1
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
2
|
Trolle C, Han Y, Mutt SJ, Christoffersson G, Kozlova EN. Boundary cap neural crest stem cells promote angiogenesis after transplantation to avulsed dorsal roots in mice and induce migration of endothelial cells in 3D printed scaffolds. Neurosci Lett 2024; 826:137724. [PMID: 38467271 DOI: 10.1016/j.neulet.2024.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Dorsal root avulsion injuries lead to loss of sensation and to reorganization of blood vessels (BVs) in the injured area. The inability of injured sensory axons to re-enter the spinal cord results in permanent loss of sensation, and often also leads to the development of neuropathic pain. Approaches that restore connection between peripheral sensory axons and their CNS targets are thus urgently need. Previous research has shown that sensory axons from peripherally grafted human sensory neurons are able to enter the spinal cord by growing along BVs which penetrate the CNS from the spinal cord surface. In this study we analysed the distribution of BVs after avulsion injury and how their pattern is affected by implantation at the injury site of boundary cap neural crest stem cells (bNCSCs), a transient cluster of cells, which are located at the boundary between the spinal cord and peripheral nervous system and assist the growth of sensory axons from periphery into the spinal cord during development. The superficial dorsal spinal cord vasculature was examined using intravital microscopy and intravascular BV labelling. bNCSC transplantation increased vascular volume in a non-dose responsive manner, whereas dorsal root avulsion alone did not decrease the vascular volume. To determine whether bNCSC are endowed with angiogenic properties we prepared 3D printed scaffolds, containing bNCSCs together with rings prepared from mouse aorta. We show that bNCSC do induce migration and assembly of endothelial cells in this system. These findings suggest that bNCSC transplant can promote vascularization in vivo and contribute to BV formation in 3D printed scaffolds.
Collapse
Affiliation(s)
- Carl Trolle
- Department of Medical Sciences, Uppsala University Hospital, Rehabilitation Medicine, 751 85 Uppsala, Sweden
| | - Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University Biomedical Center, PO Box 815, 751 08 Uppsala, Sweden
| | - Shivaprakash Jagalur Mutt
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, PO Box 571, 751 23 Uppsala, Sweden
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, PO Box 571, 751 23 Uppsala, Sweden
| | - Elena N Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University Biomedical Center, PO Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
3
|
Aldskogius H, Kozlova EN. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury. Cells 2021; 10:2185. [PMID: 34571835 PMCID: PMC8470715 DOI: 10.3390/cells10092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden;
| | | |
Collapse
|
4
|
Yao M, Fang J, Tao W, Feng G, Wei M, Gao Y, Xin W, Li Y, Du S. Modulation of proteoglycan receptor regulates RhoA/CRMP2 pathways and promotes axonal myelination. Neurosci Lett 2021; 760:136079. [PMID: 34166723 DOI: 10.1016/j.neulet.2021.136079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/15/2022]
Abstract
The function of the myelinating system is important because a defective myelin sheath results in various nervous disorders, including multiple sclerosis and peripheral neuropathies. The dorsal root entry zone (DREZ) is a transitional area between the central nervous system (CNS) and the peripheral nervous system (PNS) that is generated by two types of cells-oligodendrocytes and Schwann cells (SCs). It is well known that after injury the extracellular matrix, including the CSPG, impairs axonal myelination by activating protein tyrosine phosphatase-σ (PTPσ) in both cells. The Intracellular Sigma Peptide (ISP) is memetic of the PTPσ wedge region. It competitively binds to PTPσ and regulates the downstream signaling of RhoA. In the present study, we aimed to investigate whether the ISP increased myelination in vivo and in vitro. The in vitro assay was meant to further verify the in vivo mechanisms. We observed that ISP administration could increase axonal myelination both in vivo and in vitro. Furthermore, we provide evidence that, in oligodendrocytes and Schwann cells, the myelination-induced effects of ISP application entail an inverse expression of the RhoA/CRMP2 signaling pathway. Overall, our results indicate that the ISP modulation of PTPσ enhances axonal myelination via the RhoA/CRMP2 signaling pathways.
