1
|
Ikeda A, Tomiyasu M, Yamamoto A, Tsuyusaki Y, Kawai Y, Tanabe M, Tsuji M, Iai M, Aida N, Goto T. Elevation of brain gamma‐aminobutyric acid levels is associated with vigabatrin‐associated brain abnormalities on magnetic resonance imaging. Epilepsy Res 2022; 181:106881. [DOI: 10.1016/j.eplepsyres.2022.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
|
2
|
Feja M, Meller S, Deking LS, Kaczmarek E, During MJ, Silverman RB, Gernert M. OV329, a novel highly potent γ-aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazole seizure threshold test and in amygdala-kindled rats. Epilepsia 2021; 62:3091-3104. [PMID: 34617595 DOI: 10.1111/epi.17090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE An attractive target to interfere with epileptic brain hyperexcitability is the enhancement of γ-aminobutyric acidergic (GABAergic) inhibition by inactivation of the GABA-metabolizing enzyme GABA aminotransferase (GABA-AT). GABA-AT inactivators were designed to control seizures by raising brain GABA levels. OV329, a novel drug candidate for the treatment of epilepsy and addiction, has been shown in vitro to be substantially more potent as a GABA-AT inactivator than vigabatrin, an antiseizure drug approved as an add-on therapy for adult patients with refractory complex partial seizures and monotherapy for pediatric patients with infantile spasms. Thus, we hypothesized that OV329 should produce pronounced anticonvulsant effects in two different rat seizure models. METHODS We therefore examined the effects of OV329 (5, 20, and 40 mg/kg ip) on the seizure threshold of female Wistar Unilever rats, using the timed intravenous pentylenetetrazole (ivPTZ) seizure threshold model as a seizure test particularly sensitive to GABA-potentiating manipulations, and amygdala-kindled rats as a model of difficult-to-treat temporal lobe epilepsy. RESULTS GABA-AT inactivation by OV329 clearly increased the threshold of both ivPTZ-induced and amygdala-kindled seizures. OV329 further showed a 30-fold greater anticonvulsant potency on ivPTZ-induced myoclonic jerks and clonic seizures compared to vigabatrin investigated previously. Notably, all rats were responsive to OV329 in both seizure models. SIGNIFICANCE These results reveal an anticonvulsant profile of OV329 that appears to be superior in both potency and efficacy to vigabatrin and highlight OV329 as a highly promising candidate for the treatment of seizures and pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lillian S Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Department of Pharmacology, Chemistry of Life Processes Institute, Northwestern University, Chicago, Illinois, USA
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
3
|
Ferland MC, Therrien-Blanchet JM, Proulx S, Klees-Themens G, Bacon BA, Dang Vu TT, Théoret H. Transcranial Magnetic Stimulation and H 1-Magnetic Resonance Spectroscopy Measures of Excitation and Inhibition Following Lorazepam Administration. Neuroscience 2020; 452:235-246. [PMID: 33246064 DOI: 10.1016/j.neuroscience.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
This study aimed at better understanding the neurochemistry underlying transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS) measurements as it pertains to GABAergic activity following administration of allosteric GABAA receptor agonist lorazepam. Seventeen healthy adults (8 females, 26.0 ± 5.4 years old) participated in a double-blind, crossover, placebo-controlled study, where participants underwent TMS and MRS two hours after drug intake (placebo or lorazepam; 2.5 mg). Neuronavigated TMS measures reflecting cortical inhibition and excitation were obtained in the left primary motor cortex. Sensorimotor cortex and occipital cortex MRS data were acquired using a 3T scanner with a MEGA-PRESS sequence, allowing water-referenced [GABA] and [Glx] (glutamate + glutamine) quantification. Lorazepam administration decreased occipital [GABA], decreased motor cortex excitability and increased GABAA-receptor mediated motor cortex inhibition (short intracortical inhibition (SICI)). Lorazepam intake did not modulate sensorimotor [GABA] and TMS measures of intra-cortical facilitation, long-interval cortical inhibition, cortical silent period, and resting motor threshold. Furthermore, higher sensorimotor [GABA] was associated with higher cortical inhibition (SICI) following lorazepam administration, suggesting that baseline sensorimotor [GABA] may be valuable in predicting pharmacological or neuromodulatory treatment response. Finally, the differential effects of lorazepam on MRS and TMS measures, with respect to GABA, support the idea that TMS measures of cortical inhibition reflect synaptic GABAergic phasic inhibitory activity while MRS reflects extrasynaptic GABA.
