturbations in signaling pathways, and cis-regulatory analysis in amphioxus. As a representative of a basal lineage within the chordate phylum, amphioxus retains many characteristics thought to have been present in the common chordate ancestor. Through cell type characterization, we identify the presence of prechordal plate-like, pre-migratory, and migratory neural crest-like cell populations in the developing amphioxus embryo. Functional analysis establishes conserved roles of the Nodal and Hedgehog signaling pathways in prechordal plate-like populations, and of the Wnt signaling pathway in neural crest-like populations' development. Furthermore, our trans-species transgenic experiments highlight similarities in the regulatory environments that drive neural crest-like and prechordal plate-like developmental programs in both vertebrates and amphioxus. Our findings provide evidence that the key features of vertebrate head development can be traced back to the common ancestor of all chordates.
Collapse
Affiliation(s)
- Anna Markos
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Simona Mikula Mrstakova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Anna Zitova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Jan Paces
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Simona Machacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Zbynek Kozmik-Jr
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Iryna Kozmikova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic.
| |
Collapse
|
2
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Rothstein M, Bhattacharya D, Simoes-Costa M. The molecular basis of neural crest axial identity. Dev Biol 2018; 444 Suppl 1:S170-S180. [PMID: 30071217 DOI: 10.1016/j.ydbio.2018.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.
Collapse
Affiliation(s)
- Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Wilk R, Ali N, England SJ, Lewis KE. Using Zebrafish to Bring Hands-On Laboratory Experiences to Urban Classrooms. Zebrafish 2018; 15:156-178. [PMID: 29356617 DOI: 10.1089/zeb.2017.1503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zebrafish are widely used as a model organism for research. Zebrafish embryos are also a useful resource for teaching students about vertebrate development. Here we describe a collaboration between two high school teachers and two university professors that used zebrafish to bring hands-on laboratory experiences to inner-city students, with the aim of increasing tangibility, and improving student understanding and retention, of several fundamental scientific concepts, such as the scientific method, cell division, mitosis, and Mendelian genetics. We describe and provide supporting material for each of the four laboratory modules that we developed. We also discuss the obstacles that we encountered and include suggestions of ways to overcome these. This collaboration provides an example of how high school teachers with very little zebrafish experience can gain the knowledge and confidence to develop and implement modules such as these in a relatively short period of time. Owing to the wide availability of zebrafish resources, these laboratories should provide a useful resource for other teachers who are interested in integrating more hands-on, inquiry-based investigations using live animals into their classes. We also hope to encourage other zebrafish researchers to collaborate with local teachers in similar projects.
Collapse
Affiliation(s)
| | - Naomi Ali
- 1 Nottingham High School , Syracuse, New York
| | | | | |
Collapse
|
5
|
Abstract
Lampreys belong to the superclass Cyclostomata and represent the most ancient group of vertebrates. Existing for over 360 million years, they are known as living fossils due to their many evolutionally conserved features. They are not only a keystone species for studying the origin and evolution of vertebrates, but also one of the best models for researching vertebrate embryonic development and organ differentiation. From the perspective of genetic information, the lamprey genome remains primitive compared with that of other higher vertebrates, and possesses abundant functional genes. Through scientific and technological progress, scientists have conducted in-depth studies on the nervous, endocrine, and immune systems of lampreys. Such research has significance for understanding and revealing the origin and evolution of vertebrates, and could contribute to a greater understanding of human diseases and treatments. This review presents the current progress and significance of lamprey research.
Collapse
Affiliation(s)
- Yang Xu
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China
| | - Si-Wei Zhu
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China
| | - Qing-Wei Li
- College of Life Science, Liaoning Normal University, Dalian Liaoning 116081, China;Lamprey Research Center, Liaoning Normal University, Dalian Liaoning 116081, China.
