1
|
Development of an Aged Full-Thickness Skin Model Using Flexible Skin-on-a-Chip Subjected to Mechanical Stimulus Reflecting the Circadian Rhythm. Int J Mol Sci 2021; 22:ijms222312788. [PMID: 34884594 PMCID: PMC8657468 DOI: 10.3390/ijms222312788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
The skin is subject to both intrinsic aging caused by metabolic processes in the body and extrinsic aging caused by exposure to environmental factors. Intrinsic aging is an important obstacle to in vitro experimentation as its long-term progression is difficult to replicate. Here, we accelerated aging of a full-thickness skin equivalent by applying periodic mechanical stimulation, replicating the circadian rhythm for 28 days. This aging skin model was developed by culturing a full-thickness, three-dimensional skin equivalent with human fibroblasts and keratinocytes to produce flexible skin-on-a-chip. Accelerated aging associated with periodic compressive stress was evidenced by reductions in the epidermal layer thickness, contraction rate, and secretion of Myb. Increases in β-galactosidase gene expression and secretion of reactive oxygen species and transforming growth factor-β1 were also observed. This in vitro aging skin model is expected to greatly accelerate drug development for skin diseases and cosmetics that cannot be tested on animals.
Collapse
|
2
|
Dingwell LS, Shikatani EA, Besla R, Levy AS, Dinh DD, Momen A, Zhang H, Afroze T, Chen MB, Chiu F, Simmons CA, Billia F, Gommerman JL, John R, Heximer S, Scholey JW, Bolz SS, Robbins CS, Husain M. B-Cell Deficiency Lowers Blood Pressure in Mice. Hypertension 2019; 73:561-570. [DOI: 10.1161/hypertensionaha.118.11828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luke S. Dingwell
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
| | - Eric A. Shikatani
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Rickvinder Besla
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Andrew S. Levy
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Danny D. Dinh
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Abdul Momen
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Hangjun Zhang
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - Talat Afroze
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | - Michelle B. Chen
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Felix Chiu
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Filio Billia
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
| | | | - Rohan John
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
| | - Scott Heximer
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| | - James W. Scholey
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Mechanical and Industrial Engineering (M.B.C., C.A.S.), University of Toronto, Canada
| | - Clinton S. Robbins
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Immunology (J.L.G., C.S.R.), University of Toronto, Canada
| | - Mansoor Husain
- From the Toronto General Hospital Research Institute, University Health Network, Canada (L.S.D., E.A.S., A.M., T.A., F.B., M.H.)
- Heart and Stroke Richard Lewar Centre of Excellence, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre (L.S.D., E.A.S., C.S.R., M.H.), University of Toronto, Canada
- Department of the Institute of Medical Science (L.S.D., M.H.), University of Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (E.A.S., R.B., F.C., R.J., C.S.R., M.H.), University of Toronto, Canada
- Department of Physiology (A.S.L., D.D.D., H.Z., S.H., J.W.S., S.-S.B., M.H.), University of Toronto, Canada
| |
Collapse
|
3
|
Lee YH, Kim HS, Kim JS, Yu MK, Cho SD, Jeon JG, Yi HK. C-myb Regulates Autophagy for Pulp Vitality in Glucose Oxidative Stress. J Dent Res 2015; 95:430-8. [PMID: 26661713 DOI: 10.1177/0022034515622139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is closely related to oral-complicated diseases by oxidative stress. This study investigates whether cellular myeloblastosis (c-myb) could protect human dental pulp cells against glucose oxidative stress and regulate autophagy activity for pulp vitality. Diabetes mellitus was induced by streptozotocin in Sprague-Dawley rats, and their pulp tissue in teeth was analyzed in terms of pulp cavity and molecules by hematoxylin and eosin and immunohistochemistry staining. Human dental pulp cells were serially subcultured and treated with glucose oxidase in the presence of elevated glucose to generate glucose oxidative stress. The replication-deficient adenovirus c-myb and small interfering RNA c-myb were introduced for c-myb expression. The pulp tissue from the diabetic rats was structurally different from normal tissue in terms of narrow pulp capacity, reduced c-myb, and dentinogenesis molecules. Glucose oxidase treatment decreased c-myb and dentinogenesis molecules (bone morphogenetic protein 2 and 7, dentin matrix protein 1, and dentin sialophosphoprotein) in human dental pulp cells. However, overexpression of c-myb by adenovirus c-myb increased dentinogenesis, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B-light chain 3, and Beclin-1), and cell survival via p-AMPK/AKT signaling even with glucose oxidative stress. In contrast, the lack of c-myb decreased the above molecules and cell survival by downregulating p-AMPK/AKT signaling. The results indicate that diabetes leads to irreversible damage to dental pulp, which is related to downexpression of autophagy via the p-AMPK/AKT pathway by decline of c-myb. The findings of this study provide a new insight that c-myb could ameliorate autophagy activity and that it is applicable for monitoring complicated diseases of dental pulp. The involvement of c-myb in pulp pathology could serve a therapeutic target in oral-complicated diseases.
