1
|
Hu X, Zhang N, Zhong Y, Liu T, Zhu X. Mechanisms of Apoptosis and Pulmonary Fibrosis Resulting From Sulfur Mustard-Induced Acute Pulmonary Injury in Rats. Int J Toxicol 2025:10915818251315907. [PMID: 39888856 DOI: 10.1177/10915818251315907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Sulfur mustard (SM) is a highly toxic bifunctional alkylating agent that inflicts severe damage on the respiratory tract. Although numerous studies have examined the mechanisms underlying SM-induced pulmonary injury, the exact pathways involved remain unclear. This study aims to investigate an acute pulmonary injury model, with SM administered as a single intraperitoneal injection (8 mg/kg) or single intratracheal instillation (2 mg/kg) at equal toxicity doses (1LD50). The results revealed that epithelial cells in the alveolar septa of the intraperitoneal SM group exhibited a significantly higher expression of apoptotic markers, including pro-apoptotic protein Bax, caspase-3, and caspase-9 proteins, than those in the tracheal SM group. Conversely, the expression of the anti-apoptotic protein Bcl-2 was significantly lower in the intraperitoneal SM group than in the tracheal SM group, as confirmed by TUNEL staining and immunohistochemical staining. The intraperitoneal SM group exhibited markedly higher expression of fibrosis-related proteins, including MMP-2, MMP-9, TIMP-1, TIMP-2, collagen type I, collagen type III, TGF-β1, and Smad7, than the tracheal SM group. These markers, detected through immunohistochemical immunolabeling, indicate a more significant fibrotic response in the intraperitoneal group. In summary, this study demonstrates that intraperitoneal exposure to SM results in increased apoptosis, elevated expression of pro-apoptotic proteins, and fibrosis-related proteins in the alveolar epithelial cells compared with intratracheal exposure, even at equivalent toxicity levels. Our findings highlight the suitability of the intraperitoneal route for further investigation and identify apoptotic and fibrosis-related proteins as potential targets for intervention in SM-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Weifang No. 2 People's Hospital, Weifang Respiratory Disease Hospital, Weifang, China
- State Key Laboratory of Antitoxic Drugs and Toxicology, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Respiration, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Yuxu Zhong
- State Key Laboratory of Antitoxic Drugs and Toxicology, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, China
| | - Tao Liu
- Department of Respiration, The 80th Group Army Hospital of People's Liberation Army, Weifang, China
| | - Xiaoji Zhu
- Department of Respiration, Jiaozhou Branch of Shanghai East Hospital, Tongji University, Qingdao, China
| |
Collapse
|
2
|
Li Z, Ma B, Xu H, Gong M, Gao P, Wang L, Xie J. Divinyl sulfone, an oxidative metabolite of sulfur mustard, induces caspase-independent pyroptosis in hepatocytes. Arch Toxicol 2024; 98:897-909. [PMID: 38172301 DOI: 10.1007/s00204-023-03662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Sulfur mustard (SM) is a highly toxic blister agent which has been used many times in several wars and conflicts and caused heavy casualties. Ease of production and lack of effective therapies make SM a potential threat to public health. SM intoxication causes severe damage on various target organs, such as the skin, eyes, and lungs. In addition, SM exposure can also lead to hepatotoxicity and severe liver injuries. However, despite decades of research, the molecular mechanism underlying SM-induced liver damage remains obscure. SM can be converted into various products via complex hepatic metabolism in vivo. There are some pieces of evidence that one of the oxidation products of SM, divinyl sulfone (DVS), exhibits even more significant toxicity than SM. Nevertheless, the molecular toxicology of DVS is still hardly known. In the present study, we confirmed that DVS is even more toxic than SM in the human hepatocellular carcinoma cell line HepG2. Further mechanistic study revealed that DVS exposure (200 μM) promotes pyroptosis in HepG2 cells, while SM (400 μM) mainly induces apoptosis. DVS induces gasdermin D (GSDMD) mediated pyroptosis, which is independent of caspases activation but depends on the large amounts of reactive oxygen species (ROS) and severe oxidative stress produced during DVS exposure. Our findings may provide novel insights for understanding the mechanism of SM poisoning and may be helpful to discover promising therapeutic strategies for SM intoxication.
Collapse
Affiliation(s)
- Zhi Li
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Bo Ma
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Mengqiang Gong
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Pengxia Gao
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lili Wang
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
3
|
Xiao Z, Liu F, Cheng J, Wang Y, Zhou W, Zhang Y. B-Raf inhibitor vemurafenib counteracts sulfur mustard-induced epidermal impairment through MAPK/ERK signaling. Drug Chem Toxicol 2023; 46:226-235. [PMID: 34986718 DOI: 10.1080/01480545.2021.2021927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The chemical warfare agent sulfur mustard (SM) causes severe cutaneous lesions characterized by epidermal cell death, apoptosis, and inflammation. At present, the molecular mechanisms underlying SM-induced injury are not well understood, and there is no standard treatment protocol for SM-exposed patients. Here, we conducted a high-content screening of the Food and Drug Administration (FDA)-approved drug library of 1018 compounds against SM injury on an immortal human keratinocyte HaCaT cell line, focusing on cell survival. We found that the B-Raf inhibitor vemurafenib had an apparent therapeutic effect on HaCaT cells and resisted SM toxicity. Other tested B-Raf inhibitors, both type-I (dabrafenib and encorafenib) and type-II (RAF265 and AZ628), also exhibited potent therapeutic effects on SM-exposed HaCaT cells. Both SM and vemurafenib triggered extracellular signal-related kinase (ERK) activation. The therapeutic effect of vemurafenib in HaCaT cells during SM injury was ERK-dependent, indicating a specific role of ERK in keratinocyte regulatory mechanisms. Furthermore, vemurafenib partially improved cutaneous damage in a mouse ear vesicant model. Collectively, our results provide evidence that the B-Raf inhibitor vemurafenib is a potential therapeutic agent against SM injury, and oncogenic B-Raf might be an exciting new therapeutic target following exposure to mustard vesicating agents.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Feng Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Junping Cheng
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
4
|