| |
Collapse
|
6
|
Abstract
The Journal of Anatomy was launched 150 years ago as the Journal of Anatomy and Physiology, in an age when anatomy and physiology were not regarded as separate disciplines. European science in general was advancing rapidly at the time (it was 7 years after publication of Darwin's Origin of Species), and the recent demise of the Natural History Review meant that there was no English language publication covering these subjects. The founding editors were George Murray Humphry of Cambridge and William Turner of Edinburgh, together with Alfred Newton of Cambridge and Edward Perceval Wright of Dublin (the last two served only for a year). The pivotal event leading to the Journal's foundation was the 1866 meeting of the British Association, at which Humphry delivered the 'Address in Physiology' (printed in the first issue). Turner, who was also present at the 1866 British Association meeting, remained as a member of the editorial team for 50 years and was a major contributor of Journal articles. The title was changed to Journal of Anatomy in October 1916, when it was taken under the wing, in terms of both management and ownership, by the Anatomical Society. This article reviews the early years of the Journal's publication in more detail than later years because of the historical interest of this less familiar material. The subject matter, which has remained surprisingly consistent over the years, is illustrated by examples from some notable contributions. The evolution of illustration techniques is surveyed from 1866 to the present day; the final section provides brief summaries of all of the chief editors.
Collapse
Affiliation(s)
- Gillian Morriss‐Kay
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Balliol CollegeOxfordUK
| |
Collapse
|
7
|
Plavicki JS, Squirrell JM, Eliceiri KW, Boekhoff-Falk G. Expression of the Drosophila homeobox gene, Distal-less, supports an ancestral role in neural development. Dev Dyn 2015; 245:87-95. [PMID: 26472170 DOI: 10.1002/dvdy.24359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Distal-less (Dll) encodes a homeodomain transcription factor expressed in developing appendages of organisms throughout metazoan phylogeny. Based on earlier observations in the limbless nematode Caenorhabditis elegans and the primitive chordate amphioxus, it was proposed that Dll had an ancestral function in nervous system development. Consistent with this hypothesis, Dll is necessary for the development of both peripheral and central components of the Drosophila olfactory system. Furthermore, vertebrate homologs of Dll, the Dlx genes, play critical roles in mammalian brain development. RESULTS Using fluorescent immunohistochemistry of fixed samples and multiphoton microscopy of living Drosophila embryos, we show that Dll is expressed in the embryonic, larval and adult central nervous system and peripheral nervous system (PNS) in embryonic and larval neurons, brain and ventral nerve cord glia, as well as in PNS structures associated with chemosensation. In adult flies, Dll expression is expressed in the optic lobes, central brain regions and the antennal lobes. CONCLUSIONS Characterization of Dll expression in the developing nervous system supports a role of Dll in neural development and function and establishes an important basis for determining the specific functional roles of Dll in Drosophila development and for comparative studies of Drosophila Dll functions with those of its vertebrate counterparts.
Collapse
Affiliation(s)
- Jessica S Plavicki
- Neuroscience Training Program, University of Wisconsin-Madison.,School of Pharmacy, University of Wisconsin-Madison
| | - Jayne M Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison.,Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Grace Boekhoff-Falk
- Neuroscience Training Program, University of Wisconsin-Madison.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| |
Collapse
|
8
|
Torres-Paz J, Whitlock KE. Olfactory sensory system develops from coordinated movements within the neural plate. Dev Dyn 2014; 243:1619-31. [PMID: 25255735 DOI: 10.1002/dvdy.24194] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The peripheral olfactory sensory system arises from morphologically identifiable structures called placodes. Placodes are relatively late developing structures, evident only well after the initiation of somitogenesis. Placodes are generally described as being induced from the ectoderm suggesting that their development is separate from the coordinated cell movements generating the central nervous system. RESULTS With the advent of modern techniques it is possible to follow the development of the neurectoderm giving rise to the anterior neural tube, including the olfactory placodes. The cell movements giving rise to the optic cup are coordinated with those generating the olfactory placodes and adjacent telencephalon. The formation of the basal lamina separating the placode from the neural tube is coincident with the anterior migration of cranial neural crest. CONCLUSIONS Olfactory placodes are transient morphological structures arising from a continuous sheet of neurectoderm that gives rise to the peripheral and central nervous system. This field of cells is specified at the end of gastrulation and not secondarily induced from ectoderm. The separation of olfactory placodes and telencephalon occurs through complex cell movements within the developing neural plate similar to that observed for the developing optic cup.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Centro Interdisciplinario de Neurociencia de Valparaiso, Instituto de Neurociencia, Universidad de Valparaiso, Valparaiso, Chile
| | | |
Collapse
|
9
|
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo 2014; 5:17. [PMID: 24987514 PMCID: PMC4077281 DOI: 10.1186/2041-9139-5-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla. Results Of the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2). Conclusions Comparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.
