1
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
2
|
Giovannini G, Meletti S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. Int J Mol Sci 2023; 24:12519. [PMID: 37569895 PMCID: PMC10420319 DOI: 10.3390/ijms241512519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As per the latest ILAE definition, status epilepticus (SE) may lead to long-term irreversible consequences, such as neuronal death, neuronal injury, and alterations in neuronal networks. Consequently, there is growing interest in identifying biomarkers that can demonstrate and quantify the extent of neuronal and glial injury. Despite numerous studies conducted on animal models of status epilepticus, which clearly indicate seizure-induced neuronal and glial injury, as well as signs of atrophy and gliosis, evidence in humans remains limited to case reports and small case series. The implications of identifying such biomarkers in clinical practice are significant, including improved prognostic stratification of patients and the early identification of those at high risk of developing irreversible complications. Moreover, the clinical validation of these biomarkers could be crucial in promoting neuroprotective strategies in addition to antiseizure medications. In this study, we present a systematic review of research on biomarkers of neuro-glial injury in patients with status epilepticus.
Collapse
Affiliation(s)
- Giada Giovannini
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| | - Stefano Meletti
- Neurology Department, Azienda Ospedaliera-Universitaria di Modena, 41126 Modena, Italy;
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, 41121 Modena, Italy
| |
Collapse
|
3
|
Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 2023; 224:109349. [PMID: 36436594 PMCID: PMC9843824 DOI: 10.1016/j.neuropharm.2022.109349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Epileptogenic seizures, or status epilepticus (SE), leads to excitotoxic injury in hippocampal and limbic neurons in the kainic acid (KA) animal model of temporal lobe epilepsy (TLE). Here, we have further characterized neural activity regulated methylaminoisobutryic acid (MeAIB)/glutamine transport activity in mature rat hippocampal neurons in vitro that is inhibited by riluzole (IC50 = 1 μM), an anti-convulsant benzothiazole agent. We screened a library of riluzole derivatives and identified SKA-41 followed by a second screen and synthesized several novel chlorinated aminothiazoles (SKA-377, SKA-378, SKA-379) that are also potent MeAIB transport inhibitors in vitro, and brain penetrant following systemic administration. When administered before KA, SKA-378 did not prevent seizures but still protected the hippocampus and several other limbic areas against SE-induced neurodegeneration at 3d. When SKA-377 - 379, (30 mg/kg) were administered after KA-induced SE, acute neural injury in the CA3, CA1 and CA4/hilus was also largely attenuated. Riluzole (10 mg/kg) blocks acute neural injury. Kinetic analysis of SKA-378 and riluzoles' blockade of Ca2+-regulated MeAIB transport in neurons in vitro indicates that inhibition occurs via a non-competitive, indirect mechanism. Sodium channel NaV1.6 antagonism blocks neural activity regulated MeAIB/Gln transport in vitro (IC50 = 60 nM) and SKA-378 is the most potent inhibitor of NaV1.6 (IC50 = 28 μM) compared to NaV1.2 (IC50 = 118 μM) in heterologous cells. However, pharmacokinetic analysis suggests that sodium channel blockade may not be the predominant mechanism of neuroprotection here. Riluzole and our novel aminothiazoles are agents that attenuate acute neural hippocampal injury following KA-induced SE and may help to understand mechanisms involved in the progression of epileptic disease.
Collapse
|
4
|
Barker BS, Spampanato J, McCarren HS, Berger K, Jackson CE, Yeung DT, Dudek FE, McDonough JH. The K v7 Modulator, Retigabine, is an Efficacious Antiseizure Drug for Delayed Treatment of Organophosphate-induced Status Epilepticus. Neuroscience 2021; 463:143-158. [PMID: 33836243 PMCID: PMC8142924 DOI: 10.1016/j.neuroscience.2021.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Benzodiazepines are the primary treatment option for organophosphate (OP)-induced status epilepticus (SE), but these antiseizure drugs (ASDs) lose efficacy as treatment is delayed. In the event of a mass civilian or military exposure, significant treatment delays are likely. New ASDs that combat benzodiazepine-resistant, OP-induced SE are critically needed, particularly if they can be efficacious after a long treatment delay. This study evaluated the efficacy of the Kv7 channel modulator, retigabine, as a novel therapy for OP-induced SE. Adult, male rats were exposed to soman or diisopropyl fluorophosphate (DFP) to elicit SE and monitored by electroencephalogram (EEG) recording. Retigabine was administered alone or adjunctive to midazolam (MDZ) at delays of 20- or 40-min in the soman model, and 60-min in the DFP model. Following EEG recordings, rats were euthanized and brain tissue was collected for Fluoro-Jade B (FJB) staining to quantify neuronal death. In the DFP model, MDZ + 15 mg/kg retigabine suppressed seizure activity and was neuroprotective. In the soman model, MDZ + 30 mg/kg retigabine suppressed seizures at 20- and 40-min delays. Without MDZ, 15 mg/kg retigabine provided partial antiseizure and neuroprotectant efficacy in the DFP model, while 30 mg/kg without MDZ failed to attenuate soman-induced SE. At 60 mg/kg, retigabine without MDZ strongly reduced seizure activity and neuronal degeneration against soman-induce SE. This study demonstrates the antiseizure and neuroprotective efficacy of retigabine against OP-induced SE. Our data suggest retigabine could be a useful adjunct to standard-of-care and has potential for use in the absence of MDZ.