Ramos E, Gil-Martín E, De Los Ríos C, Egea J, López-Muñoz F, Pita R, Juberías A, Torrado JJ, Serrano DR, Reiter RJ, Romero A. Melatonin as Modulator for Sulfur and Nitrogen Mustard-Induced Inflammation, Oxidative Stress and DNA Damage: Molecular Therapeutics. Antioxidants (Basel) 2023; 12:antiox12020397. [PMID: 36829956 PMCID: PMC9952307 DOI: 10.3390/antiox12020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Sulfur and nitrogen mustards, bis(2-chloroethyl)sulfide and tertiary bis(2-chloroethyl) amines, respectively, are vesicant warfare agents with alkylating activity. Moreover, oxidative/nitrosative stress, inflammatory response induction, metalloproteinases activation, DNA damage or calcium disruption are some of the toxicological mechanisms of sulfur and nitrogen mustard-induced injury that affects the cell integrity and function. In this review, we not only propose melatonin as a therapeutic option in order to counteract and modulate several pathways involved in physiopathological mechanisms activated after exposure to mustards, but also for the first time, we predict whether metabolites of melatonin, cyclic-3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, and N1-acetyl-5-methoxykynuramine could be capable of exerting a scavenger action and neutralize the toxic damage induced by these blister agents. NLRP3 inflammasome is activated in response to a wide variety of infectious stimuli or cellular stressors, however, although the precise mechanisms leading to activation are not known, mustards are postulated as activators. In this regard, melatonin, through its anti-inflammatory action and NLRP3 inflammasome modulation could exert a protective effect in the pathophysiology and management of sulfur and nitrogen mustard-induced injury. The ability of melatonin to attenuate sulfur and nitrogen mustard-induced toxicity and its high safety profile make melatonin a suitable molecule to be a part of medical countermeasures against blister agents poisoning in the near future.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Cristóbal De Los Ríos
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - René Pita
- Chemical Defense Department, Chemical, Biological, Radiological, and Nuclear Defense School, Hoyo de Manzanares, 28240 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad Ejército del Aire, Cuartel General Ejército del Aire, 28008 Madrid, Spain
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913943970
| |
Collapse
|
5
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022; 70:725-741. [PMID: 35859244 DOI: 10.1007/s12026-022-09307-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapeutic agents may adversely affect the nervous system, including the neural precursor cells as well as the white matter. Although the mechanisms are not completely understood, several hypotheses connecting inflammation and oxidative stress with neurotoxicity are now emerging. The proposed mechanisms differ depending on the class of drug. For example, toxicity due to cisplatin occurs due to activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which alters hippocampal long-term potentiation. Free radical injury is also involved in the cisplatin-mediated neurotoxicity as dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) has been seen which protects against the free radical injury by regulating glutathione S-transferases and hemeoxygenase-1 (HO-1). Thus, correcting the imbalance between NF-κB and Nrf2/HO-1 pathways may alleviate cisplatin-induced neurotoxicity. With newer agents like bortezomib, peripheral neuropathy occurs due to up-regulation of TNF-α and IL-6 in the sensory neurons. Superoxide dismutase dysregulation is also involved in bortezomib-induced neuropathy. This article reviews the available literature on inflammation and oxidative stress in neurotoxicity caused by various classes of chemotherapeutic agents. It covers the conventional medicines like platinum compounds, vinca alkaloids, and methotrexate, as well as the newer therapeutic agents like immunomodulators and immune checkpoint inhibitors. A better understanding of the pathophysiology will lead to further advancement in strategies for management of chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India. .,Coordinator, AIIMS Adverse Drug Reaction Monitoring Centre, Pharmacovigilance Program of India, New Delhi, India.
| | - Tavneet Kaur Makkar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lavisha Goel
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
7
|
Alkylated epidermal creatine kinase as a biomarker for sulfur mustard exposure: comparison to adducts of albumin and DNA in an in vivo rat study. Arch Toxicol 2021; 95:1323-1333. [PMID: 33635393 PMCID: PMC8032612 DOI: 10.1007/s00204-021-03005-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent which use is banned under international law and that has been used recently in Northern Iraq and Syria by the so-called Islamic State. SM induces the alkylation of endogenous proteins like albumin and hemoglobin thus forming covalent adducts that are targeted by bioanalytical methods for the verification of systemic poisoning. We herein report a novel biomarker, namely creatine kinase (CK) B-type, suitable as a local biomarker for SM exposure on the skin. Human and rat skin were proven to contain CK B-type by Western blot analysis. Following exposure to SM ex vivo, the CK-adduct was extracted from homogenates by immunomagnetic separation and proteolyzed afterwards. The cysteine residue Cys282 was found to be alkylated by the SM-specific hydroxyethylthioethyl (HETE)-moiety detected as the biomarker tetrapeptide TC(-HETE)PS. A selective and sensitive micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (µLC-ESI MS/HRMS) method was developed to monitor local CK-adducts in an in vivo study with rats percutaneously exposed to SM. CK-adduct formation was compared to already established DNA- and systemic albumin biomarkers. CK- and DNA-adducts were successfully detected in biopsies of exposed rat skin as well as albumin-adducts in plasma. Relative biomarker concentrations make the CK-adduct highly appropriate as a local dermal biomarker. In summary, CK or rather Cys282 in CK B-type was identified as a new, additional dermal target of local SM exposures. To our knowledge, it is also the first time that HETE-albumin adducts, and HETE-DNA adducts were monitored simultaneously in an in vivo animal study.
Collapse
|
8
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Siavashi V, Cheraghi H, Pourmohammad P, Nooshirvani P, Abdolahi S, Solghani A, Nassiri SM, Ghazanfari T. Impairment of endothelial progenitor cells function in patient with mustard gas intoxication. Inhal Toxicol 2020; 32:131-140. [PMID: 32312128 DOI: 10.1080/08958378.2020.1755396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Sulfur mustard (SM), also known as mustard gas, was first widely used in the Iraq-Iran. After SM exposure, the most prominent clinical signs are the development of extensive non-healing skin wounds and pulmonary signs, persisting over long time. Since the most frequent complications in SM-intoxicated patients are respiratory and dermatologic lesions, and with respect to the important role of endothelial progenitor cells (EPCs) in the pathophysiology of these lesion, we conducted this study to recognize the potential effects of SM on biological features of EPCs in patients exposed with this gas.Methods: In this study, 30 patients with the history of SM exposure during the Iran-Iraq war (1984-1988), 27 patients with pulmonary signs with no history of SM exposure and 20 healthy participants were included. Cell population and function of EPCs were assessed 4 years post-exposure. For this purpose, circulating EPCs (cEPCs) were harvested and cultivated, then the biological features of these cells, including migratory, proliferative, and tubulogenic activities were analyzed. We also measured serum antioxidants levels and mRNA levels of some proangiogenic factors in EPCs from SM-intoxicated patients.Results: Our results showed lesser number of cEPCs in patients exposed with SM, which was associated with decreased proliferative, migratory, and tubulogenic activity of these cells. Also, we found the lesser serum activity of SOD, GPX and MDA in the SM group than in the healthy control group.Conclusions: SM exposure resulted in decreased proliferation and migration of EPCs, which was associated with decreased tubule formation and angiogenic factors.