Collapse
Affiliation(s)
- Jens H Fritzenwanker
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, 142 Life Sciences Addition #3200, Berkeley, CA 94720, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Christopher J Lowe
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
10
|
Juarez M, Reyes M, Coleman T, Rotenstein L, Sao S, Martinez D, Jones M, Mackelprang R, De Bellard ME. Characterization of the trunk neural crest in the bamboo shark, Chiloscyllium punctatum. J Comp Neurol 2014; 521:3303-20. [PMID: 23640803 DOI: 10.1002/cne.23351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/15/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022]
Abstract
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates.
Collapse
Affiliation(s)
- Marilyn Juarez
- Biology Department, California State University Northridge, Northridge, California 91330, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Feinberg TE, Mallatt J. The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Front Psychol 2013; 4:667. [PMID: 24109460 PMCID: PMC3790330 DOI: 10.3389/fpsyg.2013.00667] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022] Open
Abstract
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known.
Collapse
Affiliation(s)
- Todd E. Feinberg
- Neurology and Psychiatry, Albert Einstein College of Medicine and Beth Israel Medical CenterNew York, NY, USA
| | - Jon Mallatt
- School of Biological Sciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
12
|
Ivashkin E, Adameyko I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. EvoDevo 2013; 4:12. [PMID: 23575111 PMCID: PMC3626940 DOI: 10.1186/2041-9139-4-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
The neural crest represents a highly multipotent population of embryonic stem cells found only in vertebrate embryos. Acquisition of the neural crest during the evolution of vertebrates was a great advantage, providing Chordata animals with the first cellular cartilage, bone, dentition, advanced nervous system and other innovations. Today not much is known about the evolutionary origin of neural crest cells. Here we propose a novel scenario in which the neural crest originates from neuroectodermal progenitors of the pigmented ocelli in Amphioxus-like animals. We suggest that because of changes in photoreception needs, these multipotent progenitors of photoreceptors gained the ability to migrate outside of the central nervous system and subsequently started to give rise to neural, glial and pigmented progeny at the periphery.
Collapse
Affiliation(s)
- Evgeniy Ivashkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles vag 1 A1, Stockholm 17177, Sweden.
| | | |
Collapse
|
13
|
Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 2013; 125:469-89. [PMID: 23525521 PMCID: PMC3652528 DOI: 10.1007/s00401-013-1104-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/02/2023]
Abstract
The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association of brain and skull conserved over evolutionary time obvious in the study of development and disease.
Collapse
Affiliation(s)
- Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA.
| | | |
Collapse
|
14
|
Cai X, Wang H, Huang L, Chen J, Zhang Q, Zhang Y. Establishing primary cell cultures from Branchiostoma belcheri Japanese. In Vitro Cell Dev Biol Anim 2013; 49:97-102. [PMID: 23358867 DOI: 10.1007/s11626-013-9579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoqing Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary-developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during gastrulation, which initiates the process and constrains possible evolutionary changes within this area; third, incipient structure of the stomodeal primordium at the anterior neural plate border, where the ectoderm component of the prospective primary mouth is formed; and fourth, the prime role of Pitx genes for establishment and later morphogenesis of oral region both in vertebrates and non-vertebrate chordates.