Collapse
Affiliation(s)
- Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen 518060, China; Department of Surgery, The University of Hong Kong, Hong Kong SAR 999077, China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wei Tao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
| | - Gang Feng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
| | - Mingyi Wei
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, China
| | - Yuhao Gao
- Department of Neuroscience and Behavioral Biology, Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd, Beijing 100192, China
| | - Yu Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shiwei Du
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518055, China.
| |
Collapse
|
5
|
Fontenas L, Kucenas S. Spinal cord precursors utilize neural crest cell mechanisms to generate hybrid peripheral myelinating glia. eLife 2021; 10:64267. [PMID: 33554855 PMCID: PMC7886336 DOI: 10.7554/elife.64267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
During development, oligodendrocytes and Schwann cells myelinate central and peripheral nervous system axons, respectively, while motor exit point (MEP) glia are neural tube-derived, peripheral glia that myelinate axonal territory between these populations at MEP transition zones. From which specific neural tube precursors MEP glia are specified, and how they exit the neural tube to migrate onto peripheral motor axons, remain largely unknown. Here, using zebrafish, we found that MEP glia arise from lateral floor plate precursors and require foxd3 to delaminate and exit the spinal cord. Additionally, we show that similar to Schwann cells, MEP glial development depends on axonally derived neuregulin1. Finally, our data demonstrate that overexpressing axonal cues is sufficient to generate additional MEP glia in the spinal cord. Overall, these studies provide new insight into how a novel population of hybrid, peripheral myelinating glia are generated from neural tube precursors and migrate into the periphery.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
6
|
Thammongkolchai T, Suhaib O, Termsarasab P, Li Y, Katirji B. Chronic immune sensorimotor polyradiculopathy: Report of a case series. Muscle Nerve 2019; 59:658-664. [PMID: 30697760 DOI: 10.1002/mus.26436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Chronic immune sensorimotor polyradiculopathy (CISMP) is a chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) variant affecting both sensory and motor nerve roots without evidence of peripheral nerve demyelination. METHODS We report a case series of 9 patients with CISMP, identified from 2 tertiary centers. Clinical, electrodiagnostic, and neuroradiologic features, and treatment responses, were retrospectively reviewed. RESULTS Patients presented with sensorimotor deficits and hypo-/areflexia, predominantly involving lower extremities. Three had cranial nerve involvement. Electrodiagnostic findings in all patients localized to roots proximal to dorsal root ganglia, without evidence of peripheral nerve demyelination. Cerebrospinal fluid examination revealed an albuminocytologic association. Eight patients exhibited gadolinium enhancement and thickening of multiple spinal nerve roots and/or cranial nerves. All patients demonstrated good responses to immunotherapies. DISCUSSION CISMP is similar to CIDP in many aspects, but lacks typical electrodiagnostic findings of peripheral nerve demyelination. It is important to recognize this unusual and treatable entity. Muscle Nerve 59:658-664, 2019.
Collapse
Affiliation(s)
- Thananan Thammongkolchai
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
| | - Omer Suhaib
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pichet Termsarasab
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuebing Li
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Bashar Katirji
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA
| |
Collapse
|
7
|
Fontenas L, Kucenas S. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Front Cell Neurosci 2018; 12:333. [PMID: 30356886 PMCID: PMC6190867 DOI: 10.3389/fncel.2018.00333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes (OLs) and Schwann cells (SCs) have traditionally been thought of as the exclusive myelinating glial cells of the central and peripheral nervous systems (CNS and PNS), respectively, for a little over a century. However, recent studies demonstrate the existence of a novel, centrally-derived peripheral glial population called motor exit point (MEP) glia, which myelinate spinal motor root axons in the periphery. Until recently, the boundaries that exist between the CNS and PNS, and the cells permitted to cross them, were mostly described based on fixed histological collections and static lineage tracing. Recent work in zebrafish using in vivo, time-lapse imaging has shed light on glial cell interactions at the MEP transition zone and reveals a more complex picture of myelination both centrally and peripherally.