Collapse
Affiliation(s)
- Bryan S Barker
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle Berger
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - Cecelia E Jackson
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| | - David T Yeung
- National Institutes of Health/National Institute of Allergy and Infectious Disease, Bethesda, MD 20892, USA
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, Medical Toxicology Research Division, Neuroscience Department, 2900 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
5
|
Löscher W. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments. Neuropharmacology 2019; 167:107605. [PMID: 30980836 DOI: 10.1016/j.neuropharm.2019.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
A variety of acute brain insults can induce epileptogenesis, a complex process that results in acquired epilepsy. Despite advances in understanding mechanisms of epileptogenesis, there is currently no approved treatment that prevents the development or progression of epilepsy in patients at risk. The current concept of epileptogenesis assumes a window of opportunity following acute brain insults that allows intervention with preventive treatment. Recent results suggest that injury-induced epileptogenesis can be a much more rapid process than previously thought, suggesting that the 'therapeutic window' may only be open for a brief period, as in stroke therapy. However, experimental data also suggest a second, possibly delayed process ("secondary epileptogenesis") that influences the progression and refractoriness of the epileptic state over time, allowing interfering with this process even after onset of epilepsy. In this review, both methodological issues in preclinical drug development and novel targets for antiepileptogenesis will be discussed. Several promising drugs that either prevent epilepsy (antiepileptogenesis) or slow epilepsy progression and alleviate cognitive or behavioral comorbidities of epilepsy (disease modification) have been described in recent years, using diverse animal models of acquired epilepsy. Promising agents include TrkB inhibitors, losartan, statins, isoflurane, anti-inflammatory and anti-oxidative drugs, the SV2A modulator levetiracetam, and epigenetic interventions. Research on translational target validity and on prognostic biomarkers that can be used to stratify patients (or experimental animals) at high risk of developing epilepsy will hopefully soon lead to proof-of-concept clinical trials with the most promising drugs, which will be essential to make prevention of epilepsy a reality. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
6
|
Welzel L, Twele F, Schidlitzki A, Töllner K, Klein P, Löscher W. Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice. Epilepsy Res 2019; 151:48-66. [PMID: 30831337 DOI: 10.1016/j.eplepsyres.2019.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
Network-based approaches in drug discovery comprise both development of novel drugs interacting with multiple targets and repositioning of drugs with known targets to form novel drug combinations that interact with cellular or molecular networks whose function is disturbed in a disease. Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed multitargeted, network-based approaches to prevent epileptogenesis by combinations of clinically available drugs chosen to impact diverse epileptogenic processes. In order to test this strategy preclinically, we developed a multiphase sequential study design for evaluating such drug combinations in rodents, derived from human clinical drug development phases. Because pharmacokinetics of such drugs are known, only the tolerability of novel drug combinations needs to be evaluated in Phase I in öhealthy" controls. In Phase IIa, tolerability is assessed following an epileptogenic brain insult, followed by antiepileptogenic efficacy testing in Phase IIb. Here, we report Phase I and Phase IIa evaluation of 7 new drug combinations in mice, using 10 drugs (levetiracetam, topiramate, gabapentin, deferoxamine, fingolimod, ceftriaxone, α-tocopherol, melatonin, celecoxib, atorvastatin) with diverse mechanisms thought to be important in epileptogenesis. Six of the 7 drug combinations were well tolerated in mice during prolonged treatment at the selected doses in both controls and during the latent phase following status epilepticus induced by intrahippocampal kainate. However, none of the combinations prevented hippocampal damage in response to kainate, most likely because treatment started only 16-18 h after kainate. This suggests that antiepileptogenic or disease-modifying treatment may need to start earlier after the brain insult. The present data provide a rich collection of tolerable, network-based combinatorial therapies as a basis for antiepileptogenic or disease-modifying efficacy testing.