Collapse
Affiliation(s)
- Vladimír Soukup
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
16
|
Hall BK, Gillis JA. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 2013; 222:19-31. [PMID: 22414251 PMCID: PMC3552412 DOI: 10.1111/j.1469-7580.2012.01495.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2012] [Indexed: 01/15/2023] Open
Abstract
Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as 'neural crest-like'- and that cephalochordates lack such cells--this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data--alongside cell behaviour, cell fate and embryonic context--to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells--non-pigment-forming trunk lateral line cells and pigment-forming 'neural crest-like cells' (NCLC)--are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues--cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular 'cartilage-like' tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural crest cells and their derivatives evolved and diversified in a step-wise fashion--first by elaboration of neural plate border cells, then by the innovation or co-option of new or ancient metazoan cell fates.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
17
|
Heyland A, Plachetzki D, Donelly E, Gunaratne D, Bobkova Y, Jacobson J, Kohn AB, Moroz LL. Distinct expression patterns of glycoprotein hormone subunits in the lophotrochozoan Aplysia: implications for the evolution of neuroendocrine systems in animals. Endocrinology 2012; 153:5440-51. [PMID: 22977258 PMCID: PMC3473217 DOI: 10.1210/en.2012-1677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glycoprotein hormones (GPHs) comprise a group of signaling molecules critical for major metabolic and reproductive functions. In vertebrates they include chorionic gonadotropin, LH, FSH, and TSH. The active hormones are characterized by heterodimerization between a common α and hormone-specific β subunit, which activate leucine-rich repeat-containing G protein coupled receptors. To date, genes referred to as GPHα2 and GPHβ5 have been the only glycoprotein hormone subunits identified in invertebrates, suggesting that other GPHα and GPHβ subunits diversified during vertebrate evolution. Still the functions of GPHα2 and GPHβ5 remain largely unknown for both vertebrates and invertebrates. To further understand the evolution and putative function of these subunits, we cloned and analyzed phylogenetically two glycoprotein subunits, AcaGPHα and AcaGPHβ, from the sea hare Aplysia californica. Model based three-dimensional predictions of AcaGPHβ confirm the presence of a complete cysteine knot, two hairpin loops, and a long loop. As in the human GPHβ5 subunit the seatbelt structure is absent in AcaGPHβ. We also found that AcaGPHα and AcaGPHβ subunits are expressed in larval stages of Aplysia, and we present a detailed expression map of the subunits in the adult central nervous system using in situ hybridizations. Both subunits are expressed in subpopulations of pleural and buccal mechanosensory neurons, suggesting a neuronal modulatory function of these subunits in Aplysia. Furthermore it supports the model of a relatively diffuse neuroendocrine-like system in molluscs, where specific primary sensory neurons release peptides extrasynaptically (paracrine secretion). This is in contrast to vertebrates and insects, in which releasing and stimulating factor from centralized sensory regions of the central nervous system ultimately regulate hormone release in peripheral glands.
Collapse
Affiliation(s)
- Andreas Heyland
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family. BMC Evol Biol 2009; 9:207. [PMID: 19695090 PMCID: PMC2857956 DOI: 10.1186/1471-2148-9-207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 08/20/2009] [Indexed: 01/12/2023] Open
Abstract
Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae) and a hemichordate (Saccoglossus kowalevskii). We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons), providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication) invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons), from single ancestral vertebrate GATA123 and GATA456 chromosomes to four paralogons after the first round of vertebrate genome duplication, to seven paralogons after the second round of vertebrate genome duplication, and to fourteen paralogons after the fish-specific 3R genome duplication. The evolutionary analysis of GATA gene origins and relationships may inform understanding vertebrate GATA factor redundancies and specializations.
Collapse
|
19
|
Dai Z, Chen Z, Ye H, Zhou L, Cao L, Wang Y, Peng S, Chen L. Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev 2009; 11:41-9. [PMID: 19196332 DOI: 10.1111/j.1525-142x.2008.00301.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cephalochordates, urochordates, and vertebrates comprise the three extant groups of chordates. Although higher morphological and developmental similarity exists between cephalochordates and vertebrates, molecular phylogeny studies have instead suggested that the morphologically simplified urochordates are the closest relatives to vertebrates. MicroRNAs (miRNAs) are regarded as the major factors driving the increase of morphological complexity in early vertebrate evolution, and are extensively characterized in vertebrates and in a few species of urochordates. However, the comprehensive set of miRNAs in the basal chordates, namely the cephalochordates, remains undetermined. Through extensive sequencing of a small RNA library and genomic homology searches, we characterized 100 miRNAs from the cephalochordate amphioxus, Branchiostoma japonicum, and B. floridae. Analysis of the evolutionary history of the cephalochordate miRNAs showed that cephalochordates possess 54 miRNA families homologous to those of vertebrates, which is threefold higher than those shared between urochordates and vertebrates. The miRNA contents demonstrated a clear correlation between the extent of miRNA overlapping and morphological similarity among the three chordate groups, providing a strong evidence of miRNAs being the major genetic factors driving morphological complexity in early chordate evolution.