Collapse
Affiliation(s)
| | | | | | | | | | - Thien Thanh Dang Vu
- Center for Studies in Behavioral Neurobiology and Perform Center, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, QC, Canada; Research Center, Institut Universitaire de Gériatrie de Montréal, Montréal, Qc, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de l'Hôpital Sainte-Justine, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Abstract
Given the distinctive characteristics of both epilepsy and antiepileptic drugs (AEDs), therapeutic drug monitoring (TDM) can make a significant contribution to the field of epilepsy. The measurement and interpretation of serum drug concentrations can be of benefit in the treatment of uncontrollable seizures and in cases of clinical toxicity; it can aid in the individualization of therapy and in adjusting for variable or nonlinear pharmacokinetics; and can be useful in special populations such as pregnancy. This review examines the potential for TDM of newer AEDs such as eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, rufinamide, retigabine, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. We describe the relationships between serum drug concentration, clinical effect, and adverse drug reactions for each AED as well as the different analytical methods used for serum drug quantification. We discuss retrospective studies and prospective data on the serum drug concentration-efficacy of these drugs and present the pharmacokinetic parameters, oral bioavailability, reference concentration range, and active metabolites of newer AEDs. Limited data are available for recent AEDs, and we discuss the connection between drug concentrations in terms of clinical efficacy and nonresponse. Although we do not propose routine TDM, serum drug measurement can play a beneficial role in patient management and treatment individualization. Standardized studies designed to assess, in particular, concentration-efficacy-toxicity relationships for recent AEDs are urgently required.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutics, College of Pharmacy, Gulf Medical University, University Street, P.O.Box No.4184, Ajman, UAE.
| | - Anroop B Nair
- Department of Pharmaceutics, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
van Veenendaal TM, IJff DM, Aldenkamp AP, Lazeron RHC, Puts NAJ, Edden RAE, Hofman PAM, de Louw AJA, Backes WH, Jansen JFA. Glutamate concentrations vary with antiepileptic drug use and mental slowing. Epilepsy Behav 2016; 64:200-205. [PMID: 27744245 DOI: 10.1016/j.yebeh.2016.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Although antiepileptic drugs (AEDs) are effective in suppressing epileptic seizures, they also induce (cognitive) side effects, with mental slowing as a general effect. This study aimed to assess whether concentrations of MR detectable neurotransmitters, glutamate and GABA, are associated with mental slowing in patients with epilepsy taking AEDs. METHODS Cross-sectional data were collected from patients with localization-related epilepsy using a variety of AEDs from three risk categories, i.e., AEDs with low, intermediate, and high risks of developing cognitive problems. Patients underwent 3T MR spectroscopy, including a PRESS (n=55) and MEGA-PRESS (n=43) sequence, to estimate occipital glutamate and GABA concentrations, respectively. The association was calculated between neurotransmitter concentrations and central information processing speed, which was measured using the Computerized Visual Searching Task (CVST) and compared between the different risk categories. RESULTS Combining all groups, patients with lower processing speeds had lower glutamate concentrations. Patients in the high-risk category had a lower glutamate concentration and lower processing speed compared with patients taking low-risk AEDs. Patients taking intermediate-risk AEDs also had a lower glutamate concentration compared with patients taking low-risk AEDs, but processing speed did not differ significantly between those groups. No associations were found between the GABA concentration and risk category or processing speed. CONCLUSIONS For the first time, a relation is shown between glutamate concentration and both mental slowing and AED use. It is suggested that the reduced excitatory action, reflected by lowered glutamate concentrations, may have contributed to the slowing of information processing in patients using AEDs with higher risks of cognitive side effects.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Dominique M IJff
- School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Neurology, Gent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Faculty of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Richard H C Lazeron
- Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N Caroline St., Baltimore 21287, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore 21205, MD, USA.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 N Caroline St., Baltimore 21287, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore 21205, MD, USA.
