1
|
West CA, Sasser JM, Baylis C. The enigma of continual plasma volume expansion in pregnancy: critical role of the renin-angiotensin-aldosterone system. Am J Physiol Renal Physiol 2016; 311:F1125-F1134. [PMID: 27707703 PMCID: PMC6189751 DOI: 10.1152/ajprenal.00129.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Pregnancy is characterized by avid renal sodium retention and plasma volume expansion in the presence of decreased blood pressure. Decreased maternal blood pressure is a consequence of reduced systemic vascular tone, which results from an increased production of vasodilators [nitric oxide (NO), prostaglandins, and relaxin] and decreased vascular responsiveness to the potent vasoconstrictor (angiotensin II). The kidneys participate in this vasodilatory response, resulting in marked increases in renal plasma flow and glomerular filtration rate (GFR) during pregnancy. In women, sodium retention drives plasma volume expansion (∼40%) and is necessary for perfusion of the growing uterus and fetus. For there to be avid sodium retention in the presence of the potent natriuretic influences of increased NO and elevated GFR, there must be modifications of the tubules to prevent salt wasting. The purpose of this review is to summarize these adaptations.
Collapse
Affiliation(s)
- Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia;
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
de Bono B, Hunter P. Integrating knowledge representation and quantitative modelling in physiology. Biotechnol J 2013; 7:958-72. [PMID: 22887885 DOI: 10.1002/biot.201100304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A wealth of potentially shareable resources, such as data and models, is being generated through the study of physiology by computational means. Although in principle the resources generated are reusable, in practice, few can currently be shared. A key reason for this disparity stems from the lack of consistent cataloguing and annotation of these resources in a standardised manner. Here, we outline our vision for applying community-based modelling standards in support of an automated integration of models across physiological systems and scales. Two key initiatives, the Physiome Project and the European contribution - the Virtual Phsysiological Human Project, have emerged to support this multiscale model integration, and we focus on the role played by two key components of these frameworks, model encoding and semantic metadata annotation. We present examples of biomedical modelling scenarios (the endocrine effect of atrial natriuretic peptide, and the implications of alcohol and glucose toxicity) to illustrate the role that encoding standards and knowledge representation approaches, such as ontologies, could play in the management, searching and visualisation of physiology models, and thus in providing a rational basis for healthcare decisions and contributing towards realising the goal of of personalized medicine.
Collapse
Affiliation(s)
- Bernard de Bono
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
Klein JD. Corin: an ANP protease that may regulate sodium reabsorption in nephrotic syndrome. Kidney Int 2011; 78:635-7. [PMID: 20842148 DOI: 10.1038/ki.2010.223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serine/threonine protease corin, which proteolytically activates atrial natriuretic peptide (ANP), is reduced in the kidneys of animals with nephrotic syndrome and glomerular nephritis. Polzin et al. provide evidence for a linkage between the decreased corin and β-epithelial sodium channel, phosphodiesterase 5, and cGMP-dependent protein kinase II in the nephrotic kidney. They propose that decreases in cGMP resulting from the reduced corin may be responsible for the Na(+) retention and volume expansion that are hallmarks of these kidney diseases.