Collapse
Affiliation(s)
- Vahid Siavashi
- Immunoregulation Research Center, Shahed University, Tehran, Iran.,Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadi Cheraghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Pirouz Pourmohammad
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parviz Nooshirvani
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Solghani
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
11
|
Menacher G, Balszuweit F, Lang S, Thiermann H, Kehe K, Gudermann T, Schmidt A, Steinritz D, Popp T. Necrosulfonamide - Unexpected effect in the course of a sulfur mustard intoxication. Chem Biol Interact 2018; 298:80-85. [PMID: 30391637 DOI: 10.1016/j.cbi.2018.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/26/2022]
Abstract
Although its first military use in Ypres was 100 years ago, no causal therapy for sulfur mustard (SM) intoxications exists so far. To improve the therapeutic options for the treatment of SM intoxications, we developed a co-culture of keratinocytes (HaCaT cells) and immunocompetent cells (THP-1 cells) to identify potential substances for further research. Here, we report on the influence of necrosulfonamide (NSA) on the course of a SM intoxication in vitro. The cells were challenged with 100, 200 and 300 μM SM and after 1 h treated with NSA (1, 5, 10 μM). NSA was chosen for its known ability to inhibit necroptosis, a specialized pathway of programmed necrosis. However, in our settings NSA showed only mild effects on necrotic cell death after SM intoxication, whereas it had an immense ability to prevent apoptosis. Furthermore, NSA was able to reduce the production of interleukin-6 and interleukin-8 at certain concentrations. Our data highlight NSA as a candidate compound to address cell death and inflammation in SM exposure.
Collapse
Affiliation(s)
- Georg Menacher
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | | | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Kai Kehe
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Bundeswehr Medical Academy, Dept. Medical CBRN Defense, 80937, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Bundeswehr University Munich, Faculty of Human Sciences, 85577, Neubiberg, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilian-University Munich, Goethestraße 33, 80336, Munich, Germany.
| |
Collapse
|
12
|
Tumu HCR, Cuffari BJ, Pino MA, Palus J, Piętka-Ottlik M, Billack B. Ebselen oxide attenuates mechlorethamine dermatotoxicity in the mouse ear vesicant model. Drug Chem Toxicol 2018; 43:335-346. [DOI: 10.1080/01480545.2018.1488858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hemanta C. Rao Tumu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Benedette J. Cuffari
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| | - Maria A. Pino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
- Department of Clinical Specialties, NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Jerzy Palus
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Piętka-Ottlik
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Blase Billack
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY, USA
| |
Collapse
|
13
|
Lüling R, John H, Gudermann T, Thiermann H, Mückter H, Popp T, Steinritz D. Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 ( HSPA6) In Vitro. Cells 2018; 7:cells7090126. [PMID: 30200301 PMCID: PMC6162519 DOI: 10.3390/cells7090126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 µM SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM.
Collapse
Affiliation(s)
- Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
14
|
Andres DK, Keyser BM, Melber AA, Benton BJ, Hamilton TA, Kniffin DM, Martens ME, Ray R. Apoptotic cell death in rat lung following mustard gas inhalation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L959-L968. [DOI: 10.1152/ajplung.00281.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3, and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 h after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased fivefold between 6 and 24 h, decreasing to the unexposed-control level at 48 h. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked ( P < 0.01) at 24 h; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 h. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L and mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. At 24 h after SM exposure, sFas-L increased significantly in both BALF cells ( P < 0.01) and BALF ( P < 0.05). However, mFas-L increased only in BALF cells between 24 and 48 h ( P < 0.1 and P < 0.001, respectively). Fas-R increased only in BALF cells by 6 h ( P < 0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspase-3 and -9 antibodies and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as early as 6 h in the proximal trachea and bronchi, but not before 48 h in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.
Collapse
Affiliation(s)
- Devon K. Andres
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Brian M. Keyser
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Ashley A. Melber
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Betty J. Benton
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Tracey A. Hamilton
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Denise M. Kniffin
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Margaret E. Martens
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Radharaman Ray
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| |
Collapse
|
15
|
Sawyer TW, McNeely K, Louis K, Lecavalier P, Song Y, Villanueva M, Clewley R. Comparative toxicity of mono- and bifunctional alkylating homologues of sulphur mustard in human skin keratinocytes. Toxicology 2017; 382:36-46. [DOI: 10.1016/j.tox.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/27/2022]
|
16
|
Jugg BJA, Hoard-Fruchey H, Rothwell C, Dillman JF, David J, Jenner J, Sciuto AM. Acute Gene Expression Profile of Lung Tissue Following Sulfur Mustard Inhalation Exposure in Large Anesthetized Swine. Chem Res Toxicol 2016; 29:1602-1610. [DOI: 10.1021/acs.chemrestox.6b00069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Heidi Hoard-Fruchey
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - Cristin Rothwell
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - James F. Dillman
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| | - Jonathan David
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire SP4
0JQ, U.K
| | - John Jenner
- CBR Division, Dstl Porton Down, Salisbury, Wiltshire SP4
0JQ, U.K
| | - Alfred M. Sciuto
- US Army Medical Research Institute of Chemical Defense, 2900 Ricketts Point Road, Aberdeen Proving
Ground, Maryland 21010, United States
| |
Collapse
|
17
|
Liu F, Jiang N, Xiao ZY, Cheng JP, Mei YZ, Zheng P, Wang L, Zhang XR, Zhou XB, Zhou WX, Zhang YX. Effects of poly (ADP-ribose) polymerase-1 (PARP-1) inhibition on sulfur mustard-induced cutaneous injuries in vitro and in vivo. PeerJ 2016; 4:e1890. [PMID: 27077006 PMCID: PMC4830333 DOI: 10.7717/peerj.1890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 01/13/2023] Open
Abstract
Early studies with first-generation poly (ADP-ribose) polymerase (PARP) inhibitors have already indicated some therapeutic potential for sulfur mustard (SM) injuries. The available novel and more potential PARP inhibitors, which are undergoing clinical trials as drugs for cancer treatment, bring it back to the centre of interest. However, the role of PARP-1 in SM-induced injury is not fully understood. In this study, we selected a high potent specific PARP inhibitor ABT-888 as an example to investigate the effect of PARP inhibitor in SM injury. The results showed that in both the mouse ear vesicant model (MEVM) and HaCaT cell model, PARP inhibitor ABT-888 can reduce cell damage induced by severe SM injury. ABT-888 significantly reduced SM induced edema and epidermal necrosis in MEVM. In the HaCaT cell model, ABT-888 can reduce SM-induced NAD(+)/ATP depletion and apoptosis/necrosis. Then, we studied the mechanism of PARP-1 in SM injury by knockdown of PARP-1 in HaCaT cells. Knockdown of PARP-1 protected cell viability and downregulated the apoptosis checkpoints, including p-JNK, p-p53, Caspase 9, Caspase 8, c-PARP and Caspase 3 following SM-induced injury. Furthermore, the activation of AKT can inhibit autophagy via the regulation of mTOR. Our results showed that SM exposure could significantly inhibit the activation of Akt/mTOR pathway. Knockdown of PARP-1 reversed the SM-induced suppression of the Akt/mTOR pathway. In summary, the results of our study indicated that the protective effects of downregulation of PARP-1 in SM injury may be due to the regulation of apoptosis, necrosis, energy crisis and autophagy. However, it should be noticed that PARP inhibitor ABT-888 further enhanced the phosphorylation of H2AX (S139) after SM exposure, which indicated that we should be very careful in the application of PARP inhibitors in SM injury treatment because of the enhancement of DNA damage.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Zhi-Yong Xiao