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
8
|
Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J Neurosci 2018; 38:6586-6596. [PMID: 29941446 DOI: 10.1523/jneurosci.1034-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 μm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.
Collapse
|
9
|
Microscopic Study of Nervous System Plasticity: Interactions of Sympathetic Nerves with Neurons of Intraocular Hippocampal Transplants. Bull Exp Biol Med 2018; 164:680-684. [DOI: 10.1007/s10517-018-4058-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 10/17/2022]
|
10
|
Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci 2015; 35:9211-24. [PMID: 26085643 DOI: 10.1523/jneurosci.0156-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Radial glial cells are the neural progenitors of the developing CNS and have long radial processes that guide radially migrating neurons. The integrity of the radial glial scaffold, in particular proper adhesion between the endfeet of radial processes and the pial basement membrane (BM), is important for the cellular organization of the CNS, as indicated by evidence emerging from the developing cortex. However, the mechanisms underlying the maintenance of radial glial scaffold integrity during development, when the neuroepithelium rapidly expands, are still poorly understood. Here, we addressed this issue in the developing mouse spinal cord. We show that CXCR4, a receptor of chemokine CXCL12, is expressed in spinal cord radial glia. Conditional knock-out of Cxcr4 in radial glia caused disrupted radial glial scaffold with gaps at the pial endfeet layer and consequentially led to an invasion of boundary cap (BC) cells into the spinal cord. Because BC cells are PNS cells normally positioned at the incoming and outgoing axonal roots, their invasion into the spinal cord suggests a compromised CNS/PNS boundary in the absence of CXCL12/CXCR4 signaling. Both disrupted radial glial scaffold and invasion of BC cells into the CNS were also present in mice deficient in CXCR7, a second receptor of CXCL12. We further show that CXCL12 signaling promotes the radial glia adhesion to BM components and activates integrin β1 avidity. Our study unravels a novel molecular mechanism that deploys CXCL12/CXCR4/CXCR7 for the maintenance of radial glial scaffold integrity, which in turn safeguards the CNS/PNS boundary during spinal cord development.
Collapse
|
11
|
Rattay F, Danner SM. Peak I of the human auditory brainstem response results from the somatic regions of type I spiral ganglion cells: evidence from computer modeling. Hear Res 2014; 315:67-79. [PMID: 25019355 PMCID: PMC4152002 DOI: 10.1016/j.heares.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/22/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
Early neural responses to acoustic signals can be electrically recorded as a series of waves, termed the auditory brainstem response (ABR). The latencies of the ABR waves are important for clinical and neurophysiological evaluations. Using a biophysical model of transmembrane currents along spiral ganglion cells, we show that in human (i) the non-myelinated somatic regions of type I cells, which innervate inner hair cells, predominantly contribute to peak I, (ii) the supra-strong postsynaptic stimulating current (400 pA) and transmembrane currents of the myelinated peripheral axons of type I cells are an order smaller; such postsynaptic currents correspond to the short latencies of a small recordable ABR peak I', (iii) the ABR signal involvement of the central axon of bipolar type I cells is more effective than their peripheral counterpart as the doubled diameter causes larger transmembrane currents and a larger spike dipole-length, (iv) non-myelinated fibers of type II cells which innervate the outer hair cells generate essentially larger transmembrane currents but their ABR contribution is small because of the small ratio type II/type I cells, low firing rates and a short dipole length of spikes propagating slowly in non-myelinated fibers. Using a finite element model of a simplified head, peaks In and II (where In is the negative peak after peak I) are found to be stationary potentials when volleys of spikes cross the external electrical conductivity barrier at the bone&dura/CSF and at the CSF/brainstem interface whereas peaks I' and I may be generated by strong local transmembrane currents as postsynaptic events at the distal ending and the soma region of type I cells, respectively. All simulated human inter-peak times (I-I', II-I, In-I) are close to published data.