Collapse
Affiliation(s)
- Janet D Klein
- Department of Renal Medicine, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
4
|
Fekete A, Sasser JM, Baylis C. Chronic vasodilation produces plasma volume expansion and hemodilution in rats: consequences of decreased effective arterial blood volume. Am J Physiol Renal Physiol 2011; 300:F113-8. [PMID: 20980409 PMCID: PMC3023232 DOI: 10.1152/ajprenal.00478.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/21/2010] [Indexed: 11/22/2022] Open
Abstract
Plasma volume (PV) expansion is required for optimal pregnancy outcomes; however, the mechanisms responsible for sodium and water retention in pregnancy remain undefined. This study was designed to test the "arterial underfill hypothesis" of pregnancy which proposes that an enlarged vascular compartment (due to systemic vasodilation and shunting of blood to the placenta) results in renal sodium and water retention and PV expansion. We produced chronic vasodilation by 14 days administration of nifedipine (NIF; 10 mg·kg(-1)·day(-1)) or sodium nitrite (NaNO2; 70 mg·kg(-1)·day(-1)) to normal, nonpregnant female Sprague-Dawley rats. Mean arterial pressure, monitored by telemetry, was reduced by both NIF and NaNO2 but was unchanged in control rats. At day 14, vasodilator treatment lowered hematocrit and increased PV (determined by Evans blue dye dilution). Plasma osmolarity (Posm), sodium (PNa), and total protein concentrations all fell. These responses resemble the responses to normal pregnancy with hemodilution, marked PV expansion, and decreased Posm and PNa. Our previous work indicates a role of increased inner medullary phosphodiesterase-5 (PDE5) in the sodium retention of pregnancy. Here, we found that inner medullary PDE5A mRNA and protein expression were increased by both NIF and NaNO2 treatment vs. control; however, neither renal cortical nor aortic PDE5 expression was changed by vasodilator treatment. We suggest that a primary, persistent vasodilation drives increased inner medullary PDE5 expression which facilitates continual renal Na retention causing "refilling" of the vasculature and volume expansion.
Collapse
Affiliation(s)
- Andrea Fekete
- Department of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
5
|
Sasser JM, Ni XP, Humphreys MH, Baylis C. Increased renal phosphodiesterase-5 activity mediates the blunted natriuretic response to a nitric oxide donor in the pregnant rat. Am J Physiol Renal Physiol 2010; 299:F810-4. [PMID: 20668100 DOI: 10.1152/ajprenal.00117.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregnancy is characterized by plasma volume expansion and renal sodium retention with loss of natriuretic response to atrial natriuretic peptide due to increased medullary phosphodiesterase-5 (PDE5). Here, we determined whether natriuretic responses to nitric oxide (NO) are also blunted in pregnancy due to increased PDE5. Anesthetized 16-day pregnant and virgin rats were studied at baseline and during intrarenal infusion of the NO donor spermine NONOate (2.5 nmol/min), the PDE5 inhibitor sildenafil (SILD; 0.5 μg/min), or a combination. The right (noninfused) kidney served as a control. Intrarenal NONOate had no effect on mean arterial pressure (MAP); however, SILD reduced MAP in virgin rats, and the combination of NONOate+SILD reduced MAP in both virgin and pregnant rats. Neither NONOate nor SILD altered glomerular filtration rate. NONOate and SILD each stimulated sodium excretion (U(Na)V) and fractional excretion of sodium (FE(Na)) in virgin rats, but the combination did not result in an additional natriuretic response. However, NONOate infusion did not increase U(Na)V or FE(Na) in pregnant rats, but the natriuretic response to NONOate was restored with SILD, and SILD alone produced a natriuresis during pregnancy. Sodium nitroprusside (10(-4) mol/l)-stimulated cGMP accumulation from inner medullary collecting duct cells was blunted in cells from pregnant vs. virgin or postpartum rats and was restored by treatment with the PDE5 inhibitor DMPPO (10(-7) mol/l). Therefore, increased intrarenal PDE5 mediates the blunted natriuretic response to NO, and loss of responsiveness to the cGMP-dependent, natriuretic agents may contribute to volume expansion during pregnancy.