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jun-Ping Cheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yi-Zhou Mei
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Pan Zheng
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Li Wang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xiao-Rui Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Xin-Bo Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
18
|
Luo SW, Xie FX, Liu Y, Wang WN. Characterization and expression analysis of Calmodulin (CaM) in orange-spotted grouper (Epinephelus coioides) in response to Vibrio alginolyticus challenge. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1775-1787. [PMID: 25956977 DOI: 10.1007/s10646-015-1467-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Vibrio alginolyticus containing the highly toxic extracellular product is one of the most serious threats to grouper survival and its minimum lethal dose is approximately 500 CFU/g fish body weight in grouper. To study the toxic effects of V. alginolyticus on the immune system in teleost, Calmodulin (CaM), an important molecular indicator gene, was cloned from the orange-spotted grouper (Epinephelus coioides). The full-length Ec-CaM consisted of a 5'-UTR of 103 bp, an ORF of 450 bp and a 3'-UTR of 104 bp. The Ec-CaM gene encoded a protein of 149 amino acids with an estimated molecular mass of 16.4 kDa and a predicted isoelectric point of 3.93. The deduced amino acid sequence showed that Ec-CaM contained four highly conserved EF-hand domains known to be critical for the function of CaM. Ec-CaM was widely expressed and the highest expression level was observed in liver. Following V. alginolyticus challenge, a sharp increase level of respiratory burst activity and apoptosis ratio were observed. Further analyses of CaM expression and p53 expression in liver, kidney and spleen by qRT-PCR demonstrated that the up-regulated expression of CaM and p53 were observed in the vibrio challenge group. Western blotting analysis confirmed that the Ec-CaM protein was strongly induced in liver at 12 h post-injection, while a sharp increase of p53 protein expression was observed at 24 h post-injection. These results showed CaM expression serving as a potential molecular indicator may help to assess the toxicological effects of V. alginolyticus on the ROS generation and apoptotic process in grouper.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Fu-Xing Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
19
|
Deppe J, Steinritz D, Santovito D, Egea V, Schmidt A, Weber C, Ries C. Upregulation of miR-203 and miR-210 affect growth and differentiation of keratinocytes after exposure to sulfur mustard in normoxia and hypoxia. Toxicol Lett 2015; 244:81-87. [PMID: 26383628 DOI: 10.1016/j.toxlet.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Exposure of the skin to sulfur mustard (SM) results in long-term complications such as impaired tissue regeneration. Previous own studies in normal human epidermal keratinocytes (NHEK) treated with SM demonstrated reduced proliferation, premature differentiation and a restricted functionality of hypoxia-mediated signaling in the cells. Here, we investigated the involvement of microRNAs, miR-203 and miR-210, in these mechanisms. SM significantly upregulated the expression of miR-203 in NHEK when cultivated under normoxic and hypoxic conditions. SM had no effect on miR-210 under normoxia. However, miR-210 levels were greatly increased in NHEK when grown in hypoxia and further elevated upon exposure of the cells to SM. In normoxia and hypoxia, inhibition of miR-203 by transfection of NHEK with complementary oligonucleotides, anti-miR-203, attenuated the SM-induced impairment of metabolic activity and proliferation, and counteracted SM-promoted keratin-1 expression in these cells. Consistent ameliorating effects on dysregulated metabolic activity, proliferation and keratin-1 expression in SM-treated NHEK were obtained upon inhibition of miR-210 in these cells grown in hypoxia. Our findings provide evidence that miR-203 and miR-210 are key regulators in normal and SM-impaired keratinocyte functionality, and suggest potential usefulness of inhibitors against miR-203 and miR-210 for target-directed therapeutical intervention to improve re-epithelialization of SM-injured skin.
Collapse
Affiliation(s)
- Janina Deppe
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, G. d'Annunzio University, 66100 Chieti, Italy
| | - Virginia Egea
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Ries
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
20
|
Debiak M, Lex K, Ponath V, Burckhardt-Boer W, Thiermann H, Steinritz D, Schmidt A, Mangerich A, Bürkle A. Immunochemical analysis of poly(ADP-ribosyl)ation in HaCaT keratinocytes induced by the mono-alkylating agent 2-chloroethyl ethyl sulfide (CEES): Impact of experimental conditions. Toxicol Lett 2015; 244:72-80. [PMID: 26383632 DOI: 10.1016/j.toxlet.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Sulfur mustard (SM) is a bifunctional alkylating agent with a long history of use as a chemical weapon. Although its last military use is dated for the eighties of the last century, a potential use in terroristic attacks against civilians remains a significant threat. Thus, improving medical therapy of mustard exposed individuals is still of particular interest. PARP inhibitors were recently brought into the focus as a potential countermeasure for mustard-induced pathologies, supported by the availability of efficient compounds successfully tested in cancer therapy. PARP activation after SM treatment was reported in several cell types and tissues under various conditions; however, a detailed characterization of this phenomenon is still missing. This study provides the basis for such studies by developing and optimizing experimental conditions to investigate poly(ADP-ribosyl)ation (PARylation) in HaCaT keratinocytes upon treatment with the monofunctional alkylating agent 2-chloroethyl ethyl sulfide ("half mustard", CEES). By using an immunofluorescence-based approach, we show that optimization of experimental conditions with regards to the type of solvent, dilution factors and treatment procedure is essential to obtain a homogenous PAR staining in HaCaT cell cultures. Furthermore, we demonstrate that different CEES treatment protocols significantly influence the cytotoxicity profiles of treated cells. Using an optimized treatment protocol, our data reveals that CEES induces a dose- and time-dependent dynamic PARylation response in HaCaT cells that could be completely blocked by treating cells with the clinically relevant pharmacological PARP inhibitor ABT888 (also known as veliparib). Finally, siRNA experiments show that CEES-induced PAR formation is predominantly due to the activation of PARP1. In conclusion, this study provides a detailed analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to study the molecular mechanism of PARP1 activation and its functional consequences after mustard treatment in general. Such a study is presented in an accompanying article (Mangerich et al., 2016).