Collapse
Affiliation(s)
- Zhonghua Dai
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Esterberg R, Fritz A. dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev Biol 2009; 325:189-99. [PMID: 19007769 PMCID: PMC2674874 DOI: 10.1016/j.ydbio.2008.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/19/2008] [Accepted: 10/13/2008] [Indexed: 12/20/2022]
Abstract
The vertebrate inner ear arises from the otic placode, a transient thickening of ectodermal epithelium adjacent to neural crest domains in the presumptive head. During late gastrulation, cells fated to comprise the inner ear are part of a domain in cranial ectoderm that contain precursors of all sensory placodes, termed the preplacodal region (PPR). The combination of low levels of BMP activity coupled with high levels of FGF signaling are required to establish the PPR through induction of members of the six/eya/dach, iro, and dlx families of transcription factors. The zebrafish dlx3b/4b transcription factors are expressed at the neural plate border where they play partially redundant roles in the specification of the PPR, otic and olfactory placodes. We demonstrate that dlx3b/4b assist in establishing the PPR through the transcriptional regulation of the BMP antagonist cv2. Morpholino-mediated knockdown of Dlx3b/4b results in loss of cv2 expression in the PPR and a transient increase in Bmp4 activity that lasts throughout early somitogenesis. Through the cv2-mediated inhibition of BMP activity, dlx3b/4b create an environment where FGF activity is favorable for PPR and otic marker expression. Our results provide insight into the mechanisms of PPR specification as well as the role of dlx3b/4b function in PPR and otic placode induction.
Collapse
|
21
|
Yu JK, Meulemans D, McKeown SJ, Bronner-Fraser M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res 2008; 18:1127-32. [PMID: 18562679 DOI: 10.1101/gr.076208.108] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of the neural crest has been proposed to play a key role in early vertebrate evolution by remodeling the chordate head into a "new head" that enabled early vertebrates to shift from filter feeding to active predation. Here we show that the genome of the basal chordate, amphioxus, contains homologs of most vertebrate genes implicated in a putative neural crest gene regulatory network (NC-GRN) for neural crest development. Our survey of gene expression shows that early inducing signals, neural plate border patterning genes, and melanocyte differentiation genes appear conserved. Furthermore, exogenous BMP affects expression of amphioxus neural plate border genes as in vertebrates, suggesting that conserved signals specify the neural plate border throughout chordates. In contrast to this core conservation, many neural crest specifier genes are not expressed at the amphioxus neural plate/tube border, raising the intriguing possibility that this level of the network was co-opted during vertebrate evolution. Consistent with this, the regulatory region of AmphiFoxD, homologous to the vertebrate neural crest specifier FoxD3, drives tissue-specific reporter expression in chick mesoderm, but not neural crest. Thus, evolution of a new regulatory element may have allowed co-option of this gene to the NC-GRN.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
22
|
Meulemans D, Bronner-Fraser M. The amphioxus SoxB family: implications for the evolution of vertebrate placodes. Int J Biol Sci 2007; 3:356-64. [PMID: 17713598 PMCID: PMC1950271 DOI: 10.7150/ijbs.3.356] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 08/05/2007] [Indexed: 01/12/2023] Open
Abstract
Cranial placodes are regions of thickened ectoderm that give rise to sense organs and ganglia in the vertebrate head. Homologous structures are proposed to exist in urochordates, but have not been found in cephalochordates, suggesting the first chordates lacked placodes. SoxB genes are expressed in discrete subsets of vertebrate placodes. To investigate how placodes arose and diversified in the vertebrate lineage we isolated the complete set of SoxB genes from amphioxus and analyzed their expression in embryos and larvae. We find that while amphioxus possesses a single SoxB2 gene, it has three SoxB1 paralogs. Like vertebrate SoxB1 genes, one of these paralogs is expressed in non-neural ectoderm destined to give rise to sensory cells. When considered in the context of other amphioxus placode marker orthologs, amphioxus SoxB1 expression suggests a diversity of sensory cell types utilizing distinct placode-type gene programs was present in the first chordates. Our data supports a model for placode evolution and diversification whereby the full complement of vertebrate placodes evolved by serial recruitment of distinct sensory cell specification programs to anterior pre-placodal ectoderm.