Collapse
Affiliation(s)
- Jennifer M Sasser
- Dept. of Physiology and Functional Genomics, Univ. of Florida, PO Box 100274, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
6
|
Rogers RK, May HT, Anderson JL, Muhlestein JB. Prognostic value of B-type natriuretic peptide for cardiovascular events independent of left ventricular end-diastolic pressure. Am Heart J 2009; 158:777-83. [PMID: 19853697 DOI: 10.1016/j.ahj.2009.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND B-type natriuretic peptide (BNP) correlates with left ventricular (LV) end-diastolic pressure (LVEDP) and predicts cardiovascular events. We sought to determine whether BNP has prognostic value independent of LVEDP. METHODS Eligible patients were referred for coronary angiography between March 15, 2002, and April 30, 2008, at a single institution. Inclusion criteria were having BNP, LV ejection fraction (EF), and LVEDP measured within 24 hours of the angiogram. The predictive value of BNP for events independent of LVEDP, EF, and other confounders was determined. RESULTS The study population (n = 1,059) was followed for a mean of 1.8 +/- 1.7 years. The mean age was 63 +/- 13 years. The median BNP value was 182 pg/mL; 59% of patients had LVEDP > or =16 mm Hg. B-type natriuretic peptide and LVEDP had a modest but statistically significant correlation (r = 0.24, P < .0001). After adjustment for LVEDP and EF, the hazard ratio for the composite outcome of heart failure admissions and death was 1.37 (1.21-1.55, P < .0001) per unit increase in log BNP. After adjustment for BNP and EF, LVEDP did not predict heart failure admissions and death (hazard ratio 1.05 [0.95-1.10], per 5-mm Hg increase, P = .30). Those with BNP value below the median had longer event-free survival as compared to those with BNP value above the median, regardless of the LVEDP strata (log-rank P < .0001 for LVEDP > or =16 and <16 mm Hg). CONCLUSION B-type natriuretic peptide has prognostic value independent of LVEDP in this cohort with suspected coronary artery disease, suggesting this biomarker is not just a prognostic surrogate for elevated LV filling pressure.
Collapse
|
7
|
Tahseldar-Roumieh R, Keravis T, Maarouf S, Justiniano H, Sabra R, Lugnier C. PDEs1-5 activity and expression in tissues of cirrhotic rats reveal a role for aortic PDE3 in NO desensitization. Int J Exp Pathol 2009; 90:605-14. [PMID: 19758418 DOI: 10.1111/j.1365-2613.2009.00678.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Liver cirrhosis is associated with increased nitric oxide (NO) production in the vasculature. We have previously demonstrated that aorta from rats with liver cirrhosis have a reduced relaxant response to NO donors that is corrected by DMPPO, a PDE5-specific inhibitor. Vasodilator responses to DMPPO itself were also reduced in rings from cirrhotic rats. These results supported previous suggestions that upregulation of PDE5 in liver cirrhosis might contribute to renal sodium retention, and consequently modulate vascular reactivity in the context of increased NO production (Tahseldar-Roumieh et al. in Am. J. Physiol. Heart Circ. Physiol. 290, H481-H488, 2006). Here, we investigated the possible alteration in activity and expression of cyclic nucleotide phosphodiesterase PDE1-PDE5 in kidney and vascular tissues in rats 4 weeks after bile duct ligation. The kidney of rats with cirrhosis had increased activity of PDE1 and PDE4 but not PDE5, and increased expression of PDE1A. Unexpectedly and interestingly, there was no change in cirrhotic aorta PDE5, but an increase in PDE3 and PDE4 activity associated with increased expression of PDE3A and PDE3B. Cilostamide, a specific PDE3 inhibitor, corrected the decreased response to an NO donor in isolated aorta from cirrhotic rats, suggesting that the difference in response to NO donors was due to differences in PDE3-induced hydrolysis of cGMP or to cGMP-induced inhibition of PDE3, rather than to differences in PDE5 contribution. In conclusion, these changes in PDE isozymes could greatly contribute to NO desensitization and to the regulation of vascular and renal function in liver cirrhosis.