Collapse
Affiliation(s)
- Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD 20817, USA
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
7
|
Liberato JL, Godoy LD, Cunha AOS, Mortari MR, de Oliveira Beleboni R, Fontana ACK, Lopes NP, Dos Santos WF. Parawixin2 Protects Hippocampal Cells in Experimental Temporal Lobe Epilepsy. Toxins (Basel) 2018; 10:toxins10120486. [PMID: 30469496 PMCID: PMC6316435 DOI: 10.3390/toxins10120486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is considered as one of the major disabling neuropathologies. Almost one third of adult patients with temporal lobe epilepsy (TLE) do not respond to current antiepileptic drugs (AEDs). Additionally, most AEDs do not have neuroprotective effects against the inherent neurodegenerative process underlying the hippocampal sclerosis on TLE. Dysfunctions in the GABAergic neurotransmission may contribute not only to the onset of epileptic activity but also constitute an important system for therapeutic approaches. Therefore, molecules that enhance GABA inhibitory effects could open novel avenues for the understanding of epileptic plasticity and for drug development. Parawixin2, a compound isolated from Parawixia bistriata spider venom, inhibits both GABA and glycine uptake and has an anticonvulsant effect against a wide range of chemoconvulsants. The neuroprotective potential of Parawixin2 was analyzed in a model of TLE induced by a long-lasting Status Epilepticus (SE), and its efficiency was compared to well-known neuroprotective drugs, such as riluzole and nipecotic acid. Neuroprotection was assessed through histological markers for cell density (Nissl), astrocytic reactivity (GFAP) and cell death labeling (TUNEL), which were performed 24 h and 72 h after SE. Parawixin2 treatment resulted in neuroprotective effects in a dose dependent manner at 24 h and 72 h after SE, as well as reduced reactive astrocytes and apoptotic cell death. Based on these findings, Parawixin2 has a great potential to be used as a tool for neuroscience research and as a probe to the development of novel GABAergic neuroprotective agents.
Collapse
Affiliation(s)
- José Luiz Liberato
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Lívea Dornela Godoy
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Alexandra Olimpio Siqueira Cunha
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF 70910-900 Brasília, Brazil.
| | - Rene de Oliveira Beleboni
- Department of Biotechnology/School of Medicine, University of Ribeirão Preto, Av. Costábile Romano, 2201, Ribeirão Preto, 14096-900 São Paulo, Brazil.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | - Norberto Peporine Lopes
- NPPNS, Department of Physics and Chemistry, College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil, Av. do Cafe s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil.
| | - Wagner Ferreira Dos Santos
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| |
Collapse
|
8
|
Castro OW, Upadhya D, Kodali M, Shetty AK. Resveratrol for Easing Status Epilepticus Induced Brain Injury, Inflammation, Epileptogenesis, and Cognitive and Memory Dysfunction-Are We There Yet? Front Neurol 2017; 8:603. [PMID: 29180982 PMCID: PMC5694141 DOI: 10.3389/fneur.2017.00603] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Status epilepticus (SE) is a medical emergency exemplified by self-sustaining, unceasing seizures or swiftly recurring seizure events with no recovery between seizures. The early phase after SE event is associated with neurodegeneration, neuroinflammation, and abnormal neurogenesis in the hippocampus though the extent of these changes depends on the severity and duration of seizures. In many instances, over a period, the initial precipitating injury caused by SE leads to temporal lobe epilepsy (TLE), typified by spontaneous recurrent seizures, cognitive, memory and mood impairments associated with chronic inflammation, reduced neurogenesis, abnormal synaptic reorganization, and multiple molecular changes in the hippocampus. While antiepileptic drugs are efficacious for terminating or greatly reducing seizures in most cases of SE, they have proved ineffective for easing SE-induced epileptogenesis and TLE. Despite considerable advances in elucidating SE-induced multiple cellular, electrophysiological, and molecular changes in the brain, efficient strategies that prevent SE-induced TLE development are yet to be discovered. This review critically confers the efficacy and promise of resveratrol, a phytoalexin found in the skin of red grapes, for easing SE-induced neurodegeneration, neuroinflammation, aberrant neurogenesis, and for restraining the evolution of SE-induced brain injury into a chronic epileptic state typified by spontaneous recurrent seizures, and learning, memory, and mood impairments.