Collapse
Affiliation(s)
- Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
21
|
Mangerich A, Debiak M, Birtel M, Ponath V, Balszuweit F, Lex K, Martello R, Burckhardt-Boer W, Strobelt R, Siegert M, Thiermann H, Steinritz D, Schmidt A, Bürkle A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 2015; 244:56-71. [PMID: 26383629 DOI: 10.1016/j.toxlet.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of N7-ETE-guanine DNA adducts, the excision rate of CEES-induced DNA adducts was not affected by PARP inhibition. Furthermore, while CEES induced moderate changes in cellular NAD(+) levels, annexin V/PI flow cytometry analysis revealed that these changes did not affect CEES-induced short-term cytotoxicity 24h after treatment. In contrast, PARP inhibition impaired cell proliferation and clonogenic survival, and potentiated micronuclei formation of HaCaT cells upon CEES treatment. Similarly, PARP inhibition affected clonogenic survival of cells treated with bi-functional mustards such as SM and HN2. In conclusion, we demonstrate that PARylation plays a functional role in mustard-induced cellular stress response with substance-specific differences. Since PARP inhibitors exhibit therapeutic potential to treat SM-related pathologies and to sensitize cancer cells for mustard-based chemotherapy, potential long-term effects of PARP inhibition on genomic stability and carcinogenesis should be carefully considered when pursuing such a strategy.
Collapse
Affiliation(s)
- Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Matthias Birtel
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Frank Balszuweit
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Rita Martello
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
22
|
Kumar D, Tewari-Singh N, Agarwal C, Jain AK, Inturi S, Kant R, White CW, Agarwal R. Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators. Toxicol Lett 2015; 235:161-71. [PMID: 25891025 DOI: 10.1016/j.toxlet.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA.
| |
Collapse
|
23
|
Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin. Toxicol Appl Pharmacol 2015; 285:71-8. [PMID: 25791923 DOI: 10.1016/j.taap.2015.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 01/12/2023]
Abstract
Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.
Collapse
|
24
|
Zhu XJ, Xu R, Meng X, Chu HB, Zhao C, Lian CJ, Wang T, Guo WJ, Zhang SM. Mechanistic Insights of Sulfur Mustard-Induced Acute Tracheal Injury in Rats. Int J Toxicol 2014; 33:382-92. [PMID: 25163474 DOI: 10.1177/1091581814548730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sulfur mustard (SM) is believed to be a major threat to civilian populations because of the persistent asymmetric threat by nonstate actors, such as terrorist groups, the ease of synthesis and handling, and the risk of theft from stockpiles. The purpose of this study was to establish mechanisms of acute tracheal injury in rats induced by SM using histopathologic, immunohistochemical, and biochemical parameters. Male rats (Sprague-Dawley) were anesthetized, intratracheally intubated, and exposed to 2 mg/kg of SM. Animals were euthanized 6-, 24-, 48-, and 72-hour postexposure, and intracavitary blood samples from the heart and tracheal tissues were collected. Exposure of rats to SM resulted in rapid tracheal injury, including tracheal epithelial cell shedding, focal ulceration, and abundant lymphocyte invasion of the submucosa. There was also evidence of a large number of apoptotic cells in the epithelium and submucosa, the serum levels of tumor necrosis factor α, interleukin 1β (IL) 1β, IL-6, and γ-glutamyl transferase peaked at 24 hours, and the serum levels of lactate dehydrogenase, glutathione peroxidase, and thiobarbituric acid reactive substance peaked at 6 hours. The SM exposure also resulted in a loss of the cellular membrane, leakage of cytoplasm, fuzzy mitochondrial cristae, medullary changes in ciliated and goblet cells, and the nuclear chromatin appeared marginated in basal cells and fibroblasts. The results in the propylene glycol group were the same as the control group. These data demonstrated the histologic changes, inflammatory reactions, apoptosis, oxidative stress, and DNA damage following SM (2 mg/kg)-induced acute tracheal injury; the severity of changes was time dependent.
Collapse
Affiliation(s)
- Xiao-Ji Zhu
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Rui Xu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Xiao Meng
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Hai-Bo Chu
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Chao Zhao
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Cheng-Jin Lian
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Tao Wang
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Wen-Jun Guo
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Sheng-Ming Zhang
- Department of Electron Microscope, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Chang YC, Wang JD, Hahn RA, Gordon MK, Joseph LB, Heck DE, Heindel ND, Young SC, Sinko PJ, Casillas RP, Laskin JD, Laskin DL, Gerecke DR. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard. Toxicol Appl Pharmacol 2014; 280:236-44. [PMID: 25127551 DOI: 10.1016/j.taap.2014.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023]
Abstract
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.
Collapse
Affiliation(s)
- Yoke-Chen Chang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - James D Wang
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Rita A Hahn
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Marion K Gordon
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Laurie B Joseph
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, NY, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, PA, United States
| | - Patrick J Sinko
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | | | - Jeffrey D Laskin
- Environmental & Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
26
|
Keyser BM, Andres DK, Holmes WW, Paradiso D, Appell A, Letukas VA, Benton B, Clark OE, Gao X, Ray P, Anderson DR, Ray R. Mustard Gas Inhalation Injury. Int J Toxicol 2014; 33:271-281. [DOI: 10.1177/1091581814532959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mustard gas (sulfur mustard [SM], bis-[2-chloroethyl] sulfide) is a vesicating chemical warfare agent and a potential chemical terrorism agent. Exposure of SM causes debilitating skin blisters (vesication) and injury to the eyes and the respiratory tract; of these, the respiratory injury, if severe, may even be fatal. Therefore, developing an effective therapeutic strategy to protect against SM-induced respiratory injury is an urgent priority of not only the US military but also the civilian antiterrorism agencies, for example, the Homeland Security. Toward developing a respiratory medical countermeasure for SM, four different classes of therapeutic compounds have been evaluated in the past: anti-inflammatory compounds, antioxidants, protease inhibitors and antiapoptotic compounds. This review examines all of these different options; however, it suggests that preventing cell death by inhibiting apoptosis seems to be a compelling strategy but possibly dependent on adjunct therapies using the other drugs, that is, anti-inflammatory, antioxidant, and protease inhibitor compounds.