Collapse
Affiliation(s)
- Rima Tahseldar-Roumieh
- Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin, Illkirch, France
| | | | | | | | | | | |
Collapse
|
8
|
Ghali-Ghoul R, Tahseldar-Roumieh R, Sabra R. Effect of chronic administration of sildenafil on sodium retention and on the hemodynamic complications associated with liver cirrhosis in the rat. Eur J Pharmacol 2007; 572:49-56. [PMID: 17610866 DOI: 10.1016/j.ejphar.2007.05.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/24/2007] [Indexed: 01/26/2023]
Abstract
Previous studies demonstrated increased phosphodiesterase-5 (PDE5) activity and expression in the kidneys of rats with liver cirrhosis. Acute intravenous administration of PDE5 inhibitors enhanced sodium excretion in these rats. The aim of the present study was to examine the effects of chronic administration of sildenafil on renal sodium handling and hemodynamics in rats with liver cirrhosis. Male Sprague-Dawley rats underwent bile-duct ligation and excision or sham operation and were housed in metabolic cages throughout the study. Body weight, food intake, water intake and urine volume were measured daily, and plasma samples were obtained twice weekly. Fourteen days following surgery sildenafil or its vehicle (dimethylsulfoxide) were administered (20 mg/kg subcutaneously 3 times/day). Two weeks later, systemic hemodynamics were measured under general anesthesia. Sildenafil enhanced the systemic vasodilatation associated with liver cirrhosis and reduced the arterial pressure. There was no reduction in the glomerular filtration rate, however. Despite these hemodynamic changes, sildenafil prevented the decrease in sodium excretion observed in the bile-duct-ligated group receiving vehicle and markedly increased fractional sodium excretion relative to the other groups. These results suggest that chronic sildenafil administration may help prevent or ameliorate sodium retention in cirrhosis, but that hemodynamic adverse effects may ensue.
Collapse
Affiliation(s)
- Rana Ghali-Ghoul
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | |
Collapse
|
9
|
Forfia PR, Lee M, Tunin RS, Mahmud M, Champion HC, Kass DA. Acute Phosphodiesterase 5 Inhibition Mimics Hemodynamic Effects of B-Type Natriuretic Peptide and Potentiates B-Type Natriuretic Peptide Effects in Failing But Not Normal Canine Heart. J Am Coll Cardiol 2007; 49:1079-88. [PMID: 17349888 DOI: 10.1016/j.jacc.2006.08.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/18/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this work was to test whether acute phosphodiesterase 5 (PDE5) inhibition via sildenafil (SIL) mimics and/or potentiates cardiorenal effects of exogenous natriuretic peptide (NP) infusion. BACKGROUND Heart failure (HF) is often accompanied by elevated NP secretion yet blunted responsiveness. Such NP resistance may, in part, relate to increased cyclic guanosine monophosphate (cGMP) catabolism by PDE5. METHODS Dogs (n = 7) were studied before and after tachypacing-induced HF. Animals received 30-min infusion of B-type natriuretic peptide (BNP) (2 mug/kg bolus, 0.02 mug/kg/min), and on a separate day SIL (1 mg/kg, intravenous), followed by BNP (SIL + BNP). Phosphodiesterase 5 activity was measured in lung, vasculature, and kidney. RESULTS At baseline (non-failing), BNP lowered central venous, pulmonary capillary wedge, diastolic, mean pulmonary artery, and mean arterial pressure. Sildenafil had no effects, and SIL + BNP was similar to BNP alone. In contrast, SIL lowered these pressures similarly to BNP in dogs with HF, and SIL + BNP was additive in further reducing pulmonary pressures over BNP alone. Plasma cGMP/plasma BNP ratio was markedly reduced with HF, indicating NP resistance. Sildenafil plus BNP increased this ratio in HF, but had no effect in non-failing animals. Sildenafil had no independent diuretic/natriuretic effects nor did it enhance BNP effects under baseline or HF conditions. In HF, PDE5 activity was significantly increased in the systemic and pulmonary vasculature and in the kidney. CONCLUSIONS The PDE5 activity in systemic and pulmonary vasculature increases in HF rendering hemodynamic responses to PDE5 inhibition identical to those from BNP infusion. Natriuretic peptide desensitization in HF relates, in part, to increased PDE5 activity, supporting a therapeutic role for PDE5 inhibition.