Collapse
Affiliation(s)
- Olagide W Castro
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Dinesh Upadhya
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States.,Department of Anatomy, Kasturba Medical College, Manipal University, Manipal, India
| | - Maheedhar Kodali
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| | - Ashok K Shetty
- Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, United States.,Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States
| |
Collapse
|
9
|
Schidlitzki A, Twele F, Klee R, Waltl I, Römermann K, Bröer S, Meller S, Gerhauser I, Rankovic V, Li D, Brandt C, Bankstahl M, Töllner K, Löscher W. A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy. Sci Rep 2017; 7:12191. [PMID: 28939854 PMCID: PMC5610327 DOI: 10.1038/s41598-017-12368-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures.
Collapse
Affiliation(s)
- Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Institute for Auditory Neuroscience at University Medical Center Göttingen & German Primate Center, Göttingen, Germany
| | - Dandan Li
- Center for Systems Neuroscience, 30559, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
- Center for Systems Neuroscience, 30559, Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
- Center for Systems Neuroscience, 30559, Hannover, Germany.
| |
Collapse
|
10
|
Disease-modifying effect of intravenous immunoglobulin in an experimental model of epilepsy. Sci Rep 2017; 7:40528. [PMID: 28074934 PMCID: PMC5225452 DOI: 10.1038/srep40528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Novel therapies that prevent or modify the development of epilepsy following an initiating brain insult could significantly reduce the burden of this disease. In light of evidence that immune mechanisms play an important role in generating and maintaining the epileptic condition, we evaluated the effect of a well-established immunomodulatory treatment, intravenous immunoglobulin (IVIg), on the development of epilepsy in an experimental model of epileptogenesis. In separate experiments, IVIg was administered either before (pre-treatment) or after (post-treatment) the onset of pilocarpine status epilepticus (SE). Our results show that both pre- and post-treatment with IVIg attenuated acute inflammation in the SE model. Specifically, IVIg reduced local activation of glial cells, complement system activation, and blood-brain barrier damage (BBB), which are all thought to play important roles in the development of epilepsy. Importantly, post-treatment with IVIg was also found to reduce the frequency and duration of subsequent spontaneous recurrent seizures as detected by chronic video-electroencephalographic (video-EEG) recordings. This finding supports a novel application for IVIg, specifically its repurposing as a disease-modifying therapy in epilepsy.
Collapse
|
11
|
Seghatoleslam M, Alipour F, Shafieian R, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Hosseini M. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 2016; 6:262-268. [PMID: 27419091 PMCID: PMC4936772 DOI: 10.1016/j.jtcme.2015.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023] Open
Abstract
Nigella sativa (NS) has been suggested to have neuroprotective and anti-seizures properties. The aim of current study was to investigate the effects of NS hydro-alcoholic extract on neural damage after pentylenetetrazole (PTZ) - induced repeated seizures. The rats were divided into five groups: (1) control (saline), (2) PTZ (50 mg/kg, i.p.), (3-5) PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 (100, 200 and 400 mg/kg of NS extract respectively, 30 min prior to each PTZ injection on 5 consecutive days). The passive avoidance (PA) test was done and the brains were then removed for histological measurements. The PTZ-NS 100, PTZ-NS 200 and PTZ-NS 400 groups had lower seizure scores than PTZ group (P < 0.01 and P < 0.001). The latency to enter the dark compartment by the animals of PTZ group was lower than control in PA test (P < 0.01). Pre-treatment by 400 mg/kg of the extract increased the latency to enter the dark compartment (P < 0.05). Meanwhile, different doses of the extract inhibited production of dark neurons in different regions of hippocampus (P < 0.001). The present study allows us to suggest that the NS possesses a potential ability to prevent hippocampal neural damage which is accompanied with improving effects on memory.
