1
|
Drug Interactions. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Neuman MG, French SW, Zakhari S, Malnick S, Seitz HK, Cohen LB, Salaspuro M, Voinea-Griffin A, Barasch A, Kirpich IA, Thomes PG, Schrum LW, Donohue TM, Kharbanda KK, Cruz M, Opris M. Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Exp Mol Pathol 2017; 102:162-180. [PMID: 28077318 DOI: 10.1016/j.yexmp.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | - Stephen Malnick
- Department Internal Medicine, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot, Israel
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Andreea Voinea-Griffin
- Public Health Science Texas A&M University, College of Dentistry, Dallas University, TX, USA
| | - Andrei Barasch
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Paul G Thomes
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Laura W Schrum
- Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Terrence M Donohue
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marcus Cruz
- In Vitro Drug Safety and Biotechnology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mihai Opris
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Family Medicine Clinic CAR, Bucharest, Romania
| |
Collapse
|
3
|
Chan LN, Anderson GD. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol). Clin Pharmacokinet 2015; 53:1115-36. [PMID: 25267448 DOI: 10.1007/s40262-014-0190-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.
Collapse
Affiliation(s)
- Lingtak-Neander Chan
- Department of Pharmacy, University of Washington, Box 357630, Seattle, WA, 98195, USA
| | | |
Collapse
|
4
|
Neuman MG, Cohen L, Zakhari S, Nanau RM, Mueller S, Schneider M, Parry C, Isip R, Seitz HK. Alcoholic liver disease: a synopsis of the Charles Lieber's Memorial Symposia 2009-2012. Alcohol Alcohol 2014; 49:373-80. [PMID: 24816574 DOI: 10.1093/alcalc/agu021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper is based upon the 'Charles Lieber Satellite Symposia' organized by Manuela G. Neuman at each of the 2009-2012 Research Society on Alcoholism (RSA) Annual Meetings. The presentations represent a broad spectrum dealing with alcoholic liver disease (ALD). In addition, a literature search (2008-2013) in the discussed area was performed in order to obtain updated data. The presentations are focused on genetic polymorphisms of ethanol metabolizing enzymes and the role of cytochrome P4502E1 (CYP2E1) in ALD. In addition, alcohol-mediated hepatocarcinogenesis, immune response to alcohol and fibrogenesis in alcoholic hepatitis as well as its co-morbidities with chronic viral hepatitis infections in the presence or absence of human deficiency virus are discussed. Finally, emphasis was led on alcohol and drug interactions as well as liver transplantation for end-stage ALD.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON, Canada Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lawrence Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Samir Zakhari
- Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON, Canada Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastian Mueller
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| | - Michelle Schneider
- Alcohol and Drug Abuse Research Unit, Medical Research Council, Stellenbosch University, Cape Town, South Africa
| | - Charles Parry
- Alcohol and Drug Abuse Research Unit, Medical Research Council, Stellenbosch University, Cape Town, South Africa Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Romina Isip
- In Vitro Drug Safety and Biotechnology, University of Toronto, Toronto, ON, Canada Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg and Department of Medicine (Gastroenterology and Hepatology), Salem Medical Centre, Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
Concomitant use of alcohol and medications may lead to potentially serious medical conditions. Increasing prescription medication abuse in today's society necessitates a deeper understanding of the mechanisms involved in alcohol-medication interactions in order to help prevent adverse events. Interactions of medications with alcohol result in altered bioavailability of the medication or alcohol (pharmacokinetic interactions) or modification of the effects at receptor or ion channel sites to alter behavioral or physical outcome (pharmacodynamic interactions). The nature of pharmacokinetic or pharmacodynamic interactions involved in alcohol-medication interactions may differ between acute and chronic alcohol use and be influenced by race, gender, or environmental or genetic factors. This review focuses on the mechanisms underlying pharmacokinetic and pharmacodynamic interactions between alcohol and medications and provides examples for such interactions from replicated research studies. In conclusion, further translational research is needed to address several gaps in our current knowledge of alcohol-medication interactions, including those under various pathologic conditions.
Collapse
Affiliation(s)
- Bankole A Johnson
- Department of Psychiatry and Brain Science Research Consortium at the University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Chamindi Seneviratne
- Department of Psychiatry, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
El-Bakary AA, El-Dakrory SA, Attalla SM, Hasanein NA, Malek HA. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats. Hum Exp Toxicol 2009; 29:93-101. [PMID: 20026516 DOI: 10.1177/0960327109353777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methanol poisoning is a hazardous intoxication characterized by visual impairment and formic acidemia. The therapy for methanol poisoning is alcohol dehydrogenase (ADH) inhibitors to prevent formate accumulation. Ranitidine has been considered to be an inhibitor of both gastric alcohol and hepatic aldehyde dehydrogenase enzymes. This study aimed at testing ranitidine as an antidote for methanol acute toxicity and comparing it with ethanol and 4-methyl pyrazole (4-MP). This study was conducted on 48 Sprague-Dawley rats, divided into 6 groups, with 8 rats in each group (one negative control group [C1], two positive control groups [C2, C3] and three test groups [1, 2 and 3]). C2, C3 and all test groups were exposed to nitrous oxide by inhalation, then, C3 group was given methanol (3 g/kg orally). The three test groups 1, 2 and 3 were given ethanol (0.5 g/kg orally), 4-MP (15 mg/kg intraperitoneally) and ranitidine (30 mg/kg intraperitoneally), respectively, 4 hours after giving methanol. Rats were sacrificed and heparinized, cardiac blood samples were collected for blood pH and bicarbonate. Non-heparinized blood samples were collected for formate levels by high performance liquid chromatography. Eye balls were enucleated for histological examination of the retina. Ranitidine corrected metabolic acidosis (p = .025), decreased formate levels (p = .014) and improved the histological findings in the retina induced by acute methanol toxicity.