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands.
| | - Anton J A de Louw
- Departments of Neurology and Neuropsychology, Epilepsy Center Kempenhaeghe, P.O. Box 61, 5590 AB Heeze, The Netherlands and Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; Faculty of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
6
|
van Veenendaal TM, IJff DM, Aldenkamp AP, Hofman PAM, Vlooswijk MCG, Rouhl RPW, de Louw AJ, Backes WH, Jansen JFA. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review. Neurosci Biobehav Rev 2015; 59:92-9. [PMID: 26475992 DOI: 10.1016/j.neubiorev.2015.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
Abstract
As a large number of patients with epilepsy do not respond favorably to antiepileptic drugs (AEDs), a better understanding of treatment failure and the cause of adverse side effects is required. The working mechanisms of AEDs also alter neurotransmitter concentrations and brain activity, which can be measured using MR spectroscopy and functional MR imaging, respectively. This review presents an overview of clinical research of MR spectroscopy and functional MR imaging studies to the effects of AEDs on the brain. Despite the scarcity of studies associating MR findings to the effectiveness of AEDs, the current research shows clear potential regarding this matter. Several GABAergic AEDs have been shown to increase the GABA concentration, which was related to seizure reductions, while language problems due to topiramate have been associated with altered activation patterns measured with functional MR imaging. MR spectroscopy and functional MR imaging provide biomarkers that may predict individual treatment outcomes, and enable the assessment of mechanisms of treatment failure and cognitive side effects.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dominique M IJff
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Neurology, Gent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Marielle C G Vlooswijk
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Anton J de Louw
- Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
7
|
Silveri MM. GABAergic contributions to alcohol responsivity during adolescence: insights from preclinical and clinical studies. Pharmacol Ther 2014; 143:197-216. [PMID: 24631274 DOI: 10.1016/j.pharmthera.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/04/2023]
Abstract
There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol use disorders.
Collapse
Affiliation(s)
- Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Chowdhury FA, O'Gorman RL, Nashef L, Elwes RD, Edden RA, Murdoch JB, Barker GJ, Richardson MP. Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS. J Magn Reson Imaging 2014; 41:694-9. [PMID: 24585443 DOI: 10.1002/jmri.24611] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Idiopathic generalized epilepsies (IGE) comprise a group of clinical syndromes associated with spike wave discharges, putatively linked to alterations in neurotransmission. The purpose of this study was to investigate whether patients with IGE have altered glutamine and γ-aminobutyric acid (GABA) levels indicative of altered excitatory and inhibitory neurotransmission in frontal regions. MATERIALS AND METHODS Single-voxel MEGA-edited PRESS magnetic resonance imaging (MRI) spectra were acquired from a 30-mL voxel in the dorsolateral prefrontal cortex in 13 patients with IGE (8 female) and 16 controls (9 female) at 3T. Metabolite concentrations were derived using LCModel. Differences between groups were investigated using an unpaired t-test. RESULTS Patients with IGE were found to have significantly higher glutamine than controls (P = 0.02). GABA levels were also elevated in patients with IGE (P = 0.03). CONCLUSION Patients with IGE have increased frontal glutamine and GABA compared with controls. Since glutamine has been suggested to act as a surrogate for metabolically active glutamate, it may represent a marker for excitatory neurotransmission.
Collapse
Affiliation(s)
- Fahmida A Chowdhury
- Department of Clinical Neuroscience Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Levy LM, Degnan AJ. GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol 2013; 34:259-65. [PMID: 22268095 DOI: 10.3174/ajnr.a2902] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY GABA serves as a major neurotransmitter of the brain and functions mainly to inhibit neural excitatory activity. Disruption of the GABAergic processes appears to occur in various neurologic and psychiatric conditions, including epilepsy, mood disorders, motor disorders such as focal dystonia and stiff-person syndrome, sleep disorders, neuroplasticity, and drug and alcohol dependence. These concentration differences may be ascertained by using MR spectroscopy to provide information on the concentration of different metabolites. This review briefly discusses advances in MR spectroscopy methods and explores the application of this technique to detect changes in GABA due to disease processes and medication-induced effects.