Collapse
Affiliation(s)
- Daniel Meulemans
- Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
23
|
Martinez-Morales JR, Henrich T, Ramialison M, Wittbrodt J, Martinez-Morales JR. New genes in the evolution of the neural crest differentiation program. Genome Biol 2007; 8:R36. [PMID: 17352807 PMCID: PMC1868935 DOI: 10.1186/gb-2007-8-3-r36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/04/2007] [Accepted: 03/12/2007] [Indexed: 11/30/2022] Open
Abstract
The phylogenetic classification of genes that are ontologically associated with neural crest development reveals that neural crest evolution is associated with the emergence of new signalling peptides. Background Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis. These new findings revive the debate on what is new and what is ancient in the genetic program that controls neural crest formation. Results To determine the origin of neural crest genes, we analyzed Phenotype Ontology annotations to select genes that control the development of this tissue. Using a sequential blast pipeline, we phylogenetically classified these genes, as well as those associated with other tissues, in order to define tissue-specific profiles of gene emergence. Of neural crest genes, 9% are vertebrate innovations. Our comparative analyses show that, among different tissues, the neural crest exhibits a particularly high rate of gene emergence during vertebrate evolution. A remarkable proportion of the new neural crest genes encode soluble ligands that control neural crest precursor specification into each cell lineage, including pigmented, neural, glial, and skeletal derivatives. Conclusion We propose that the evolution of the neural crest is linked not only to the recruitment of ancestral regulatory genes but also to the emergence of signaling peptides that control the increasingly complex lineage diversification of this plastic cell population.
Collapse
Affiliation(s)
| | - Thorsten Henrich
- Developmental Biology Unit, EMBL, Meyerhofstraße, 69117 Heidelberg, Germany
| | - Mirana Ramialison
- Developmental Biology Unit, EMBL, Meyerhofstraße, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC. A genomic view of the sea urchin nervous system. Dev Biol 2006; 300:434-60. [PMID: 16965768 PMCID: PMC1950334 DOI: 10.1016/j.ydbio.2006.08.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
Collapse
Affiliation(s)
- R D Burke
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, Victoria, BC, Canada V8W 3N5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Benito-Gutiérrez E. A gene catalogue of the amphioxus nervous system. Int J Biol Sci 2006; 2:149-60. [PMID: 16763675 PMCID: PMC1474150 DOI: 10.7150/ijbs.2.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/21/2006] [Indexed: 12/12/2022] Open
Abstract
The elaboration of extremely complex nervous systems is a major success of evolution. However, at the dawn of the post-genomic era, few data have helped yet to unravel how a nervous system develops and evolves to complexity. On the evolutionary road to vertebrates, amphioxus occupies a key position to tackle this exciting issue. Its “simple” nervous system basically consists of a dorsal nerve cord and a diffuse net of peripheral neurons, which contrasts greatly with the complexity of vertebrate nervous systems. Notwithstanding, increasing data on gene expression has faced up this simplicity by revealing a mounting level of cryptic complexity, with unexpected levels of neuronal diversity, organisation and regionalisation of the central and peripheral nervous systems. Furthermore, recent gene expression data also point to the high neurogenic potential of the epidermis of amphioxus, suggestive of a skin-brain track for the evolution of the vertebrate nervous system. Here I attempt to catalogue and synthesise current gene expression data in the amphioxus nervous system. From this global point of view, I suggest scenarios for the evolutionary origin of complex features in the vertebrate nervous system, with special emphasis on the evolutionary origin of placodes and neural crest, and postulate a pre-patterned migratory pathway of cells, which, in the epidermis, may represent an intermediate state towards the deployment of one of the most striking innovative features of vertebrates: the neural crest and its derivatives.