Collapse
Affiliation(s)
- Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hassanzadeh
- Neurogenic Inflammation Research Center and Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Klee R, Töllner K, Rankovic V, Römermann K, Schidlitzki A, Bankstahl M, Löscher W. Network pharmacology for antiepileptogenesis: Tolerability of multitargeted drug combinations in nonepileptic vs. post-status epilepticus mice. Epilepsy Res 2015; 118:34-48. [PMID: 26600369 DOI: 10.1016/j.eplepsyres.2015.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
Prevention of symptomatic epilepsy ("antiepileptogenesis") in patients at risk is a major unmet clinical need. Several drugs underwent clinical trials for epilepsy prevention, but none of the drugs tested was effective. Similarly, most previous preclinical attempts to develop antiepileptogenic strategies failed. In the majority of studies, drugs were given as monotherapy. However, epilepsy is a complex network phenomenon, so that it is unlikely that a single drug can halt epileptogenesis. We recently proposed multitargeted approaches ("network pharmacology") to interfere with epileptogenesis. One strategy, which, if effective, would allow a relatively rapid translation into the clinic, is developing novel combinations of clinically used drugs with diverse mechanisms that are potentially relevant for antiepileptogenesis. In order to test this strategy preclinically, we developed an algorithm for testing such drug combinations, which was inspired by the established drug development phases in humans. As a first step of this algorithm, tolerability of four rationally chosen, repeatedly administered drug combinations was evaluated by a large test battery in mice: A, levetiracetam and phenobarbital; B, valproate, losartan, and memantine; C, levetiracetam and topiramate; and D, levetiracetam, parecoxib, and anakinra. As in clinical trials, tolerability was separately evaluated before starting efficacy experiments to identify any adverse effects of the combinations that may critically limit the successful translation of preclinical findings to the clinic. Except combination B, all drug cocktails were relatively well tolerated. Based on previous studies, we expected that tolerability would be lower in the latent and chronic phases following status epilepticus in mice, but, except combinations C and D, no significant differences were determined between nonepileptic and post-status epilepticus animals. As a next step, the rationally chosen drug combinations will be evaluated for antiepileptogenic activity in mouse and rat models of symptomatic epilepsy.
Collapse
Affiliation(s)
- Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
13
|
Rusbridge C, Long S, Jovanovik J, Milne M, Berendt M, Bhatti SFM, De Risio L, Farqhuar RG, Fischer A, Matiasek K, Muñana K, Patterson EE, Pakozdy A, Penderis J, Platt S, Podell M, Potschka H, Stein VM, Tipold A, Volk HA. International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol. BMC Vet Res 2015; 11:194. [PMID: 26319136 PMCID: PMC4594743 DOI: 10.1186/s12917-015-0466-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed.
Collapse
Affiliation(s)
- Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK. .,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, UK.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Jelena Jovanovik
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK.
| | - Marjorie Milne
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sofie F M Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, UK.
| | - Robyn G Farqhuar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, UK.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Edward E Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, UK.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|
14
|
Abstract
Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.
Collapse
|
15
|
Hadera MG, Faure JB, Berggaard N, Tefera TW, Nehlig A, Sonnewald U. The anticonvulsant actions of carisbamate associate with alterations in astrocyte glutamine metabolism in the lithium-pilocarpine epilepsy model. J Neurochem 2014; 132:532-545. [PMID: 25345404 DOI: 10.1111/jnc.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
As reported previously, in the lithium-pilocarpine model of temporal lobe epilepsy (TLE), carisbamate (CRS) produces strong neuroprotection, leads to milder absence-like seizures, and prevents behavioral impairments in a subpopulation of rats. To understand the metabolic basis of these effects, here we injected 90 mg/kg CRS or vehicle twice daily for 7 days starting 1 h after status epilepticus (SE) induction in rats. Two months later, we injected [1-13 C]glucose and [1,2-13 C]acetate followed by head microwave fixation after 15 min. 13 C incorporation into metabolites was analyzed using 13 C magnetic resonance spectroscopy. We found that SE reduced neuronal mitochondrial metabolism in the absence but not in the presence of CRS. Reduction in glutamate