Collapse
Affiliation(s)
- L M Levy
- Department of Radiology, George Washington University Medical Center, Washington, DC 20037, USA.
| | | |
Collapse
|
10
|
A microdialysis study of oral vigabatrin administration in head injury patients: preliminary evaluation of multimodality monitoring. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012. [PMID: 22327707 DOI: 10.1007/978-3-7091-0956-4_53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
BACKGROUND We assessed the feasibility of administering a neuroprotective drug, vigabatrin (VGB; gamma-vinyl-gamma-aminobutyric acid) with multimodality monitoring, including cerebral microdialysis, in severe head injury patients, to measure surrogate endpoints and blood-brain barrier (BBB) penetration. METHODS Patients (n = 20) were randomised to VGB (0.5 g twice-daily, enteric) or control. ICP, ABP, CPP and cerebrovascular pressure reactivity index (PRx) were monitored. Microdialysate glucose, lactate, pyruvate, glutamate, glycerol, amino acids, VGB and GABA were analysed. RESULTS Preliminary evaluation of results (five VGB-treated patients) showed that VGB levels rose in brain microdialysates, followed by a modest increase in GABA. VGB and GABA increased more in abnormal brain than in sites further from lesions, and were higher after multiple VGB doses. Highest VGB and GABA microdialysate levels were 75 and 4 μmol/L respectively. Microdialysate glucose and glycerol sometimes decreased, and glutamate and tyrosine sometimes increased, following VBG administration; causation unproven. VGB did not overtly affect ICP, ABP, CPP, PRx, or microdialysate lactate, pyruvate and lactate/pyruvate ratio. CONCLUSION Multimodality monitoring, including cerebral microdialysis, is feasible for studying surrogate endpoints following drug administration. VGB crosses the BBB, leading to modest increases in extracellular GABA. Further analyses are ongoing. Microdialysis may assist the development of neuroprotective agents by determining penetration into extracellular fluid of the brain.
Collapse
|
11
|
Agarwal N, Renshaw PF. Proton MR spectroscopy-detectable major neurotransmitters of the brain: biology and possible clinical applications. AJNR Am J Neuroradiol 2011; 33:595-602. [PMID: 22207303 DOI: 10.3174/ajnr.a2587] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in (1)H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of (1)H-MR spectroscopy in neuroscience research.
Collapse
Affiliation(s)
- N Agarwal
- Department of Radiology, Hospital Santa Chiara of Trento, Trento, Italy.
| | | |
Collapse
|
12
|
Doelken MT, Hammen T, Bogner W, Mennecke A, Stadlbauer A, Boettcher U, Doerfler A, Stefan H. Alterations of intracerebral γ-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 2010; 51:1477-82. [DOI: 10.1111/j.1528-1167.2010.02544.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Tong X, Ratnaraj N, Patsalos PN. Vigabatrin extracellular pharmacokinetics and concurrent γ-aminobutyric acid neurotransmitter effects in rat frontal cortex and hippocampus using microdialysis. Epilepsia 2009; 50:174-83. [DOI: 10.1111/j.1528-1167.2008.01863.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Simister RJ, McLean MA, Barker GJ, Duncan JS. The effect of sodium valproate on proton MRS visible neurochemical concentrations. Epilepsy Res 2007; 74:215-9. [PMID: 17448636 DOI: 10.1016/j.eplepsyres.2007.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/15/2007] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
The effect of the antiepileptic medication sodium valproate (VPA) on the concentrations of cerebral metabolites was studied longitudinally in ten patients with epilepsy using proton magnetic resonance spectroscopy (MRS). Myo-inositol was found to be lower while taking VPA, although no relationship between the change in metabolite concentration, VPA dose or seizure control was observed. MRS findings should be interpreted in the light of administered medications.