Collapse
Affiliation(s)
- Amal A El-Bakary
- Department of Forensic Medicine, Histology and Cytology, Faculty of Medicine, Mansoura University, Egypt
| | | | | | | | | |
Collapse
|
7
|
Jang GR, Harris RZ. Drug interactions involving ethanol and alcoholic beverages. Expert Opin Drug Metab Toxicol 2008; 3:719-31. [PMID: 17916057 DOI: 10.1517/17425255.3.5.719] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ethanol is likely among the most widely and extensively used drugs in the world. It has also been demonstrated to alter the expression or activity of some drug-metabolizing enzymes. Thus, marked ethanol-provoked drug interactions could be of notable clinical importance. To date, relatively few clinically important interactions have been reported, involving cocaine, disulfiram and tacrolimus. Limited or modest interactions with ethanol have also been reported for drugs such as abacavir, cisapride, 'ecstasy' (3,4-methylenedioxymetamfetamine), gamma-hydroxybutyrate, methylyphenidate, metronidazole and verapamil. Most of these interactions do not seem to involve CYP2E1, the enzyme initially characterized and cloned based on its ability to metabolize and be induced by ethanol. Important work has elucidated the relationship between CYP2E1-mediated formation of the hepatotoxic metabolite of acetaminophen and alcohol consumption. Lastly, drug interactions involving other components of alcoholic beverages such as flavonoid and other polyphenolic components of red wine have been reported.
Collapse
Affiliation(s)
- Graham R Jang
- Amgen, Inc., Department of Pharmacokinetics and Drug Metabolism, One Amgen Center Dr, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
8
|
Holden LJ, Coleman MD. Assessment of the astrogliotic responses of three human astrocytoma cell lines to ethanol, trimethyltin chloride and acrylamide. Toxicology 2007; 241:75-83. [PMID: 17875352 DOI: 10.1016/j.tox.2007.08.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/01/2007] [Accepted: 08/10/2007] [Indexed: 01/10/2023]
Abstract
The astrogliotic responses of the CCF-STTG1, U251-MG, and U373-MG human astrocytoma lines were determined after exposure to ethanol, trimethyltin chloride (TMTC), and acrylamide over 4, 16, and 24h. Basal glial fibrillary acidic protein (GFAP) expression in the U-251MG and U373-MG cells was 10-fold greater than the CCF-STGG1 line. Ethanol treatment over 24h, but not at 4 and 16h, resulted in significant increases in GFAP in all three glioma lines at sub-cytotoxic levels; the GFAP responses in the CCF-STTG1 line were the most sensitive, as concentrations of 0.1 and 1mM led to increases in GFAP expression compared with control of 56.8+/-15.7 and 58.9+/-11.5%, respectively (P<0.05). Treatment with TMTC (1 microM) over 4h showed elevated GFAP expression in the U251-MG cell line to 28.0+/-15.7% above control levels (P<0.01), but not in the other U373-MG or CCF-STTG1 cells. At 4h, MTT turnover was markedly increased compared with control, particularly in the U373-MG line at concentrations as low as 1 microM (17.1+/-2.3%; P<0.01). TMTC exposure over 16 and 24h resulted in reduction in GFAP expression in all three lines at concentrations; at 24h incubation, the reduction was >50% (P<0.01). There were no changes in GFAP expression or MTT turnover in response to acrylamide except at the highest concentration ranges of 10-100 mM. This study underlines the significance of period of exposure, as well as toxin concentration in astrocytoma cellular response to toxic pressure.
Collapse
Affiliation(s)
- Lindsay J Holden
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
9
|
Monroe ML, Doering PL. Effect of common over-the-counter medications on blood alcohol levels. Ann Pharmacother 2001; 35:918-24. [PMID: 11485145 DOI: 10.1345/aph.10302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To assess the clinical and legal significance of the potential pharmacokinetic interaction between common over-the-counter (OTC) medications and alcohol that may result in increased blood alcohol levels (BALs). DATA SOURCES A MEDLINE search (1966-February 2000) of English-language articles was performed using the terms aspirin, acetaminophen, histamine (H2)-receptor antagonist, ethanol, and blood alcohol level and then supplemented by a bibliographic review of relevant articles. STUDY SELECTION AND DATA EXTRACTION Two H2-receptor antagonist studies using methodologies representative of other published trials and a meta-analysis of 24 H2-receptor antagonist trials were chosen for detailed review. All identified studies examining aspirin and acetaminophen were addressed. DATA SYNTHESIS More than 30 studies have examined the potential interaction between OTC drugs and blood alcohol. Because this issue has important medical and legal implications for patients, prescribing physicians, and pharmaceutical manufacturers, a critical analysis of the literature addressing this potential interaction is presented. CONCLUSIONS Numerous factors arguing against a clinically significant interaction were identified. First, data from the relevant studies cannot be extrapolated to the general population because of the multitude of variables that determine an individual's BAL. Also, a publication bias for small studies (< or = 10 subjects) finding a statistically significant increase in peak BAL was observed. In addition, study results supporting an increase in BAL were often irreproducible when these trials were repeated under similar conditions. Finally, although some studies detected statistically significant increases in peak BAL, these changes were often clinically irrelevant.
Collapse
Affiliation(s)
- M L Monroe
- Department of Pharmacy, Wake Forest University Baptist Medical Center, Winston-Salem, NC 27157-1163, USA.
| | | |
Collapse
|