Collapse
Affiliation(s)
- Frank Rattay
- Institute for Analysis and Scientific Computing, TU Vienna, Vienna, Austria.
| | - Simon M Danner
- Institute for Analysis and Scientific Computing, TU Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Geller S, Kolasa E, Tillet Y, Duittoz A, Vaudin P. Olfactory ensheathing cells form the microenvironment of migrating GnRH-1 neurons during mouse development. Glia 2013; 61:550-66. [PMID: 23404564 DOI: 10.1002/glia.22455] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/28/2012] [Indexed: 11/08/2022]
Abstract
During development, GnRH-1 neurons differentiate extracerebraly from the nasal placode and migrate from the vomeronasal organ to the forebrain along vomeronasal and terminal nerves. Numerous studies have described the influence of different molecules on the migration of GnRH-1 neurons, however, the role of microenvironment cells remains poorly understood. This study used GFAP-GFP transgenic mice to detect glial cells at early developmental stages. Using nasal explant cultures, the comigration of glial cells with GnRH-1 neurons was clearly demonstrated. This in vitro approach showed that glial cells began migrating from the explants before GnRH-1 neurons. They remained ahead of the GnRH-1 migratory front and stopped migrating after the GnRH-1 neurons. The association of these glial cells with the axons combined with gene expression analysis of GFAP-GFP sorted cells enabled them to be identified as olfactory ensheathing cells (OEC). Immunohistochemical analysis revealed the presence of multiple glial cell-type markers showing several OEC subpopulations surrounding GnRH-1 neurons. Moreover, these OEC expressed genes whose products are involved in the migration of GnRH-1 neurons, such as Nelf and Semaphorin 4. In situ data confirmed that the majority of the GnRH-1 neurons were associated with glial cells along the vomeronasal axons in nasal septum and terminal nerves in the nasal forebrain junction as early as E12.5. Overall, these data demonstrate an OEC microenvironment for migrating GnRH-1 neurons during mouse development. The fact that this glial cell type precedes GnRH-1 neurons and encodes for molecules involved in their nasal migration suggests that it participates in the GnRH-1 system ontogenesis.
Collapse
Affiliation(s)
- Sarah Geller
- Physiologie de la Reproduction et des Comportements, UMR 0085 INRA, 6175 CNRS, Université François Rabelais de Tours, IFCE, IFR135 Imagerie Fonctionnelle 37380, Nouzilly, France
| | | | | | | | | |
Collapse
|
13
|
Han SB, Kim H, Skuba A, Tessler A, Ferguson T, Son YJ. Sensory Axon Regeneration: A Review from an in vivo Imaging Perspective. Exp Neurobiol 2012; 21:83-93. [PMID: 23055786 PMCID: PMC3454810 DOI: 10.5607/en.2012.21.3.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/28/2012] [Indexed: 01/26/2023] Open
Abstract
Injured primary sensory axons fail to regenerate into the spinal cord, leading to chronic pain and permanent sensory loss. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Why axons stop or turn around at the DREZ has generally been attributed to growth-repellent molecules associated with astrocytes and oligodendrocytes/myelin. The available evidence challenges the contention that these inhibitory molecules are the critical determinant of regeneration failure. Recent imaging studies that directly monitored axons arriving at the DREZ in living animals raise the intriguing possibility that axons stop primarily because they are stabilized by forming presynaptic terminals on non-neuronal cells that are neither astrocytes nor oligodendrocytes. These observations revitalized the idea raised many years ago but virtually forgotten, that axons stop by forming synapses at the DREZ.