Collapse
Affiliation(s)
- Robert J Simister
- MRI Unit, The National Society for Epilepsy, and Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | | |
Collapse
|
15
|
Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res 2007; 74:107-15. [PMID: 17379481 DOI: 10.1016/j.eplepsyres.2007.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/15/2007] [Accepted: 02/14/2007] [Indexed: 12/21/2022]
Abstract
PURPOSE To use proton magnetic resonance spectroscopy (MRS) to measure concentrations of gamma-aminobutyric acid (GABA) and glutamate plus glutamine (GLX) in adult patients with refractory epilepsy associated with malformations of cortical development (MCD). METHODS We used MRS to measure N-acetyl aspartate (NAA), creatine plus phosphocreatine (Cr) and choline containing compounds (Cho), as well as GLX, and GABA. Fifteen patients with epilepsy attributable to MCD and 15 healthy controls were studied. Nine of the MCD group had heterotopia and six had polymicrogyria. Quantitative short echo time MRS [echo time (TE)=30 ms, repetition time (TR)=3000 ms] was performed in the MRI evident MCD and in the occipital lobes of the control group and the concentrations of NAA, Cr, Cho, and GLX were measured. GABA plus homocarnosine (GABA+) was measured in the same regions using a double quantum filter. RESULTS The dominant abnormalities in the patient group were elevation of Cho and GLX and reduction in NAAt compared to the control group. The ratios GLX/NAAt and GABA+/Cr were also increased in the patient group whilst the ratio NAAt/Cr was decreased. NAAt was significantly lower in polymicrogyria than heterotopia. CONCLUSIONS Large cortical malformations had abnormal levels of both GLX and GABA+/Cr. Low NAAt and high Cho were also observed. These results indicate that MCD show spectroscopic features of primitive tissue and abnormal metabolism of both inhibitory and excitatory neurotransmitters.
Collapse
Affiliation(s)
- Robert J Simister
- MRI Unit, The National Society for Epilepsy and Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | | |
Collapse
|
16
|
Choi C, Coupland NJ, Hanstock CC, Ogilvie CJ, Higgins ACM, Gheorghiu D, Allen PS. Brain γ-aminobutyric acid measurement by proton double-quantum filtering with selectiveJ rewinding. Magn Reson Med 2005; 54:272-9. [PMID: 16032672 DOI: 10.1002/mrm.20563] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An optimized single-shot proton double-quantum (DQ) filter for the quantification of gamma-aminobutyric acid (GABA) levels in human brain is reported. It is demonstrated that creation of DQ coherences following dual-resonance-selective refocusing gives a theoretical editing efficiency of 50% for the detection of the GABA resonance at 3.01 ppm. The sequence times are optimized with both numerical and experimental analyses of the editing performance, giving an experimental editing efficiency of 42%. It is acknowledged that homocarnosine is partially coedited, leading to a 20% contribution to the edited signal; however, macromolecule contamination is negligible in vivo under these experimental conditions. The GABA concentration in human prefrontal cortex is estimated to be 0.8 +/- 0.1 micromol/g (mean +/- SD, n = 6), with reference to the internal standard creatine at 9 micromol/g.
Collapse
Affiliation(s)
- Changho Choi
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Techniques and methods of clinical (1)H-MR spectroscopy are described in this manuscript. The role of (1)H-MRS in the multimodal focus analysis of temporal lobe epilepsy (TLE) is illustrated with special respect to focus lateralization and differentiation between mesial and lateral (neocortical) TLE. Additionally the application of (1)H-MRS for evaluating postoperative outcome and monitoring conservative antiepileptic treatment schedules is summarized.