level was prevented by CRS and aspartate levels were similar to controls only in rats displaying absence-like seizures after treatment [CRS-absence-like epilepsy (ALE)]. Glutamine levels in CRS-ALE rats were higher compared to controls in hippocampal formation and limbic structures while unchanged in rats displaying motor spontaneous recurrent seizures after treatment (CRS-TLE). Astrocytic mitochondrial metabolism was reduced in CRS-TLE, and either enhanced or unaffected in CRS-ALE rats, which did not affect the transfer of glutamine from astrocytes to neurons. In conclusion, CRS prevents reduction in neuronal mitochondrial metabolism but its effect on astrocytes is likely key in determining outcome of treatment in this model. To understand the metabolic basis of the strong neuroprotection and reduction in seizure severity caused by carisbamate (CRS) in the lithium-pilocarpine (Li-Pilo) model of temporal lobe epilepsy (TLE), we injected CRS for 7 days starting 1 h after status epilepticus and 2 months later [1-13 C]glucose and [1,2-13 C]acetate. 13 C Magnetic resonance spectroscopy analysis was performed on brain extracts and we found that CRS prevented reduction in neuronal mitochondrial metabolism but its effect on astrocytes was likely key in determining outcome of treatment in this model. ALE = absence like epilepsy; acetyl CoA = acetyl coenzyme A; GS = glutamine synthetase; PAG = phosphate activated glutaminase; PC = pyruvate carboxylase; OAA = oxaloacetate; TCA cycle = tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Mussie Ghezu Hadera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jean-Baptiste Faure
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France.,Laboratory of Cognitive and Adaptive Neuroscience (LNCA), Faculty of Psychology, UMR 7364, University of Strasbourg-CNRS, Strasbourg, France
| | - Nina Berggaard
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tesfaye Wolde Tefera
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Nehlig
- Faculty of Medicine, INSERM U 666, University of Strasbourg, Strasbourg, France
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, Raymond AA, Dargahi L, Ahmadiani A. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts. Mol Neurobiol 2014; 52:492-513. [PMID: 25195699 DOI: 10.1007/s12035-014-8876-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/25/2014] [Indexed: 01/16/2023]
Abstract
Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
Collapse
Affiliation(s)
- Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rejdak K, Luszczki JJ, Błaszczyk B, Chwedorowicz R, Czuczwar SJ. Clinical utility of adjunctive retigabine in partial onset seizures in adults. Ther Clin Risk Manag 2012; 8:7-14. [PMID: 22298949 PMCID: PMC3269346 DOI: 10.2147/tcrm.s22605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In ~30% of epileptic patients, full seizure control is not possible, which is why the search for novel antiepileptic drugs continues. Retigabine exhibits a mechanism of action that is not shared by the available antiepileptic drugs. This antiepileptic enhances potassium currents via Kv7.2–7.3 channels, which very likely results from destabilization of a closed conformation or stabilization of the open conformation of the channels. Generally, the pharmacokinetics of retigabine are linear and the drug undergoes glucuronidation and acetylation. Results from clinical trials indicate that, in the form of an add-on therapy, retigabine proves an effective drug in refractory epileptic patients. The major adverse effects of the add-on treatment are dizziness, somnolence, and fatigue. This epileptic drug is also considered for other conditions – neuropathic pain, affective disorders, stroke, or even Alzheimer’s disease.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin
| | | | | | | | | |
Collapse
|
18
|
Acosta MT, Munashinge J, Zhang L, Guerron DA, Vortmeyer A, Theodore WH. Isolated seizures in rats do not cause neuronal injury. Acta Neurol Scand 2012; 125:30-7. [PMID: 21615350 DOI: 10.1111/j.1600-0404.2011.01521.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous studies have shown that status epilepticus can lead to neuronal injury. However, the effect of a small number of isolated seizures is uncertain. METHODS We used structural MRI and neuropathology to study the effects of isolated seizures induced by kainic acid (KA), (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazole-4-yl)propanoic acid (ATPA), and α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate in rats. A group of animals received normal saline. After seizure induction, animals were followed for 12 weeks. RESULTS ATPA and KA led to small but significant increases in ADC. There were no changes in T2 signal intensity or hippocampal volume. Blinded pathological examination showed no differences between animals receiving saline or glutamatergic agents. CONCLUSION Our study suggests that isolated seizures cause minimal neuronal injury in rats.