Collapse
Affiliation(s)
- Seung Baek Han
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Temple University School of Medicine, Philadelphia, PA 19140, USA. ; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
14
|
Zhuravleva ZN, Kositsyn NS. Morphofunctional interactions of peripheral nerve fibers of the iris with neurons developing in the anterior chamber of the eye in rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2010; 40:615-9. [PMID: 20535569 DOI: 10.1007/s11055-010-9304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/29/2008] [Indexed: 11/26/2022]
Abstract
Electron microscopic studies were performed on intraocular transplants of embryonic septal and hippocampal tissue developing in the anterior chamber of the eye in rats for 3-4 months. The aim of the study was to seek ultrastructural identification of peripheral nerve fibers entering transplants from the iris, and to assess their ability to establish true synaptic contacts with transplanted CNS neurons. Bundles of myelinated and unmyelinated axons surrounded by Schwann cell cytoplasm were seen within the perivascular spaces of ingrowing blood vessels. Both types of peripheral fiber were also identified in the neuropil areas of transplants. At the ultrastructural level, unmyelinated axons were found to be free of glial Schwann cell sheaths and to form typical asymmetrical synapses with the dendrites and dendritic spines of transplant neurons. These results provide evidence of the high morphofunctional plasticity of both parts (central, peripheral) of the nervous system.
Collapse
Affiliation(s)
- Z N Zhuravleva
- Laboratory for the Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| | | |
Collapse
|
15
|
Brown DJ, Patuzzi RB. Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 2010; 267:12-26. [PMID: 20430085 DOI: 10.1016/j.heares.2010.03.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022]
Abstract
We have investigated the generation of the compound action potential (CAP) from the auditory nerve of guinea pigs. Responses to acoustic tone-bursts were recorded from the round window (RW), throughout the cochlear fluids, from the surface of the cochlear nucleus, from the central end of the auditory nerve after removal of the cochlear nucleus, from the scalp vertex, and from the contralateral ear. Responses were compared before, during and after experimental manipulations including pharmacological blockade of the auditory nerve, section of the auditory nerve, section of the efferent nerves, removal of the cochlear nucleus, and focal cooling of the cochlear nerve and/or cochlear nucleus. Regardless of the waveform changes occurring with these manipulations, the responses were similar in waveform but inverted polarity across the internal auditory meatus. The CAP waveforms were very similar before and after removal of the cochlear nucleus, apart from transient changes that could last many minutes. This suggests that the main CAP components are generated entirely by the eighth nerve. Based on previous studies and a clear understanding of the generation of extracellular potentials, we suggest that the early components in the responses recorded from the round window, from the cochlear fluids, from the surface of the cochlear nucleus, or from the scalp are a far-field or stationary potential, generated when the circulating action currents associated with each auditory neurone encounters a high extracellular resistance as it passes through the dura mater.
Collapse
Affiliation(s)
- Daniel J Brown
- The Brain and Mind Research Institute, Sydney Medical School, The University of Sydney, 100 Mallett Street, Camperdown 2050, Australia.
| | | |
Collapse
|
16
|
Gelman S, Cohen A, Sanovich E. Developmental changes in the ultrastructure of the lamprey lateral line nerve during metamorphosis. J Morphol 2009; 270:815-24. [DOI: 10.1002/jmor.10722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Jain MP, Choi AO, Neibert KD, Maysinger D. Probing and preventing quantum dot-induced cytotoxicity with multimodal α-lipoic acid in multiple dimensions of the peripheral nervous system. Nanomedicine (Lond) 2009; 4:277-90. [DOI: 10.2217/nnm.09.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: Toxicity of nanoparticles developed for biomedical applications is extensively debated as no uniform guidelines are available for studying nanomaterial safety, resulting in conflicting data obtained from different cell types. This study demonstrates the varied toxicity of a selected type of nanoparticle, cadmium telluride quantum dots (QDs), in three increasingly complex cell models of the peripheral nervous system. Materials & methods: QD-induced cytotoxicity was assessed via cell viability assays and biomarkers of subcellular damage in PC12 cells and mixed primary dispersed dorsal root ganglia (DRG) cultures. Morphological analysis of neurite outgrowth was used to determine the viability of axotomized DRG explant cultures. Results & discussion: Cadmium telluride QDs and their core metals exert different degrees of toxicity in the three cell models, the primary dispersed DRGs being the most susceptible. α-lipoic acid is an effective, multimodal, cytoprotective agent that can act as an antioxidant, metal chelator and QD-surface modifier in these cell systems. Conclusion: Complex multicellular model systems, along with homogenous cell models, should be utilized in standard screening and monitoring procedures for evaluating nanomaterial safety.