Collapse
Affiliation(s)
- Paul R Forfia
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Knight S, Snellen H, Humphreys M, Baylis C. Increased renal phosphodiesterase-5 activity mediates the blunted natriuretic response to ANP in the pregnant rat. Am J Physiol Renal Physiol 2006; 292:F655-9. [PMID: 17003222 PMCID: PMC2765210 DOI: 10.1152/ajprenal.00309.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal rat pregnancy is characterized by plasma volume expansion due to renal sodium retention and is associated with a blunted response to natriuretic stimuli, such as atrial natriuretic peptide (ANP). ANP signals via cGMP, and phosphodiesterases (PDE) inactivate cGMP and terminate the natriuretic response. We previously reported that increased medullary PDE-5 activity occurs in rat pregnancy, which may be the mechanism of the blunted natriuretic effect of ANP. Here, we used anesthetized 16-day pregnant and virgin rats to investigate whether intrarenal infusion of a selective PDE-5 inhibitor, sildenafil, would reverse the blunted response to ANP in pregnancy. We measured blood pressure, renal clearances using inulin and p-aminohippuric acid, and electrolyte excretion at baseline and during an ANP infusion. ANP caused a fall in mean arterial pressure in all groups, and sildenafil induced a further reduction. We observed an increase in sodium excretion with ANP in all rats, but this was blunted in the vehicle-infused pregnant rats. This could not be explained by differences in renal hemodynamics and was of tubular origin, as reflected by the reduced rise in fractional excretion of sodium with ANP in the pregnant rat given vehicle (45 +/- 11 vs. 204 +/- 49%; P < 0.05). However, intrarenal sildenafil increased the natriuretic response and the rise in fractional excretion of sodium to the virgin value (226 +/- 23 vs. 245 +/- 73%; not significant), whereas the blunting persisted in the contralateral kidney. This demonstrates that increased intrarenal PDE-5 mediates the blunted natriuretic response to ANP during pregnancy and may contribute to the physiological volume expansion.
Collapse
Affiliation(s)
- Sarah Knight
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32667, USA
| | | | | | | |
Collapse
|
11
|
Beltowski J, Jamroz-Wisniewska A, Borkowska E, Marciniak A. Phosphodiesterase 5 inhibitor ameliorates renal resistance to atrial natriuretic peptide associated with obesity and hyperleptinemia. Arch Med Res 2006; 37:307-315. [PMID: 16513477 DOI: 10.1016/j.arcmed.2005.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Abnormal neurohormonal regulation of renal sodium handling plays an important role in obesity-associated hypertension. We investigated the effect of experimental obesity on renal response to atrial natriuretic peptide (ANP). METHODS The effect of ANP was studied in three groups of rats: (1) lean controls, (2) animals made obese by a highly palatable diet, (3) rats treated with adipose tissue hormone, leptin, for 7 days to reproduce hyperleptinemia observed in obesity. RESULTS ANP administered at a dose of 50 pmol/kg min(-1) induced about a 3-fold lower increase in Na+ and cGMP excretion in obese and leptin-treated rats than in the control group. ANP decreased Na+,K+-ATPase activity in the renal medulla only in the control group. Natriuretic effect of exogenous cGMP was also impaired in obese and leptin-treated rats. In contrast, hydrolysis-resistant cGMP derivative, 8-bromo-cGMP exerted comparable natriuretic effects in all groups. Neutral endopeptidase inhibitor, phosphoramidon, and ANP clearance receptor antagonist, C-ANP, increased urinary ANP excretion in all groups to a similar level, but their natriuretic effect was impaired in obese and leptin-treated groups. A specific inhibitor of cGMP-degrading phosphodiesterase, zaprinast, had comparable natriuretic and Na+,K+-ATPase-lowering effects in all groups and restored normal sensitivity to ANP. CONCLUSIONS (1) Dietary-induced obesity is accompanied by impaired natriuretic effect of ANP, (2) ANP resistance in obesity may be accounted for by increased leptin level, (3) accelerated degradation of cGMP may contribute to ANP resistance associated with obesity and hyperleptinemia, suggesting that inhibiting cGMP-specific phosphodiesterases may be useful in the treatment of obesity-associated hypertension.