Collapse
|
26
|
Satoh G. Exploring developmental, functional, and evolutionary aspects of amphioxus sensory cells. Int J Biol Sci 2006; 2:142-8. [PMID: 16763674 PMCID: PMC1474149 DOI: 10.7150/ijbs.2.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/14/2006] [Indexed: 11/15/2022] Open
Abstract
Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amphioxus sensory cells; however, it is completely unknown whether the morphological classification makes sense in functional and evolutionary terms. Molecular markers, such as gene expression, are therefore indispensable for investigating the developmental and functional aspects of amphioxus sensory cells. This article reviews recent molecular studies on amphioxus sensory cells. Increasing evidence shows that the non-neural ectoderm of amphioxus can be subdivided into molecularly distinct subdomains by the combinatorial code of developmental cues involving the RA-dependent Hox code, suggesting that amphioxus epithelial sensory cells developed along positional information. This study focuses particularly on research involving the molecular phylogeny and expression of the seven-transmembrane, G protein-coupled receptor (GPCR) genes and discusses the usefulness of this information for characterizing the sensory cells of amphioxus.
Collapse
Affiliation(s)
- Gouki Satoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
27
|
Kuratani S. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 2005; 207:489-99. [PMID: 16313390 PMCID: PMC1571557 DOI: 10.1111/j.1469-7580.2005.00483.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2005] [Indexed: 11/28/2022] Open
Abstract
The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
28
|
Schubert M, Holland ND, Escriva H, Holland LZ, Laudet V. Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus). Proc Natl Acad Sci U S A 2004; 101:10320-5. [PMID: 15226493 PMCID: PMC478570 DOI: 10.1073/pnas.0403216101] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Indexed: 11/18/2022] Open
Abstract
In developing chordates, retinoic acid (RA) signaling patterns the rostrocaudal body axis globally and affects gene expression locally in some differentiating cell populations. Here we focus on development of epidermal sensory neurons in an invertebrate chordate (amphioxus) to determine how RA signaling influences their rostrocaudal distribution and gene expression (for AmphiCoe, a neural precursor gene; for amphioxus islet and AmphiERR, two neural differentiation genes; and for AmphiHox1, -3, -4, and -6). Treatments with RA or an RA antagonist (BMS009) shift the distribution of developing epidermal neurons anteriorly or posteriorly, respectively. These treatments also affect gene expression patterns in the epidermal neurons, suggesting that RA levels may influence specification of neuronal subtypes. Although colinear expression of Hox genes is well known for the amphioxus central nervous system, we find an unexpected comparable colinearity for AmphiHox1, -3, -4, and -6 in the developing epidermis; moreover, RA levels affect the anteroposterior extent of these Hox expression domains, suggesting that RA signaling controls a colinear Hox code for anteroposterior patterning of the amphioxus epidermis. Thus, in amphioxus, the developing peripheral nervous system appears to be structured by mechanisms parallel to those that structure the central nervous system. One can speculate that, during evolution, an ancestral deuterostome that structured its panepidermal nervous system with an RA-influenced Hox code gave rise to chordates in which this patterning mechanism persisted within the epidermal elements of the peripheral nervous system and was transferred to the neuroectoderm as the central nervous system condensed dorsally.
Collapse
Affiliation(s)
- Michael Schubert
- Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5161, and Institut National de la Recherche Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
A draft sequence of the compact genome of the sea squirt Ciona intestinalis, a non-vertebrate chordate that diverged very early from other chordates, including vertebrates, illuminates how chordates originated and how vertebrate developmental innovations evolved.
Collapse
Affiliation(s)
- Cristian Cañestro
- Institute of Neuroscience, 1254 University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| | - Susan Bassham
- Institute of Neuroscience, 1254 University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| | - John H Postlethwait
- Institute of Neuroscience, 1254 University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| |
Collapse
|
30
|
Abstract
This review describes the evolutionary history of the mammalian skull vault as a basis for understanding its complex structure. Current information on the developmental tissue origins of the skull vault bones (mesoderm and neural crest) is assessed for mammals and other tetrapods. This information is discussed in the context of evolutionary changes in the proportions of the skull vault bones at the sarcopterygian-tetrapod transition. The dual tissue origin of the skull vault is considered in relation to the molecular mechanisms underlying osteogenic cell proliferation and differentiation in the sutural growth centres and in the proportionate contributions of different sutures to skull growth.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, UK.
| |
Collapse
|