Collapse
Affiliation(s)
- Brian M. Keyser
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Devon K. Andres
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Wesley W. Holmes
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Danielle Paradiso
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Ashley Appell
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Valerie A. Letukas
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Betty Benton
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Offie E. Clark
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Xiugong Gao
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Prabhati Ray
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dana R. Anderson
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Radharaman Ray
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
27
|
Treatment of sulphur mustard skin injury. Chem Biol Interact 2013; 206:491-5. [DOI: 10.1016/j.cbi.2013.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
|
28
|
Batal M, Boudry I, Mouret S, Wartelle J, Emorine S, Bertoni M, Bérard I, Cléry-Barraud C, Douki T. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin. Toxicol Appl Pharmacol 2013; 273:644-50. [PMID: 24141030 DOI: 10.1016/j.taap.2013.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 11/28/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM-DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM-DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker.
Collapse
Affiliation(s)
- Mohamed Batal
- Laboratoire «Lésions des Acides Nucléiques», Université Joseph Fourier - Grenoble 1, CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lulla A, Pino MA, Piętka-Ottlik M, Młochowski J, Sparavalo O, Billack B. Ebselen Reduces the Toxicity of Mechlorethamine in A-431 Cells via Inhibition of Apoptosis. J Biochem Mol Toxicol 2013; 27:313-22. [DOI: 10.1002/jbt.21490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Anju Lulla
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences, St. John's University; Jamaica; NY; 11439; USA
| | - Maria A. Pino
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences, St. John's University; Jamaica; NY; 11439; USA
| | - Magdalena Piętka-Ottlik
- Department of Organic Technology; Faculty of Chemistry, Wrocław University of Technology; PL 50-370 Wrocław; Poland
| | - Jacek Młochowski
- Department of Organic Chemistry; Faculty of Chemistry, Wrocław University of Technology; PL 50-370 Wrocław; Poland
| | - Oleksiy Sparavalo
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences, St. John's University; Jamaica; NY; 11439; USA
| | - Blase Billack
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences, St. John's University; Jamaica; NY; 11439; USA
| |
Collapse
|
30
|
Keyser BM, Andres DK, Nealley E, Holmes WW, Benton B, Paradiso D, Appell A, Carpin C, Anderson DR, Smith WJ, Ray R. Postexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach. J Pharmacol Exp Ther 2013; 344:308-16. [PMID: 23129783 DOI: 10.1124/jpet.112.199935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sulfur mustard (SM) is a vesicant chemical warfare and terrorism agent. Besides skin and eye injury, respiratory damage has been mainly responsible for morbidity and mortality after SM exposure. Previously, it was shown that suppressing the death receptor (DR) response by the dominant-negative Fas-associated death domain protein prior to SM exposure blocked apoptosis and microvesication in skin. Here, we studied whether antagonizing the Fas receptor (FasR) pathway by small-interfering RNA (siRNA) applied after SM exposure would prevent apoptosis and, thus, airway injury. Normal human bronchial/tracheal epithelial (NHBE) cells were used as an in vitro model with FasR siRNA, FasR agonistic antibody CH11, and FasR antagonistic antibody ZB4 as investigative tools. In NHBE cells, both SM (300 µM) and CH11 (100 ng/ml) induced caspase-3 activation, which was inhibited by FasR siRNA and ZB4, indicating that SM-induced apoptosis was via the Fas response. FasR siRNA inhibited SM-induced caspase-3 activation when added to NHBE cultures up to 8 hours after SM. Results using annexin V/propidium iodide-stained cells showed that both apoptosis and necrosis were involved in cell death due to SM; FasR siRNA decreased both apoptotic and necrotic cell populations. Bronchoalveolar lavage fluid (BALF) of rats exposed to SM (1 mg/kg, 50 minutes) revealed a significant (P < 0.05) increase in soluble Fas ligand and active caspase-3 in BALF cells. These findings suggest an intervention of Fas-mediated apoptosis as a postexposure therapeutic strategy with a therapeutic window for SM inhalation injury and possibly other respiratory diseases involving the Fas response.
Collapse
Affiliation(s)
- Brian M Keyser
- Cellular and Molecular Biology Branch, U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sahebkar A. Baicalin as a potentially promising drug for the management of sulfur mustard induced cutaneous complications: a review of molecular mechanisms. Cutan Ocul Toxicol 2012; 31:226-234. [PMID: 22107027 DOI: 10.3109/15569527.2011.633950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM) is a bifunctional alkylating agent with strong blistering, irritant, mutagenic and cytotoxic properties. SM has been widely deployed as a chemical warfare agent for over a century, leading to extensive casualties. Skin is among the first and most heavily damaged organs upon SM exposure. Unfortunately, a considerable fraction of SM-intoxicated patients are still suffering from chronic cutaneous complications. While these complications adversely affect patients' quality of life, there is as yet no ideal treatment for them and therapeutic options are limited and mainly symptomatic. During recent decades, remarkable progress has been made in understanding molecular mechanisms underlying SM-induced dermatotoxicity and several intra- and extracellular targets have been identified. This review argues that baicalin, a bioactive flavonoid from the roots of Scutellaria spp., could counteract different molecular and biochemical abnormalities that mediate SM dermatotoxicity and could therefore be regarded as a promising therapeutic option for the management of SM-induced cutaneous lesions.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.
