1
|
Jansen MAK, Ač A, Klem K, Urban O. A meta-analysis of the interactive effects of UV and drought on plants. PLANT, CELL & ENVIRONMENT 2022; 45:41-54. [PMID: 34778989 DOI: 10.1111/pce.14221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Interactions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress-associated symptoms such as MDA accumulation and reactive-oxygen-species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less-than-additive, and so are the damage and growth retardation. Less-than-additive effects were observed across field, glasshouse and growth-chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross-resistance seems the most likely interpretation of the observed less-than-additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.
Collapse
Affiliation(s)
- Marcel A K Jansen
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - Alexander Ač
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Klem
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
2
|
Hyyryläinen A, Rautio P, Turunen M, Huttunen S. Seasonal and inter-annual variation in the chlorophyll content of three co-existing Sphagnum species exceeds the effect of solar UV reduction in a subarctic peatland. SPRINGERPLUS 2015; 4:478. [PMID: 26361579 PMCID: PMC4559556 DOI: 10.1186/s40064-015-1253-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022]
Abstract
We measured chlorophyll (chl) concentration and chl a/b ratio in Sphagnum balticum, S. jensenii, and S. lindbergii, sampled after 7 and 8 years of ultraviolet-B (UVB) and temperature manipulation in an open field experiment in Finnish Lapland (68°N). We used plastic filters with different transmittance of UVB radiation to manipulate the environmental conditions. The plants were exposed to (1) attenuated UVB and increased temperature, (2) ambient UVB and increased temperature and (3) ambient conditions. Chlorophyll was extracted from the capitula of the mosses and the content and a/b ratio were measured spectrophotometrically. Seasonal variation of chlorophyll concentration in the mosses was species specific. Temperature increase to 0.5-1 °C and/or attenuation of solar UVB radiation to ca. one fifth of the ambient (on average 12 vs. 59 uW/cm(2)) had little effect on the chlorophyll concentration or its seasonal variation. In the dominant S. lindbergii, UVB attenuation under increased temperature led to a transient decrease in chlorophyll concentration. Altogether, species-specific patterns of seasonal chlorophyll variation in the studied Sphagna were more pronounced than temperature and UVB treatment effects.
Collapse
Affiliation(s)
- Anna Hyyryläinen
- />Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - Pasi Rautio
- />The Natural Resources Institute Finland, P.O. Box 16, 96300 Rovaniemi, Finland
| | - Minna Turunen
- />Arctic Centre, University of Lapland, P.O. Box 122, 96101 Rovaniemi, Finland
| | - Satu Huttunen
- />Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| |
Collapse
|
3
|
Boesgaard KS, Albert KR, Ro-Poulsen H, Michelsen A, Mikkelsen TN, Schmidt NM. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels. PHYSIOLOGIA PLANTARUM 2012; 145:540-550. [PMID: 22211955 DOI: 10.1111/j.1399-3054.2011.01564.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic.
Collapse
Affiliation(s)
- Kristine S Boesgaard
- Department of Chemical and Biochemical Engineering, DTU Risoe Campus, PO Box 49, Roskilde, Denmark.
| | | | | | | | | | | |
Collapse
|
4
|
Kotilainen T, Tegelberg R, Julkunen-Tiitto R, Lindfors A, O'Hara RB, Aphalo PJ. Seasonal fluctuations in leaf phenolic composition under UV manipulations reflect contrasting strategies of alder and birch trees. PHYSIOLOGIA PLANTARUM 2010; 140:297-309. [PMID: 20626643 DOI: 10.1111/j.1399-3054.2010.01398.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seasonal variation in leaf phenolic composition may be important for acclimation of plants to seasonal changes in their biotic and abiotic environment. For a realistic assessment of how plants respond to solar UV-B (280-315 nm) and UV-A (315-400 nm) radiation, seasonal variation in both environment and plant responses needs to be taken into account. This also has implications for studies concerning stratospheric ozone depletion and resulting increased UV-B radiation, as other environmental variables and/or plant phenology could interact with UV radiation. To elucidate this, we established a field experiment using plastic films attenuating different parts of the solar UV spectrum. The concentration of individual phenolic compounds was measured during one growing season in leaves of grey alder (Alnus incana) and white birch (Betula pubescens) trees. Our results showed changes in concentration of, e.g. hydrolyzable tannins in birch that suggest an effect of UV-A alone and e.g. chlorogenic acids in alder indicate a quadratic effect of UV-B irradiance and both linear and quadratic effect for UV-A in second-degree polynomial fits. Further, there was interaction between treatment and sampling time for some individual metabolites; hence, the UV response varied during the season. In addition to the UV effects, three temporal patterns emerged in the concentrations of particular groups of phenolics. Possible implications for both sampling methods and timing are discussed. Moreover, our results highlight differences in responses of the two tree species, which are taken to indicate differences in their ecological niche differentiation.
Collapse
Affiliation(s)
- Titta Kotilainen
- Department of Biological and Environmental Sciences, P.O. Box 35, FIN-40014, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
5
|
Li FR, Peng SL, Chen BM, Hou YP. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2010. [DOI: 10.1016/j.actao.2009.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Gardner G, Lin C, Tobin EM, Loehrer H, Brinkman D. Photobiological properties of the inhibition of etiolated Arabidopsis seedling growth by ultraviolet-B irradiation. PLANT, CELL & ENVIRONMENT 2009; 32:1573-83. [PMID: 19627566 DOI: 10.1111/j.1365-3040.2009.02021.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Alteration of 'normal' levels of ultraviolet-B light (UV-B, 280-320 nm) can affect plant chemical composition as well as growth; however, little is known about how plants perceive UV-B light. We have carried out fluence response curves, and demonstrated that the growth inhibition of etiolated Arabidopsis thaliana seedlings by low fluence UV light is specific to UV-B and not UV-A (320-390 nm). The response shows reciprocity between duration and intensity, at least over a limited range, and thus depends only on photon fluence and not on photon flux. The action spectrum for this response indicates a peak of maximum effectiveness at 290 nm, and response spectra at different fluences indicate that the most effective wavelength at 30,000 micromol m(-2) is 290 nm, whereas 300 nm light was the most effective at 100,000 micromol m(-2). This response occurs in mutant seedlings deficient in cryptochrome, phytochrome or phototropin, suggesting that none of the known photoreceptors is the major UV-B photoreceptor. Some null mutants in DNA repair enzymes show hypersensitivity to UV-B, suggesting that even at low fluence rates, direct damage to DNA may be one component of the response to UV-B.
Collapse
Affiliation(s)
- Gary Gardner
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
7
|
Krizek DT. Influence of PAR and UV-A in Determining Plant Sensitivity and Photomorphogenic Responses to UV-B Radiation ¶†. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00013.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Rozema J, Boelen P, Blokker P. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 137:428-42. [PMID: 16005756 DOI: 10.1016/j.envpol.2005.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/31/2005] [Indexed: 05/03/2023]
Abstract
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.
Collapse
Affiliation(s)
- Jelte Rozema
- Department of Systems Ecology, Institute of Ecological Science, Climate Centre, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
9
|
Krizek DT. Influence of PAR and UV-A in Determining Plant Sensitivity and Photomorphogenic Responses to UV-B Radiation¶ †. Photochem Photobiol 2004; 79:307-15. [PMID: 15137505 DOI: 10.1562/2004-01-27-ir.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.
Collapse
Affiliation(s)
- Donald T Krizek
- Climate Stress Laboratory, Natural Resources Institute, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705-2350, USA.
| |
Collapse
|