Collapse
Affiliation(s)
- T Hammen
- Neurologische Klinik mit Poliklinik, Zentrum Epilepsie, Universität Erlangen-Nürnberg, Erlangen
| | | |
Collapse
|
18
|
Johannessen SI, Battino D, Berry DJ, Bialer M, Krämer G, Tomson T, Patsalos PN. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 2003; 25:347-63. [PMID: 12766564 DOI: 10.1097/00007691-200306000-00016] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present review is to discuss the potential value of therapeutic drug monitoring (TDM) of the newer antiepileptic drugs (AEDs) felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, vigabatrin, and zonisamide. Studies of the relationship between serum concentrations and clinical efficacy of these drugs are reviewed, and the potential value of TDM of the drugs is discussed based on their pharmacokinetic properties and mode of action. Analytical methods for the determination of the serum concentrations of these drugs are also briefly described. There are only some prospective data on the serum concentration-effect relationships, and few studies have been designed primarily to study these relationships. As TDM is not widely practiced for the newer AEDs, there are no generally accepted target ranges for any of these drugs, and for most a wide range in serum concentration is associated with clinical efficacy. Furthermore, a considerable overlap in drug concentrations related to toxicity and nonresponse is reported. Nevertheless, the current tentative target ranges for felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine (10-hydroxy-carbazepine metabolite), tiagabine, topiramate, vigabatrin, and zonisamide are 125 to 250 micromol/L, 70 to 120 micromol/L, 10 to 60 micromol/L, 35 to 120 micromol/L, 50 to 140 micomol/L, 50 to 250 nmol/L, 15 to 60 micromol/L, 6 to 278 micromol/L, and 45 to 180 micromol/L, respectively. Further systematic studies designed specifically to evaluate concentration-effect relationships of the new AEDs are urgently needed. Although routine monitoring in general cannot be recommended at present, measurements of some of the drugs is undoubtedly of help with individualization of treatment in selected cases in a particular clinical setting.
Collapse
Affiliation(s)
- Svein I Johannessen
- The National Center for Epilepsy, Sandvika, Norway, "Carlo Besta", Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wieser HG. Future aspects of epilepsy research. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 84:1-16. [PMID: 12379000 DOI: 10.1007/978-3-7091-6117-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
This contribution in honour of Prof. Gerhard Pendl first reviews some recent studies on resected tissue, migrational disorders, and Rasmussen's Syndrome. These areas of basic research profit from recent advances of molecular biology and genetics. On the clinical side, some studies dealing with proton magnetic resonance spectroscopy are reviewed. In order to highlight the progress in clinical epilepsy research using modern methods of structural and functional imaging, functional outcome prediction is also reviewed. This kind of advanced clinical research is dealt with by discussing risk factor assessment associated with postsurgical decrements in memory. With regard to motor functions, we compare the yield of functional MR and intraoperative cortical stimulation in patients with lesions in or close to the Rolandic cortex. Progress in the field of advanced EEG analysis is reviewed in the context of "seizure prediction" and cognitive event-related potentials. Finally some of the new epilepsy treatment options, such as Gamma Knife treatment, where Prof. Pendl's group made pioneering contributions, are dealt with.
Collapse
Affiliation(s)
- H G Wieser
- Neurology Clinic, Dept. Epileptology and Electroencephalography, University Hospital, Zurich, Switzerland
| |
Collapse
|
20
|
Simister RJ, McLean MA, Barker GJ, Duncan JS. A proton magnetic resonance spectroscopy study of metabolites in the occipital lobes in epilepsy. Epilepsia 2003; 44:550-8. [PMID: 12681004 DOI: 10.1046/j.1528-1157.2003.19102.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE gamma-Amino butyric acid (GABA) and glutamate, respectively the principal inhibitory and excitatory neurochemicals in the brain, are visible to proton magnetic resonance spectroscopy (MRS). We report a study of GABA+ (GABA plus homocarnosine) and GLX (glutamate plus glutamine) concentrations in the occipital lobes in patients with idiopathic generalised epilepsy (IGE) and in patients with occipital lobe epilepsy (OLE). METHODS Fifteen patients with IGE, 15 patients with OLE, and 15 healthy volunteers were studied. A single voxel was prescribed in the occipital lobes for each subject. PRESS localised short-echo-time MRS was performed to measure GLX by using LCModel. A double quantum GABA filter was used to measure GABA+. Segmented T1-weighted images gave the tissue composition of the prescribed voxel. RESULTS Grey-matter proportion, GLX, and GABA+ were all elevated in IGE. However, analysis using grey-matter proportion as a covariable showed no significant group differences. No correlation was observed between GABA+ concentration and either seizure frequency or time since last seizure. CONCLUSIONS GLX and GABA+ were elevated in IGE. Elevated grey-matter content in the IGE group despite normal MRI appearance can be expected to account for some or all of this observed elevation of GLX and GABA+. GABA+ concentration did not correlate with seizure control or duration since most recent seizure.