Collapse
Affiliation(s)
- Y H Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H S Kim
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J S Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - M K Yu
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - S D Cho
- Department of Oral Pathology, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J G Jeon
- Department of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H K Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
4
|
Oralová V, Matalová E, Janečková E, Drobná Krejčí E, Knopfová L, Šnajdr P, Tucker AS, Veselá I, Šmarda J, Buchtová M. Role of c-Myb in chondrogenesis. Bone 2015; 76:97-106. [PMID: 25845979 DOI: 10.1016/j.bone.2015.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/22/2022]
Abstract
The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation.
Collapse
Affiliation(s)
- V Oralová
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - E Matalová
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic; Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - E Janečková
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - E Drobná Krejčí
- Institute of Anatomy, Charles University, Prague, Czech Republic
| | - L Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - P Šnajdr
- Institute of Anatomy, Charles University, Prague, Czech Republic
| | - A S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - I Veselá
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - J Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Buchtová
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Bhattarai G, Lee YH, Lee MH, Yi HK. Gene delivery of c-myb increases bone formation surrounding oral implants. J Dent Res 2013; 92:840-5. [PMID: 23838059 DOI: 10.1177/0022034513497753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone regeneration around titanium (Ti) implants is a relatively slow process. The c-myb transcription factor has been associated with high proliferation and differentiation rates in bone. This study analyzed whether c-myb can enhance new bone surrounding the implant. In vitro overexpressed chitosan-gold nanoparticles conjugated with plasmid DNA/c-myb (Ch-GNPs/c-myb)-coated Ti surfaces were associated with enhanced expression of the osteogenic molecules osteopontin (OPN), runt-related transcription factor 2 (RUNX-2), and bone morphogenetic proteins (BMP2/7) in MC-3T3E1 osteoblast cells. Further, to determine its in vivo effect, we inserted Ch-GNPs/c-myb-coated Ti implants into rat mandibles. One and 4 wks post-implantation, mandibles were examined by microcomputed tomography, immunohistochemistry, and hematoxylin & eosin staining. The microcomputed tomography analysis demonstrated that c-myb overexpression increased the density and volume of newly formed bone surrounding the implants, compared with those in controls (p < .05). Further, c-myb increased the number of cells expressing BMP2/7 and aided in the increase of new bone (p < .05). These results support the view that c-myb overexpression accelerates new bone surrounding implants and can serve as a potent molecule in promoting tissue regeneration around dental implants. The recipient rat used in this system provides an excellent in vivo model for studies of bone regeneration.
Collapse
Affiliation(s)
- G Bhattarai
- Department of Oral Biochemistry, BK21 program, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | | | | | | |
Collapse
|
6
|
|
7
|
Kopecki Z, Luchetti MM, Adams DH, Strudwick X, Mantamadiotis T, Stoppacciaro A, Gabrielli A, Ramsay RG, Cowin AJ. Collagen loss and impaired wound healing is associated with c-Myb deficiency. J Pathol 2007; 211:351-61. [PMID: 17152050 DOI: 10.1002/path.2113] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Collagen type I serves as an abundant structural and signalling component of skin. It is also an established target gene of the transcription factor, c-Myb. When c-myb-/- embryos were examined it was observed that their skin was markedly thinner than normal. Importantly, immunohistochemical investigation showed complete absence of collagen type I. Although these homozygous knock-out embryos fail to develop beyond day 15, fibroblasts established from these embryos (mouse embryonic fibroblasts [MEFs]) show defective proliferative responses. Furthermore, in vitro scratch wound assays demonstrated that these c-myb-/- MEFs also exhibit slower closure than their wild-type counterparts. Embryonic lethality has meant that examination of the role of c-Myb in adult mouse skin has not been reported to date. However, in view of the abundance of collagen type I in normal skin, its role in skin integrity and the in vitro data showing proliferative and migration defects in c-myb-/- MEFs, we investigated the consequences of heterozygous c-myb loss in adult mice on the complex process of skin repair in response to injury. Our studies clearly demonstrate that heterozygous c-myb deficiency has a functional effect on wound repair, collagen type I levels and, in response to wounding, transforming growth factor-beta1 (an important collagen stimulating factor) induction expression is aberrantly high. Manipulation of c-Myb may therefore provide new therapeutic opportunities for improving wound repair while uncontrolled expression may underpin some fibrotic disorders.