Collapse
Affiliation(s)
- Jerzy Beltowski
- Department of Pathophysiology, Medical University, Lublin, Poland.
| | | | | | | |
Collapse
|
12
|
Tahseldar-Roumieh R, Ghali-Ghoul R, Lugnier C, Sabra R. Effect of phosphodiesterase 5 inhibitor on alteration in vascular smooth muscle sensitivity and renal function in rats with liver cirrhosis. Am J Physiol Heart Circ Physiol 2006; 290:H481-8. [PMID: 16373593 DOI: 10.1152/ajpheart.00507.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggested that increased activity of phosphodiesterase (PDE)5 in the kidneys of cirrhotic rats contributes to sodium retention. This study examined the role of PDE5 in the changes in vascular reactivity, hemodynamics, and sodium excretion in rats with liver cirrhosis. Four weeks after bile duct ligation (BDL) or sham operation (SO), in vitro reactivity of aortic rings to various agents and in vivo effects of a PDE5-selective inhibitor [1,3-dimethyl-6-(2-propoxy-5-methanesulfonylamidophenyl)pyrazolo[3,4d]-pyrimidin-4-(5H)-one, DMPPO] were studied. The vasodilator responses to nitroglycerin and S-nitroso-N-acetyl-penicillamine (SNAP) in phenylephrine-precontracted rings without endothelium were attenuated in BDL compared with SO rats. Pretreatment with DMPPO (0.1 microM) enhanced these responses and eliminated the differences between the two groups. Vasodilation to DMPPO itself was also less in BDL rats. The responses to phenylephrine were attenuated in endothelium-rich aorta from BDL relative to SO rats, but they were similar in endothelium-denuded aorta and remained similar despite preincubation with SNAP (0.1 microM) alone or with SNAP and DMPPO. In vivo, BDL rats were vasodilated relative to SO rats; DMPPO (5 mg/kg i.v.) decreased arterial pressure and vascular resistance in both groups equally and caused significant increase in sodium excretion in BDL rats only. In conclusion, the results are in accordance with a possible increase in PDE5 activity in aorta and kidney of cirrhotic rats that results in reduced responses to NO donors and contributes to the increase in sodium retention. PDE5 inhibitors may ameliorate sodium retention in cirrhosis but may worsen vasodilation. Examining the effect of PDE5 inhibitors after chronic administration will be more revealing.
Collapse
Affiliation(s)
- Rima Tahseldar-Roumieh
- Dept. of Pharmacology and Therapeutics, Faculty of Medicine, American Univ. of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
13
|
[Molecular mechanism of edema formation in nephrotic syndrome]. Arch Pediatr 2005; 11:1084-94. [PMID: 15351000 DOI: 10.1016/j.arcped.2004.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Accepted: 03/04/2004] [Indexed: 10/26/2022]
Abstract
Nephrotic edema are the clinical feature of isolated interstitial expansion. Expanded interstitial compartment compensates sodium accumulation in the extracellular volume due to inappropriate renal sodium retention. Renal sodium retention is brought about by an activation of the molecular structures responsible for the reabsorption of sodium along the cortical collecting duct: amiloride-sensitive epithelial sodium channel at the apical face and sodium pump at the basolateral face of the principal cell. This activation is independent of aldosterone and vasopressin. The asymmetry of expansion between interstitium and plasma compartments is due to impaired Starling forces and increased fluid transfer through the capillary wall. The lack of significant changes in transcapillary oncotic and hydrostatic gradients suggests that increased hydraulic conductivity due to transconformation of endothelial intercellular junctions drives the leakage of fluid into the interstitium and allows to understand the mobility of nephrotic edema. Consistently with the site of renal sodium retention and the activation of the epithelial sodium channel, the association of amiloride and furosemide is efficient to increase urinary sodium excretion, to reverse sodium balance and to remove edema from patients with nephrotic syndrome.