| |
Collapse
|
32
|
Weibrecht K, Rhyee S, Manuell ME, Longo C, Boyer EW, Brush E. Sulfur Mustard Exposure Presenting to a Community Emergency Department. Ann Emerg Med 2012; 59:70-4. [DOI: 10.1016/j.annemergmed.2011.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
|
33
|
Ghanei M, Harandi AA. Molecular and cellular mechanism of lung injuries due to exposure to sulfur mustard: a review. Inhal Toxicol 2011; 23:363-371. [PMID: 21639706 DOI: 10.3109/08958378.2011.576278] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sulfur mustard (SM), a potent chemical weapon agent, was used by Iraqi forces against Iranian in the Iraq-Iran war (1981-1989). Chronic obstructive pulmonary disease (COPD) is a late toxic pulmonary consequence after SM exposure. The COPD observed in these patients is unique (described as Mustard Lung) and to some extent different from COPD resulted from other well-known causes. Several mechanisms have been hypothesized to contribute to the pathogenesis of COPD including oxidative stress, disruption of the balance between apoptosis and replenishment, proteinase-antiproteinase imbalance and inflammation. However, it is not obvious which of these pathways are relevant to the pathogenesis of mustard lung. In this paper, we reviewed studies addressing the pathogenicity of mustard lung, and reduced some recent ambiguities in this field. There is ample evidence in favor of crucial role of both oxidative stress and apoptosis as two known mechanisms that are more involved in pathogenesis of mustard lung comparing to COPD. However, according to available evidences there are no such considerable data supporting neither proteolytic activity nor inflammation mechanism as the main underlying pathogenesis in Mustard Lung.
Collapse
Affiliation(s)
- Mostafa Ghanei
- Research Center of Chemical Injuries, Baqiyatallah Medical Sciences University, Tehran, Iran.
| | | |
Collapse
|
34
|
Anand T, Vijayaraghavan R, Rao PVL, Bansal I, Bhattacharya BK. Attenuation of sulfur mustard toxicity by S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) in mouse liver. Toxicol Mech Methods 2011; 21:596-605. [PMID: 21554084 DOI: 10.3109/15376516.2011.576713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sulfur mustard (SM) (bis-(2-chloroethyl) sulfide) is a chemical warfare agent. Evaluation of toxicity and protective effect of DRDE-07 (S-2(2-aminoethylamino)ethyl phenyl sulfide) was studied in mouse liver after SM challenging. Female mice were given orally 0.2 LD(50) of DRDE-07 (249 mg/kg body weight) and exposed percutaneously with 1.0 LD(50) of SM (8.1 mg/kg body weight). Gene expression profiles were determined using global genome microarray analysis at 3 days post-exposure. DRDE-07 alone treated animal showed significant upregulation to metabolism of xenobiotics by cytochrome P450 pathways. Genes related to cell adhesion molecules (CAMs), were downregulated. DRDE-07 pretreated SM exposed animals showed upregulation of xenobiotic cytochrome P450 pathway genes. Antigen presenting, cell adhesion molecules, cytokine, cytokine receptor metabolism, fatty acid metabolism, glutathione metabolism, cell cycle signaling pathway genes showed downregulation. The present study showed that SM-induced toxicity in mouse liver was attenuated by the pretreatment with DRDE-07.
Collapse
Affiliation(s)
- T Anand
- Defence R & D Establishment, Gwalior, India.
| | | | | | | | | |
Collapse
|
35
|
Popp T, Egea V, Kehe K, Steinritz D, Schmidt A, Jochum M, Ries C. Sulfur mustard induces differentiation in human primary keratinocytes: opposite roles of p38 and ERK1/2 MAPK. Toxicol Lett 2011; 204:43-51. [PMID: 21524694 DOI: 10.1016/j.toxlet.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 02/03/2023]
Abstract
The chemical warfare agent sulfur mustard (SM) severely affects the regeneration capacity of skin. The underlying molecular and cellular mechanisms, however, are far from clear. Here, we demonstrate that normal human epidermal keratinocytes (NHEK) after exposure to SM strongly upregulated expression of keratin-1, involucrin, and loricrin, thus indicating premature epidermal differentiation. Furthermore, proliferation was repressed after treatment with SM. Analysis of intracellular signaling in NHEK revealed that SM enhances phosphorylation, nuclear translocation, and activity of the mitogen-activated protein kinases (MAPK) p38 and ERK1/2. Inhibition of p38 activity downregulated expression of keratin-1 and loricrin, whereas blockage of ERK1/2 significantly stimulated biosynthesis of these markers, pointing to opposite roles of p38 and ERK1/2 in the differentiation process. Simultaneous interruption of p38 and ERK1/2 activity led to a decreased expression of keratin-1 and loricrin. This suggests that NHEK differentiation is essentially controlled by p38 activity which may be negatively influenced by ERK1/2 activity. Functional analysis demonstrated that SM affects NHEK in their ability to migrate through extracellular matrix which can be rescued upon application of an inhibitor of p38 activity. Thus, our findings indicate that SM triggers premature differentiation in keratinocytes via p38 activity which may contribute to impaired regeneration of SM-injured skin.
Collapse
Affiliation(s)
- Tanja Popp
- Division of Clinical Chemistry and Clinical Biochemistry, Ludwig-Maximilians-University of Munich, Nussbaumstrasse 20, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Paromov V, Brannon M, Kumari S, Samala M, Qui M, Smith M, Stone WL. Sodium Pyruvate Modulates Cell Death Pathways in HaCaT Keratinocytes Exposed to Half-Mustard Gas. Int J Toxicol 2011; 30:197-206. [DOI: 10.1177/1091581810390824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.
Collapse
Affiliation(s)
- Victor Paromov
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Marianne Brannon
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Sudha Kumari
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mallikarjun Samala
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Min Qui
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - William L. Stone
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
37
|
TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J Invest Dermatol 2011; 131:874-83. [PMID: 21248767 DOI: 10.1038/jid.2010.402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cornification, the terminal differentiation of keratinocytes, is a special form of programmed cell death in the skin. In this article, we report that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce the expression of the keratinocyte differentiation markers involucrin and type 1 transglutaminase in normal human epidermal keratinocytes. The induction of differentiation occurs mainly under the activation of caspases 3 and 8, and apoptosis can also be triggered. Inhibition of these apoptotic caspases attenuates both apoptosis and differentiation of keratinocytes caused by TRAIL but barely affects the induction of differentiation caused by calcium and phorbol 12-myristate 13-acetate. Differential regulation of extracellular signal-regulated kinase and p38 activation by TRAIL is also observed. Moreover, the degradation of p63 is induced by TRAIL-elicited caspase activation. However, the existence of p63 is essential for the initiation of keratinocyte differentiation by TRAIL because knockdown of ΔNp63 decreases TRAIL-induced differentiation. Taken together, our results suggest that TRAIL can be an inducer of both differentiation and apoptosis in human keratinocytes, and that caspases critically mediate these processes. This study identifies a new role of apoptotic caspases for terminal differentiation of keratinocytes and further elucidates the molecular pathways involved in this unique model of cell death.