Collapse
Affiliation(s)
- Z Kopecki
- Child Health Research Institute, North Adelaide, South Australia and School of Pharmacy and Medical Sciences, University of South Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Svegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, Discepoli G, Paterno R, Santillo M, Cuozzo C, Cassano S, Avvedimento EV, Gabrielli A. Platelet-derived Growth Factor and Reactive Oxygen Species (ROS) Regulate Ras Protein Levels in Primary Human Fibroblasts via ERK1/2. J Biol Chem 2005; 280:36474-82. [PMID: 16081426 DOI: 10.1074/jbc.m502851200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease.
Collapse
Affiliation(s)
- Silvia Svegliati
- Istituto di Clinica Medica Generale, Ematologia ed Immunologia Clinica, Universita' di Ancona, 60020 Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Pulmonary fibrosis occurs in up to 70% of scleroderma patients and progresses to cause severe restrictive lung disease in about 15% of patients. The mechanisms that cause pulmonary fibrosis in scleroderma remain incompletely understood. Increased amounts of mRNA or protein for multiple profibrotic cytokines and chemokines have been identified in lung tissue or broncholveolar lavage samples from scleroderma patients, when compared to healthy controls. These cytokines include transforming growth factor (TGF)-beta, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), oncostatin M (OSM), monocyte chemotactic factor-1 and pulmonary and activation-regulated chemokine (PARC). Potential cellular sources of these profibrotic cytokines and chemokines in scleroderma lung disease include alternatively activated macrophages, activated CD8+ T cells, eosinophils, mast cells, epithelial cells and fibroblasts themselves. This review summarizes the literature on involvement of cytokines and chemokines in the development of pulmonary fibrosis in scleroderma.
Collapse
Affiliation(s)
- Sergei P Atamas
- Baltimore VA Medical Center, University of Maryland School of Medicine, Research Service (151), Room 3C-126, 10 North Greene Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
10
|
Cicchillitti L, Jimenez SA, Sala A, Saitta B. B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J 2004; 378:609-16. [PMID: 14613485 PMCID: PMC1223966 DOI: 10.1042/bj20031110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 10/21/2003] [Accepted: 11/13/2003] [Indexed: 11/17/2022]
Abstract
We investigated the role of B-Myb, a cell-cycle-regulated transcription factor, in the expression of the alpha1 (I) pro-collagen gene (COL1A1) in scleroderma fibroblasts. Scleroderma or SSc (systemic sclerosis) is a fibrotic disease characterized by excessive production of extracellular matrix components, especially type I collagen. Northern-blot analysis showed an inverse relationship between COL1A1 mRNA expression and that of B-Myb during exponential cell growth and during quiescence in human SSc fibroblasts. Overexpression of B-Myb in SSc fibroblasts was correlated with decreased COL1A1 mRNA expression. Transient transfections localized the down-regulatory effect of B-Myb to a region containing the proximal 174 bp of the COL1A1 promoter that does not contain B-Myb consensus binding sites. Gel-shift analysis, using nuclear extracts from normal and SSc fibroblasts transfected with B-Myb, showed no differences in DNA-protein complex formation when compared with the nuclear extracts from mock-transfected cells. However, we found that B-Myb decreases Sp1 (specificity protein 1) and CBF (CCAAT-binding factor) binding for their specific sites localized in the 174 bp COL1A1 proximal promoter. These results were also confirmed using B-Myb-immunodepleted nuclear extracts. Furthermore, immunoprecipitation assays using SSc nuclear extracts demonstrated a physical interaction of B-Myb with Sp1 and CBF transcription factors, and also an interaction between Sp1 and CBF. In addition, by employing full-length or deleted B-Myb cDNA construct, we found that B-Myb down-regulates the COL1A1 proximal promoter through its C-terminal domain. Thus these results suggest that B-Myb may be an important factor in the pathway(s) regulating collagen production in SSc fibroblasts.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
11
|
Petrovas C, Jeay S, Lewis RE, Sonenshein GE. B-Myb repressor function is regulated by cyclin A phosphorylation and sequences within the C-terminal domain. Oncogene 2003; 22:2011-20. [PMID: 12673206 DOI: 10.1038/sj.onc.1206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B-Myb is a widely expressed member of the myb oncogene family that has been shown to act as either an activator or repressor of gene transcription in a cell-type-specific fashion. For example, in aortic smooth muscle cells B-Myb represses transcription of the alpha2(V) collagen gene. Recently, phosphorylation of B-Myb by cyclin A was shown to enhance greatly its ability to transactivate. Here, we have tested the effects of cyclin A on the ability of B-Myb to repress. We report that coexpression of cyclin A abolished repression of the alpha2(V) collagen promoter, whereas a dominant-negative cyclin-dependent kinase 2 (cdk2) enhanced repression by ectopic and endogenous B-Myb