Collapse
|
14
|
Thiesson HC, Jensen BL, Jespersen B, Schaffalitzky de Muckadell OB, Bistrup C, Walter S, Ottosen PD, Veje A, Skøtt O. Inhibition of cGMP-specific phosphodiesterase type 5 reduces sodium excretion and arterial blood pressure in patients with NaCl retention and ascites. Am J Physiol Renal Physiol 2004; 288:F1044-52. [PMID: 15613622 DOI: 10.1152/ajprenal.00142.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the present study, we tested the hypothesis that inhibition of renal phosphodiesterase type 5 (PDE5) in patients with liver cirrhosis and ascites increases sodium excretion. The effect of sildenafil citrate was studied in a randomized double-blind. placebo-controlled crossover study. Diuretics were withdrawn, and a fixed sodium diet (100 mmol/day) was given to the patients for 5 days before both study days. After a 60-min basal period, eight patients received either oral sildenafil (50 mg) or placebo. Glomerular filtration rate (GFR) and renal blood flow (RBF) were determined by 99mTc-diethylenetriamine-pentaacetate and (131)I-hippuran clearances. In human nephrectomy specimens, PDE5 mRNA was expressed at similar levels in the cortex (n = 6) and inner medulla (n = 4). Histochemical staining showed PDE5 immunoreactivity in collecting ducts and vascular smooth muscle. At baseline, cirrhotic patients exhibited elevated plasma concentrations of ANP, renin, ANG II, and aldosterone that did not differ on the 2 study days. Basal sodium excretion was similar at the 2 study days (median 17 and 18 mmol, respectively), and patients were in positive sodium balance. Sildenafil increased heart rate, plasma renin activity, plasma ANG II, and aldosterone concentrations significantly after 60 min. Plasma cGMP concentration was increased after 120 and 180 min, and urinary sodium excretion and mean arterial blood pressure were decreased significantly at 120 and 180 min. Plasma ANP concentration, GFR, and RBF did not change after sildenafil. In patients with ascites and cirrhosis, inhibition of PDE5 did not promote natriuresis but led to increased plasma levels of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Helle C Thiesson
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ni XP, Safai M, Rishi R, Baylis C, Humphreys MH. Increased activity of cGMP-specific phosphodiesterase (PDE5) contributes to resistance to atrial natriuretic peptide natriuresis in the pregnant rat. J Am Soc Nephrol 2004; 15:1254-60. [PMID: 15100365 PMCID: PMC2756797 DOI: 10.1097/01.asn.0000125613.96927.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased cGMP-specific phosphodiesterase (PDE5) activity in renal inner medullary collecting duct (IMCD) cells contributes to resistance to atrial natriuretic peptide (ANP) and the excessive sodium retention seen in experimental nephrotic syndrome and liver cirrhosis. Normal pregnancy is also accompanied by sodium retention and plasma volume expansion, and pregnant rats are resistant to the natriuretic action of ANP. The authors investigated a possible role of increased renal PDE5 activity in the physiologic sodium retention of normal rat pregnancy. The natriuresis and increased urinary cGMP excretion (U(cGMP)V) evoked by acute volume expansion (a measure of renal responsiveness to endogeneous ANP) was blunted in 16-d pregnant versus virgin rats, despite equivalent increases in circulating ANP in pregnants and virgins. The ANP-dependent cGMP accumulation in isolated IMCD cells from pregnants was blunted versus virgins and restored by the PDE5-selective antagonist DMPPO (10(-7) mol/L). PDE5 activity in vitro and PDE5 protein abundance in IMCD were greater in pregnants. Four days postpartum, volume expansion natriuresis, U(cGMP)V, and PDE5 protein levels in IMCD cell homogenates had returned to virgin values. These results demonstrate that normal rat pregnancy leads to in vivo and in vitro renal resistance to ANP, in association with heightened activity of the cGMP-specific PDE5 in IMCD. This may contribute to the physiologic sodium retention of normal pregnancy.