Collapse
Affiliation(s)
- M T Acosta
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
19
|
Shetty AK. Promise of resveratrol for easing status epilepticus and epilepsy. Pharmacol Ther 2011; 131:269-86. [PMID: 21554899 PMCID: PMC3133838 DOI: 10.1016/j.pharmthera.2011.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/29/2011] [Indexed: 12/26/2022]
Abstract
Resveratrol (RESV; 3,5,4'-tri-hydroxy stilbene), a naturally occurring phytoalexin, is found at a high concentration in the skin of red grapes and red wine. RESV mediates a wide-range of biological activities, which comprise an increased life span, anti-ischemic, anti-cancer, antiviral, anti-aging and anti-inflammatory properties. Studies in several animal prototypes of brain injury suggest that RESV is an effective neuroprotective compound. Ability to enter the brain after a peripheral administration and no adverse effects on the brain or body are other features that are appealing for using this compound as a therapy for brain injury or neurodegenerative diseases. The goal of this review is to discuss the promise of RESV for treating acute seizures, preventing the acute seizure or status epilepticus induced development of chronic epilepsy, and easing the chronic epilepsy typified by spontaneous recurrent seizures and cognitive dysfunction. First, the various beneficial effects of RESV on the normal brain are discussed to provide a rationale for considering RESV treatment in the management of acute seizures and epilepsy. Next, the detrimental effects of acute seizures or status epilepticus on the hippocampus and the implications of post-status epilepticus changes in the hippocampus towards the occurrence of chronic epilepsy and cognitive dysfunction are summarized. The final segment evaluates studies that have used RESV as a neuroprotective compound against seizures, and proposes studies that are critically needed prior to the clinical application of RESV as a prophylaxis against the development of chronic epilepsy and cognitive dysfunction after an episode of status epilepticus or head injury.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
20
|
Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010; 62:668-700. [PMID: 21079040 PMCID: PMC3014230 DOI: 10.1124/pr.110.003046] [Citation(s) in RCA: 305] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diverse brain insults, including traumatic brain injury, stroke, infections, tumors, neurodegenerative diseases, and prolonged acute symptomatic seizures, such as complex febrile seizures or status epilepticus (SE), can induce "epileptogenesis," a process by which normal brain tissue is transformed into tissue capable of generating spontaneous recurrent seizures. Furthermore, epileptogenesis operates in cryptogenic causes of epilepsy. In view of the accumulating information about cellular and molecular mechanisms of epileptogenesis, it should be possible to intervene in this process before the onset of seizures and thereby either prevent the development of epilepsy in patients at risk or increase the potential for better long-term outcome, which constitutes a major clinical need. For identifying pharmacological interventions that prevent, interrupt or reverse the epileptogenic process in people at risk, two groups of animal models, kindling and SE-induced recurrent seizures, have been recommended as potentially useful tools. Furthermore, genetic rodent models of epileptogenesis are increasingly used in assessing antiepileptogenic treatments. Two approaches have been used in these different model categories: screening of clinically established antiepileptic drugs (AEDs) for antiepileptogenic or disease-modifying potential, and targeting the key causal mechanisms that underlie epileptogenesis. The first approach indicated that among various AEDs, topiramate, levetiracetam, carisbamate, and valproate may be the most promising. On the basis of these experimental findings, two ongoing clinical trials will address the antiepileptogenic potential of topiramate and levetiracetam in patients with traumatic brain injury, hopefully translating laboratory discoveries into successful therapies. The second approach has highlighted neurodegeneration, inflammation and up-regulation of immune responses, and neuronal hyperexcitability as potential targets for antiepileptogenesis or disease modification. This article reviews these areas of progress and discusses the challenges associated with discovery of antiepileptogenic therapies.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, Hannover, Germany.
| | | |
Collapse
|
21
|
Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis 2010; 1:e79. [PMID: 21368852 PMCID: PMC3035899 DOI: 10.1038/cddis.2010.55] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The p53 tumor suppressor is a multifunctional protein, which regulates cell cycle, differentiation, DNA repair and apoptosis. Experimental seizures up-regulate p53 in the brain, and acute seizure-induced neuronal death can be reduced by genetic deletion or pharmacologic inhibition of p53. However, few long-term functional consequences of p53 deficiency have been explored. Here, we investigated the development of epilepsy triggered by status epilepticus in wild-type and p53-deficient mice. Analysis of electroencephalogram (EEG) recordings during status epilepticus induced by intra-amygdala kainic acid (KA) showed that seizures lasted significantly longer in p53-deficient mice compared with wild-type animals. Nevertheless, neuronal death in the hippocampal CA3 subfield and the neocortex was significantly reduced at 72 h in p53-deficient mice. Long-term continuous EEG telemetry recordings after status epilepticus determined that the sum duration of spontaneous seizures was significantly longer in p53-deficient compared with wild-type mice. Hippocampal damage and neuropeptide Y distribution at the end of chronic recordings was found to be similar between p53-deficient and wild-type mice. The present study identifies protracted KA-induced electrographic status as a novel outcome of p53 deficiency and shows that the absence of p53 leads to an exacerbated epileptic phenotype. Accordingly, targeting p53 to protect against status epilepticus or related neurologic insults may be offset by deleterious consequences of reduced p53 function during epileptogenesis or in chronic epilepsy.