Collapse
Affiliation(s)
- Manasi P Jain
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Angela O Choi
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Kevin D Neibert
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
18
|
Gelman S, Ayali A, Kiemel T, Sanovich E, Cohen AH. Metamorphosis-related changes in the lateral line system of lampreys, Petromyzon marinus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:945-56. [PMID: 18795304 DOI: 10.1007/s00359-008-0367-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 12/19/2022]
Abstract
Lamprey metamorphosis leads to considerable changes in morphology and behavior. We have recently reported that larval lampreys possess a functional lateral line system. Here we investigated metamorphic morphological changes in the lateral line system using light and electron microscopy. Functional modifications were studied by recording the trunk lateral line nerve activity of larvae and adults while stimulating neuromasts with approximately sinusoidal water motion. We found a general re-patterning of neuromasts on the head and trunk including an increase in numbers, redistribution within the pit lines, and shifts of the pit lines relative to external features. The trunk lateral line nerve response was qualitatively similar in adults and larvae. Both showed two neuronal populations responding to opposite directions of water flow. Magnitude of the response increased monotonically with stimulus amplitude. At low frequencies, the response lag relative to the stimulus maximum was approximately 220 degrees , and the gain depended approximately linearly on frequency, confirming that superficial neuromasts are velocity detectors. Changes in phase lag with increasing stimulus frequency were steeper in larvae, suggesting slower afferent conductance. The response gain with frequency was smaller for adults, suggesting a narrower frequency discrimination range and decreased sensitivity. These changes may be adaptations for the active lifestyle of adult lampreys.
Collapse
Affiliation(s)
- S Gelman
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
19
|
Fraher JP, Dockery P, O'Donoghue O, Riedewald B, O'Leary D. Initial motor axon outgrowth from the developing central nervous system. J Anat 2007; 211:600-11. [PMID: 17850285 PMCID: PMC2375784 DOI: 10.1111/j.1469-7580.2007.00807.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2007] [Indexed: 11/29/2022] Open
Abstract
Rat and chick studies show that the earliest motor rootlet axon bundles emerge from all levels of the neural tube between radial glial end feet which comprise the presumptive glia limitans. The loose arrangement of the end feet at the time of emergence facilitates this passage. The points of emergence are regularly spaced in relation to the long axis of the neural tube and are not defined by any cell contact with its surface. Each rootlet carries a covering of basal lamina from the neural tube surface, which forms a sleeve around it. It is only after bundles of ventral rootlet axons have emerged that cells associate with them, forming clusters on the rootlet surface at a distance peripheral to the CNS surface of both species. A tight collar of glial end feet develops around the axon bundle at the neural tube surface shortly after initial emergence. These arrangements are in sharp contrast to those seen in the sensory rootlets, where clusters of boundary cap cells prefigure the sensory entry zones at the attachments of the prospective dorsal spinal and cranial sensory rootlets. Boundary cap cells resemble cluster cells and a neural crest origin seems the most likely for them. The study clearly demonstrates that no features resembling boundary caps are found in relation to the developing motor exit points.