Collapse
Affiliation(s)
- Xi-Ping Ni
- Division of Nephrology, San Francisco General Hospital and University of California San Francisco, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
16
|
Brønd L, Hadrup N, Salling N, Torp M, Graebe M, Christensen S, Nielsen S, Jonassen TEN. Uncoupling of vasopressin signaling in collecting ducts from rats with CBL-induced liver cirrhosis. Am J Physiol Renal Physiol 2004; 287:F806-15. [PMID: 15172884 DOI: 10.1152/ajprenal.00278.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasopressin (AVP) stimulates collecting duct water reabsorption through cAMP-mediated membrane targeting and increased expression of the aquaporin-2 (AQP2) water channel. Rats with liver cirrhosis induced by common bile duct ligation (CBL) show decreased protein expression of AQP2 despite increased plasma concentrations of AVP. The present study was conducted to investigate possible mechanisms behind this uncoupling of AVP signaling. The rats were examined 4 wk after CBL or sham operation. The CBL rats had increased plasma AVP concentrations (CBL: 3.2 +/- 0.2 vs. sham: 1.4 +/- 0.4 pg/ml, P < 0.05) and reduced AQP2 (0.62 +/- 0.11) and phosphorylated AQP2 (0.50 +/- 0.06) protein expression compared with sham-operated rats. However, examination of subcellular AQP2 localization by immunohistochemistry showed unchanged plasma membrane targeting in CBL rats, indicating a sustained ability of AQP2 short-term regulation. In a separate series of animals, thirsting was found to normalize AQP2 expression, indicating that AVP uncoupling in CBL rats is a physiological compensatory mechanism aimed at avoiding dilutional hyponatremia. Studies on microdissected collecting ducts from CBL rats showed decreased cAMP accumulation in response to AVP stimulation. The presence of the nonspecific phosphodiesterase inhibitor IBMX normalized the cAMP accumulation, indicating that cAMP-phosphodiesterase activity is increased in CBL rats. However, in contrast to this, Western blotting showed a decreased expression of several phosphodiesterase splice variants. We conclude that CBL rats develop an escape from AVP to prevent the formation of dilutional hyponatremia in response to increased plasma AVP concentrations. The mechanism behind AVP escape seems to involve decreased collecting duct sensitivity to AVP as a result of increased cAMP-phosphodiesterase activity.
Collapse
Affiliation(s)
- Lone Brønd
- Department of Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mehats C, Andersen CB, Filopanti M, Jin SLC, Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 2002; 13:29-35. [PMID: 11750860 DOI: 10.1016/s1043-2760(01)00523-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery that degradation and inactivation of the second messengers cAMP and cGMP are mediated by a complex enzymatic machinery has changed our perspective on cyclic nucleotide-mediated processes. In the cell, these second messengers are inactivated by no fewer than 11 distinct families of phosphodiesterases (PDEs). Much is known about the structure and function of these enzymes, their complex subcellular distribution and regulation. Yet, their potential as targets for therapeutic intervention in a broad range of endocrine abnormalities still needs to be investigated. This review explores the involvement of PDEs in the regulation of intracellular signaling and focuses on the known and potential roles that are of interest to endocrinologists.
Collapse
Affiliation(s)
- Celine Mehats
- Division of Reproductive Biology, Dept Gynecology and Obstetrics, Stanford University School of Medicine, 300 Pasteur Drive, Room A344, Stanford, CA 94305-5317, USA
| | | | | | | | | |
Collapse
|