Collapse
|
21
|
Mueller SG, Weber OM, Duc CO, Meier D, Russ W, Boesiger P, Wieser HG. Effects of vigabatrin on brain GABA+/Cr signals in focus-distant and focus-near brain regions monitored by 1H-NMR spectroscopy. Eur J Neurol 2003; 10:45-52. [PMID: 12534992 DOI: 10.1046/j.1468-1331.2003.00506.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The new antiepileptic drug vigabatrin (VGB) increases gamma-aminobutyric acid (GABA) in the brain. We compared GABA+/Cr signals measured focus-near and focus-distant and correlated it with the degree of response to VGB. Brain GABA+/Cr signals were measured in 17 epileptic patients in structurally normal appearing tissue by nuclear proton magnetic resonance (1H-NMR) spectroscopy using a special editing sequence for GABA. In 11 patients the measurements were done in brain areas distant to focus and in six near to focus. Full-responders (seizure reduction of >or=50% at the end of the treatment phase) and partial-responders (seizure reduction of >or=50% at the end of the first month of treatment but <or=50% at end of treatment) had lower GABA+/Cr signals in the hemisphere with the epileptogenic focus and increases of the GABA+/Cr signals with VGB. Non-responders (seizure reduction of <or=50%) had no side difference in the GABA+/Cr signals before treatment and no increase during treatment. These observations were made in structurally normal appearing tissue near to the focus and distant to the focus. A side difference in brain GABA+/Cr signal between the epileptogenic and non-epileptogenic hemisphere before VGB treatment correlates with an improved seizure control under VGB treatment regardless whether the measurement is done focus-near or focus-distant.
Collapse
Affiliation(s)
- S G Mueller
- Department of Neurology, University Hospital, Frauenklinikstr 26, CH-8091 Zurich
| | | | | | | | | | | | | |
Collapse
|
22
|
Petroff OAC, Errante LD, Rothman DL, Kim JH, Spencer DD. Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 2002; 52:635-42. [PMID: 12402262 DOI: 10.1002/ana.10360] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesial temporal lobe epilepsy is characterized by hippocampal atrophy, hypometabolism, and decreased N-acetylaspartate, often attributed to neuron loss and gliosis. Twenty hippocampal specimens were obtained during temporal lobectomy and frozen quickly. Perchloric acid extracts of the small metabolites were analyzed by proton magnetic resonance spectroscopy. There were no significant associations between hippocampal neuron loss and the cellular content of N-acetylaspartate, glutamate, GABA, glutamine, or aspartate. The mean metabolite content of hippocampi with less than 30% of neurons remaining was the same as those with greater than 65% of neurons surviving. Mean N-acetylaspartate levels were below those reported by in vivo studies of control subjects. The highest and the lowest glutamate concentrations were seen in specimens with the worst neuron loss. A highly significant association between hippocampal N-acetylaspartate and glutamate content was seen with weak associations between N-acetylaspartate and aspartate and glutamate and aspartate. The hippocampal content of N-acetylaspartate, glutamate, GABA, glutamine, and aspartate is altered minimally by severe neuron loss in mesial temporal lobe epilepsy. The epileptic human hippocampus has increased intracellular glutamate content that may contribute to the epileptogenic nature of hippocampal sclerosis.
Collapse
Affiliation(s)
- Ognen A C Petroff
- Department of Neurology, Yale University, 333 Cedar Street, New Haven, CT 06520-8018, USA.