protein. Mutation of 10 of 22 putative cyclin A sites, which greatly reduces the effects of cyclin A on transactivation by B-Myb, had no effect on the ability of cyclin A to alleviate B-Myb-mediated repression of alpha2(V) collagen promoter activity. Furthermore, the stability of the mutant B-Myb protein was largely unaffected by cyclin A, although ectopic expression of cyclin A enhanced the rate of decay of wild-type B-Myb protein. Thus, the mechanisms of repression and activation appear distinct, for example, mediated by different critical phosphorylation sites or protein-protein interactions. B-Myb mutants with either deletion of aa 374-581 (B-Myb-Mut3) or C-terminal truncation beyond aa 491 (B-Myb-491) positively regulated alpha2(V) collagen promoter activity, and were not affected by cyclin A. Thus, our findings indicate that the ability of B-Myb to function as a repressor of matrix promoter activity is abolished by cyclin A, and maps the sites mediating negative regulation by B-Myb to the region between aa 491 and 582.
Collapse
|
12
|
Luchetti MM, Paroncini P, Majlingovà P, Frampton J, Mucenski M, Baroni SS, Sambo P, Golay J, Introna M, Gabrielli A. Characterization of the c-Myb-responsive region and regulation of the human type I collagen alpha 2 chain gene by c-Myb. J Biol Chem 2003; 278:1533-41. [PMID: 12424255 DOI: 10.1074/jbc.m204392200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the role of c-Myb and B-Myb in the regulation of human type I collagen alpha2 chain gene expression in fibroblastic cells. We have identified four Myb-binding sites (MBSs) in the promoter. Transactivation assays on wild type and mutant promoter-reporter constructs demonstrated that c-Myb, but not B-Myb, can transactivate the human type I collagen alpha 2 chain gene promoter via the MBS-containing region. Electrophoretic mobility shift assay experiments showed that c-Myb specifically binds to each of the four MBS; however, the mutagenesis of site MBS-4 completely inhibited transactivation by c-Myb, at least in the full-length promoter. In agreement with these results, c-myb(-/-) mouse embryo fibroblasts (MEFs) showed a selective lack of expression of type I collagen alpha 2 chain gene but maintained the expression of fibronectin and type III collagen. Furthermore, transforming growth factor-beta induced type I collagen alpha 2 chain gene expression in c-myb(-/-) MEFs, implying that the transforming growth factor-beta signaling pathway is maintained and that the absence of COL1A2 gene expression in c-myb(-/-) MEFs is a direct consequence of the lack of c-Myb. The demonstration of the importance of c-Myb in the regulation of the type I collagen alpha 2 chain gene suggests that uncontrolled expression of c-Myb could be an underlying mechanism in the pathogenesis of several fibrotic disorders.
Collapse
Affiliation(s)
- Michele M Luchetti
- Laboratorio di Medicina Molecolare, Istituto di Clinica Medica, Ematologia ed Immunologia Clinica, Università di Ancona, 60020 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gaillard C, Le Rouzic E, Créminon C, Perbal B. Alteration of C-MYB DNA binding to cognate responsive elements in HL-60 variant cells. Mol Pathol 2002; 55:325-35. [PMID: 12354938 PMCID: PMC1187265 DOI: 10.1136/mp.55.5.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2002] [Indexed: 02/04/2023]
Abstract
AIMS To establish whether the MYB protein expressed in HL-60 variant cells, which are cells resistant to 12-O-tetradecanoylphorbol-13-acetate (TPA) induced differentiation, is able to bind MYB recognition elements (MREs) involved in the transcriptional regulation of myb target genes. In addition, to determine whether alterations in the binding of the MYB protein to MREs affects HL-60 cell proliferation and differentiation. METHODS Nuclear extracts of HL-60 variant cells exhibiting different degrees of resistance to TPA induced monocytic differentiation were used in electrophoretic mobility shift experiments (EMSAs), bandshift experiments performed with labelled oliogonucleotides containing the MYB consensus binding sequences. RESULTS The MYB protein contained in nuclear extracts from HL-60 variant cells did not bind efficiently to the MYB recognition elements identified in the mim-1 and PR264 promoters. Molecular cloning of the myb gene and analysis of the MYB protein expressed in the HL-60 variant cells established that the lack of binding did not result from a structural alteration of MYB in these cells. The lack of MRE binding did not abrogate the ability of variant HL-60s to proliferate and to undergo differentiation. Furthermore, the expression of the PR264/SC35 splicing factor was not affected as a result of the altered MYB DNA binding activity. CONCLUSIONS Because the MYB protein expressed in HL-60 variant cells did not appear to be structurally different from the MYB protein expressed in parental HL-60 cells, it is possible that the HL-60 variant cells contain a MYB binding inhibitory factor (MBIF) that interferes with MYB binding on MREs. The increased proliferation rate of HL-60 variant cells and their reduced serum requirement argues against the need for direct MYB binding in the regulation of cell growth.