Collapse
|
38
|
The Role of Fas-FasL Signaling Pathway in Induction of Apoptosis in Patients with Sulfur Mustard-Induced Chronic Bronchiolitis. J Toxicol 2011; 2010:373612. [PMID: 21317984 PMCID: PMC3026972 DOI: 10.1155/2010/373612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/16/2010] [Indexed: 11/18/2022] Open
Abstract
Sulfur mustard (SM) is an alkylating agent that induces apoptosis and necrosis in cells. Fas-Fas ligand (FasL) interaction could induce apoptosis as well. In this study, it was hypothesized that apoptosis might play an important role in the pathogenesis of SM-induced lung injury via Fas-FasL signaling pathway. In a case-control study, Fas and FasL levels, caspase-3 activity and percent of apoptotic cells were measured in bronchoalveolar lavage (BAL) fluid of patients 20 years after exposure to sulfur mustard and compared with the control group.
Results show that Fas and FasL levels were significantly higher in BAL fluid cells in patients group compared with the control (P = .001). No significant differences were observed between mild and moderate-severe groups. BAL fluid cells caspase-3 activity was not significantly different among the mild, moderate-severe, and control groups. The data suggest that Fas-FasL-induced apoptosis was impaired in BAL fluid cells of SM-exposed patients which might be one of the initiators of pathogenesis in SM-induced lung injury in these patients.
Collapse
|
39
|
Emadi SN, Kaffashi M, Poursaleh Z, Akhavan-Moghaddam J, Soroush MR, Emadi SE, Taghavi NOS. Sulfur mustard-induced poikiloderma: A case report. Cutan Ocul Toxicol 2010; 30:170-4. [DOI: 10.3109/15569527.2010.539585] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Ionic dependence of sulphur mustard cytotoxicity. Toxicol Appl Pharmacol 2010; 247:179-90. [PMID: 20600214 DOI: 10.1016/j.taap.2010.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/27/2010] [Accepted: 06/14/2010] [Indexed: 01/09/2023]
Abstract
The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC(50) values of approximately 100-150 microM when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.
Collapse
|
41
|
Ray R, Simbulan-Rosenthal CM, Keyser BM, Benton B, Anderson D, Holmes W, Trabosh VA, Daher A, Rosenthal DS. Sulfur mustard induces apoptosis in lung epithelial cells via a caspase amplification loop. Toxicology 2010; 271:94-9. [DOI: 10.1016/j.tox.2010.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/25/2022]
|
42
|
Ruff AL, Dillman JF. Sulfur mustard induced cytokine production and cell death: Investigating the potential roles of the p38, p53, and NF-κB signaling pathways with RNA interference. J Biochem Mol Toxicol 2010; 24:155-64. [DOI: 10.1002/jbt.20321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Jafari M, Nateghi M, Rabbani A. Interaction of sulfur mustard with rat liver salt fractionated chromatin. Int J Biol Macromol 2010; 46:104-8. [DOI: 10.1016/j.ijbiomac.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/27/2009] [Accepted: 10/03/2009] [Indexed: 11/29/2022]
|
44
|
Rapid simultaneous determination of apoptosis, necrosis, and viability in sulfur mustard exposed HaCaT cell cultures. Toxicol Lett 2009; 191:260-7. [DOI: 10.1016/j.toxlet.2009.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 11/17/2022]
|
45
|
Anand T, Vijayaraghavan R, Bansal I, Bhattacharya BK. Role of inflammatory cytokines and DNA damage repair proteins in sulfur mustard exposed mice liver. Toxicol Mech Methods 2009; 19:356-62. [PMID: 19778212 DOI: 10.1080/15376510902903766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (bis-(2-chloroethyl) sulfide) is an alkylating agent, and produces blisters on skin and causes systemic toxicity and DNA strand breaks. The mechanism and role of inflammatory cytokines, receptors, and DNA damage signaling pathway specific genes were studied in sulfur mustard (SM) exposed mouse liver. Female mice were exposed percutaneously with 1.0 L.D50 of SM (8.1 mg/kg body weight). Inflammatory cytokine gene expression profiles were determined at 1 and 3 days post-exposure to SM and DNA damage signaling pathway specific, double strand break repair proteins gene expression profile at 1, 3, and 7 days were examined by DNA microarrays and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Anti-inflammatory cytokines and receptors were down-regulated from day 1 to day 3. Pro-inflammatory genes TNF-alpha, TNF receptors were up-regulated from day 1 to day 3. Double strand DNA break repair proteins Rad23, Rad50, Rad51, Rad52, and Rad54l were down-regulated from day 1 to day 7. This result indicates sulfur mustard causes inflammatory response, activates the cascade of events in the signal transduction pathway, and promotes irreversible double strand DNA breaks in chromosomal DNA, which is leading to cell death.
Collapse
Affiliation(s)
- T Anand
- Defence Research & Development Establishment, Gwalior, India.
| | | | | | | |
Collapse
|
46
|
Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin DL, Laskin JD. Mechanisms mediating the vesicant actions of sulfur mustard after cutaneous exposure. Toxicol Sci 2009; 114:5-19. [PMID: 19833738 DOI: 10.1093/toxsci/kfp253] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.
Collapse
Affiliation(s)
- Michael P Shakarjian
- Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology 2009; 263:12-9. [DOI: 10.1016/j.tox.2009.01.019] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 02/07/2023]
|
48
|
Kehe K, Thiermann H, Balszuweit F, Eyer F, Steinritz D, Zilker T. Acute effects of sulfur mustard injury—Munich experiences. Toxicology 2009; 263:3-8. [DOI: 10.1016/j.tox.2009.04.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
49
|
Steinritz D, Elischer A, Balszuweit F, Gonder S, Heinrich A, Bloch W, Thiermann H, Kehe K. Sulphur mustard induces time- and concentration-dependent regulation of NO-synthesizing enzymes. Toxicol Lett 2009; 188:263-9. [DOI: 10.1016/j.toxlet.2009.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 02/07/2023]
|
50
|
Ghasemi H, Ghazanfari T, Yaraee R, Soroush MR, Ghassemi-Broumand M, Poorfarzam S, Babaei M, Javadi MA, Owlia P, Amiri S, Hassan ZM, Faghihzadeh S. Systemic and ocular complications of sulfur mustard: A panoramic review. TOXIN REV 2009. [DOI: 10.1080/15569540802689279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|