| | | | | | | | | |
Collapse
|
23
|
Hanstock CC, Coupland NJ, Allen PS. GABA X2 multiplet measured pre- and post-administration of vigabatrin in human brain. Magn Reson Med 2002; 48:617-23. [PMID: 12353278 DOI: 10.1002/mrm.10265] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work demonstrates, in solution and in human brain at 3 tesla, that the X(2)-multiplet of the A(2)M(2)X(2) proton spin system of GABA at 2.315 ppm can be readily resolved from that of the overlapping background, particularly the glutamate multiplet, i.e., the PQ multiplet of the glutamate AMNPQ spin system. Prior to experiment, the values of the stimulated echo acquisition mode (STEAM) sequence parameters TE and TM that maximized the GABA-X(2) discrimination from its background (i.e., 168 ms and 28 ms, respectively) were determined numerically. The determination was made by calculating the spectral response of all contributing metabolites to the STEAM sequence throughout TE/TM space. A baseline GABA concentration (mean +/- standard deviation (SD) of the mean) of 0.78 +/- 0.04 mM was estimated from spectra acquired from a 3 x 3 x 3 cm(3) volume in the parieto-occipital cortex of eight normal control subjects. Five of the eight control subjects were also studied 24 hr post-administration of a single dose of 50 mg.kg(-1) vigabatrin. Four of the five showed increases in GABA in the range of 15-120% of their baseline level.
Collapse
|
24
|
McLean MA, Busza AL, Wald LL, Simister RJ, Barker GJ, Williams SR. In vivo GABA+ measurement at 1.5T using a PRESS-localized double quantum filter. Magn Reson Med 2002; 48:233-41. [PMID: 12210931 DOI: 10.1002/mrm.10208] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A point-resolved spectroscopy (PRESS)-localized double quantum filter was implemented on a 1.5T clinical scanner for the estimation of gamma-amino butyric acid (GABA) concentrations in vivo. Several calibrations were found to be necessary for consistent results to be obtained. The apparent filter yield was approximately 38%; filter strength was sufficient to reduce the singlet metabolite peaks in vivo to below the level of the noise. Metabolite-nulled experiments were performed, which confirmed that significant overlap occurred between macromolecule signals and the GABA resonance at 3.1 ppm. Although the multiplet arm at 2.9 ppm was confirmed to be relatively free of contamination with macromolecules, some contribution from these and from peptides is likely to remain; therefore, the term GABA+ is used. GABA+ concentrations were estimated relative to creatine (Cr) at the same echo time (TE) in a group of controls, studied on two occasions. The GABA+ concentration in 35-ml regions of interest (ROIs) in the occipital lobe was found to be 1.4 +/- 0.2 mM, with scan-rescan repeatability of 38%.
Collapse
Affiliation(s)
- M A McLean
- MRI Unit, National Society for Epilepsy, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Petroff O, Pan J, Rothman D. Magnetic Resonance Spectroscopic Studies of Neurotransmitters and Energy Metabolism in Epilepsy. Epilepsia 2002. [DOI: 10.1046/j.1528-1157.2002.043s1040.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Mueller SG, Weber OM, Boesiger P, Wieser HG. Influence of pyridoxal 5'-phosphate alone and in combination with vigabatrin on brain GABA measured by 1H-NMR-spectroscopy. Brain Res Bull 2001; 55:555-60. [PMID: 11543957 DOI: 10.1016/s0361-9230(01)00565-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Both iso-forms of the gamma-aminobutyric acid (GABA) synthesising enzyme and also the GABA degrading enzyme need pyridoxal 5'-phosphate (PP) as co-enzyme. The aim of the study was to investigate the influence of PP alone and in combination with various doses of vigabatrin (VGB) on brain GABA levels. In eight healthy subjects 300 mg/d PP and various doses of VGB (range, 1000 mg/d to 4000 mg/d) were given alone or in combination. The GABA+/creatine (Cr) signals in both occipital lobes were measured before treatment, during monotherapy with PP or VGB, and during combination of both using 1H-NMR-spectroscopy (1H-NMRS). PP alone did not change the GABA+/Cr signals. VGB alone increased the GABA+/Cr signals in both hemispheres. The combination PP and low-medium dosed VGB (1000-2000 mg/d) did not increase the GABA+/Cr signals. The effects of the combination of PP and high dosed (3000-4000 mg/d) VGB on the GABA+/Cr signals varied depending on the sequence of the drugs and dose of VGB. PP alone has no effect on the GABA+/Cr signals in healthy volunteers. The combination of PP and low-high dosed VGB had inconsistent effects on the GABA+/Cr signals compared to a VGB monotherapy because PP activates also the GABA-degrading enzyme GABA-transaminase.
Collapse
Affiliation(s)
- S G Mueller
- Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
| | | | | | | |
Collapse
|