Collapse
Affiliation(s)
- C Gaillard
- Laboratoire d'Oncologie Virale et Moléculaire, UFR de Biochimie, Université Paris 7 D Diderot, 75005 Paris, France
| | | | | | | |
Collapse
|
14
|
Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227:301-14. [PMID: 11976400 DOI: 10.1177/153537020222700502] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type I collagen, the major component of extracellular matrix in skin and other tissues, is a heterotrimer of two alpha1 and one alpha2 collagen polypeptides. The synthesis of both chains is highly regulated by different cytokines at the transcriptional level. Excessive synthesis and deposition of collagen in the dermal region causes thick and hard skin, a clinical manifestation of scleroderma. To better understand the causes of scleroderma or other tissue fibrosis, it is very important to investigate the molecular mechanisms that cause upregulation of the Type I collagen synthesis in these tissues. Several cis-acting regulatory elements and trans-acting protein factors, which are involved in basal as well as cytokine-modulated Type I collagen gene expression, have been identified and characterized. Hypertranscription of Type I collagen in scleroderma skin fibroblasts may be due to abnormal activities of different positive or negative transcription factors in response to different abnormally induced signaling pathways. In this review, I discuss the present day understanding about the involvement of different factors in the regulation of basal as well as cytokine-modulated Type I collagen gene expression and its implication in scleroderma research.
Collapse
Affiliation(s)
- Asish K Ghosh
- Section of Rheumatology, Department of Medicine, 1158 Molecular Biology Research Building, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
15
|
Abstract
There is increasing evidence that genetic factors play important roles in susceptibility to and expression of systemic sclerosis (SSc), as well as primary Raynaud phenomenon. Familial aggregation for SSc, although infrequent (1.2%-1.5% of SSc families), has now been established, and when compared with population prevalence represents a significant risk factor for the disease and lays a firmer foundation for genetics in etiopathogenesis. Major histocompatibility complex class II alleles increase disease risk in some populations but are more strongly correlated with specific autoantibody profiles. Microchimerism influenced by human leukocyte antigen also remains an intriguing hypothesis. A variety of extracellular matrix genes, including fibrillin-1, have become additional candidates for contributing to what is likely a complex genetic disease. Reviewed here is evidence relating to these concepts, especially new data reported over the last year.
Collapse
Affiliation(s)
- F K Tan
- Division of Rheumatology and Clinical Immunogenetics, University of Texas, Houston Medical School, 77030, USA.
| | | |
Collapse
|
16
|
Abstract
The regulation of matrix biosynthesis in systemic sclerosis has been the focus of many studies, because excessive matrix synthesis causes pathologic changes, and because this would seem to be a good target for therapies aimed at ameliorating the disease. Possible targets for antifibrotic therapies include both matrix gene stimulatory and inhibitory pathways. Much recent progress has been made in understanding the mechanism of action of transforming growth factor-beta (TGF-beta), an important profibrotic cytokine with pleiotropic effects on fibroblasts. It appears that TGF-beta may use multiple signal transduction pathways in fibroblasts and it is possible that defects in any of these pathways may result in an abnormal response to TGF-beta, resulting in fibrosis. Studies on negative regulation of matrix gene expression have singled out the antifibrotic cytokines tumor necrosis factor-alpha and interferon-gamma. Finally, a new approach that compares mRNA expression in normal versus diseased fibroblasts has already lead to the discovery of genes that may play a role in the development of fibrosis. This represents an important advance because genes can be identified that have not previously been implicated in the control of matrix synthesis, and thus might not otherwise have been studied in this context.
Collapse
Affiliation(s)
- R L Widom
- Boston University School of Medicine, Arthritis Center, Massachusetts 02118, USA.
| |
Collapse
|