Collapse
Affiliation(s)
- J P Fraher
- Department of Anatomy, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
20
|
Schlegel N, Asan E, Hofmann GO, Lang EM. Reactive changes in dorsal roots and dorsal root ganglia after C7 dorsal rhizotomy and ventral root avulsion/replantation in rabbits. J Anat 2007; 210:336-51. [PMID: 17331182 PMCID: PMC2100279 DOI: 10.1111/j.1469-7580.2007.00695.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current surgical treatment of spinal root injuries aims at reconnecting ventral roots to the spinal cord while severed dorsal roots are generally left untreated. Reactive changes in dorsal root ganglia (DRGs) and in injured dorsal roots after such complex lesions have not been analysed in detail. We studied dorsal root remnants and lesioned DRGs 6 months after C7 dorsal rhizotomy, ventral root avulsion and immediate ventral root replantation in adult rabbits. Replanted ventral roots were fixed to the spinal cord with fibrin glue only or with glue containing ciliary neurotrophic factor and/or brain-derived neurotrophic factor. Varying degrees of degeneration were observed in the deafferented dorsal spinal cord in all experimental groups. In cases with well-preserved morphology, small myelinated axons extended into central tissue protrusions at the dorsal root entry zone, suggesting sprouting of spinal neuron processes into the central dorsal root remnant. In lesioned DRGs, the density of neurons and myelinated axons was not significantly altered, but a slight decrease in the relative frequency of large neurons and an increase of small myelinated axons was noted (significant for axons). Unexpectedly, differences in the degree of these changes were found between control and neurotrophic factor-treated animals. Central axons of DRG neurons formed dorsal root stumps of considerable length which were attached to fibrous tissue surrounding the replanted ventral root. In cases where gaps were apparent in dorsal root sheaths, a subgroup of dorsal root axons entered this fibrous tissue. Continuity of sensory axons with the spinal cord was never observed. Some axons coursed ventrally in the direction of the spinal nerve. Although the animal model does not fully represent the situation in human plexus injuries, the present findings provide a basis for devising further experimental approaches in the treatment of combined motor/sensory root lesions.
Collapse
Affiliation(s)
- N Schlegel
- University of Würzburg, Institute for Anatomy and Cell Biology, Germany
| | | | | | | |
Collapse
|
21
|
Bobryshev YV. Subset of cells immunopositive for neurokinin-1 receptor identified as arterial interstitial cells of Cajal in human large arteries. Cell Tissue Res 2005; 321:45-55. [PMID: 15902505 DOI: 10.1007/s00441-004-1061-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/26/2004] [Indexed: 11/29/2022]
Abstract
In the adventitia of large arteries, dendritic cells are located between nerve fibers, some of which contain substance P. The aim of the present study was to examine whether neurokinin 1 receptor (NK-1R) was expressed by dendritic cells in the arterial wall. Parallel sections of aortic and carotid artery segments were immunostained with anti-NK-1R and cell-type-specific antibodies. Dendritic cells in the arterial wall expressed NK-1R, albeit at a low level. Other cells, which intensely expressed NK-1R, were located along the border between the media and adventitia. They did not co-express any dendritic cell markers, including fascin, CD1a, S100, or Lag-antigen, and were negative for CD68, CD3, and mast cell tryptase. These NK-1R(+) cells were laser-capture microdissected and studied by means of electron-microscopic analysis. The microdissected cells were in direct contact with nerve endings, and their ultrastructure was typical of the interstitial cells of Cajal present in the gastrointestinal tract. Further systematic electron-microscopic analysis revealed that the cells displaying the features typical of interstitial cells of Cajal were a basic element of the human arterial wall architectonics. Arterial interstitial cells of Cajal were negative for c-kit but they expressed vasoactive intestinal peptide receptor 1 (VIPR1). Destructive alterations of contacts between arterial interstitial cells of Cajal and nerve endings were observed in arterial segments with atherosclerotic lesions. The functional significance of the arterial interstitial cells of Cajal and their possible involvement in atherosclerosis and other vascular diseases need clarification.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Surgical Professorial Unit Level 5, St Vincent's Hospital, DeLacy Building, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
22
|
Fraher AL. Systems psychodynamics: the formative years of an interdisciplinary field at the Tavistock Institute. HISTORY OF PSYCHOLOGY 2004; 7:65-84. [PMID: 15025060 DOI: 10.1037/1093-4510.7.1.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Systems psychodynamics is an interdisciplinary field amalgamating a triad of influences -the practice of psychoanalysis, the theories and methods of the field of group relations, and the task and boundary awareness of open systems perspectives. Although systems psychodynamics is not a new field of study, there has been a general lack of awareness of its roots, how its formative elements have become intertwined over the years, and the role of the Tavistock Institute in developments in the field. This article provides a synthesis of this history and focuses, in particular,on the intellectual foundations of the Tavistock method of working experientially with groups and the application of this method to the study of organizations.
Collapse
|