Collapse
|
22
|
Epileptic tolerance is associated with enduring neuroprotection and uncoupling of the relationship between CA3 damage, neuropeptide Y rearrangement and spontaneous seizures following intra-amygdala kainic acid-induced status epilepticus in mice. Neuroscience 2010; 171:556-65. [PMID: 20837105 DOI: 10.1016/j.neuroscience.2010.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/19/2023]
Abstract
Brief, non-harmful seizures can activate endogenous protective programmes which render the brain resistant to damage caused by prolonged seizure episodes. Whether protection in epileptic tolerance is long-lasting or influences the subsequent development of epilepsy is uncertain. Presently, we investigated the relationship between hippocampal pathology, neuropeptide Y rearrangement and spontaneous seizures in sham- and seizure-preconditioned mice after status epilepticus induced by intra-amygdala kainate. Seizure-induced neuronal death at 24 h was significantly reduced in the ipsilateral hippocampal CA3 and hilus of tolerance mice compared to sham-preconditioned animals subject to status epilepticus. Damage to the CA3-hilus remained reduced in tolerance mice 21 days post-status. In sham-preconditioned mice subject to status epilepticus correlative statistics showed there was a strong inverse relationship between CA3, but not hilar, neuron counts and the number of spontaneous seizures. A strong positive association was also found between neuropeptide Y score and spontaneous seizure count in these mice. In contrast, there was no significant association between spontaneous seizure count and CA3 neuron loss or neuropeptide Y rearrangement in the tolerance mice. These data show that tolerance-conferred neuroprotection is long-lasting and that tolerance disrupts the normal association between CA3 damage, synaptic rearrangement and occurrence of spontaneous seizures in this model.
Collapse
|
23
|
Hanaya R, Sasa M, Sugata S, Tokudome M, Serikawa T, Kurisu K, Arita K. Hippocampal cell loss and propagation of abnormal discharges accompanied with the expression of tonic convulsion in the spontaneously epileptic rat. Brain Res 2010; 1328:171-80. [DOI: 10.1016/j.brainres.2010.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 12/01/2022]
|
24
|
Retigabine: the newer potential antiepileptic drug. Pharmacol Rep 2010; 62:211-9. [DOI: 10.1016/s1734-1140(10)70260-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/15/2009] [Indexed: 11/15/2022]
|
25
|
HAMED SHERIFAA. THE RATIONALE FOR NEUROPROTECTION IN EPILEPSY: STEPS FORWARD FOR NEW THERAPEUTIC AND PREVENTIVE STRATEGIES. J Integr Neurosci 2010; 09:65-102. [DOI: 10.1142/s0219635210002378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Avramescu S, Nita DA, Timofeev I. Neocortical post-traumatic epileptogenesis is associated with loss of GABAergic neurons. J Neurotrauma 2009; 26:799-812. [PMID: 19422294 DOI: 10.1089/neu.2008.0739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The subtle mechanisms of post-traumatic epileptogenesis remain unknown, although the incidence of chronic epilepsy after penetrating cortical wounds is high. Here, we investigated whether the increased frequency of seizures occurring within 6 weeks following partial deafferentation of the suprasylvian gyrus in cats is accompanied with a change in the ratio between the number of excitatory and inhibitory neurons. Immuno-histochemical labeling of all neurons with neuronal-specific nuclear protein (NeuN) antibody, and of the GABAergic inhibitory neurons with either gamma-aminobutyric acid (GABA) or glutamic acid decarboxylase (GAD 65&67) antibodies, was performed on sections obtained from control and epileptic animals with chronically deafferented suprasylvian gyrus. Quantification of the labeled neurons was performed in control animals and at 2, 4, and 6 weeks following cortical deafferentation, in the suprasylvian and marginal gyri, both ipsi- and contra-lateral to the cortical trauma. In all epileptic animals, the neuronal loss was circumscribed to the deafferented suprasylvian gyrus. Inhibitory GABAergic neurons were particularly more sensitive to cortical deafferentation than excitatory ones, leading to a progressively increasing ratio between excitation and inhibition towards excitation, potentially explaining the increased propensity to seizures in chronic undercut cortex.
Collapse
Affiliation(s)
- Sinziana Avramescu
- Laval University Medical School, Centre de Recherche Université Laval Robert-Giffard, Québec, QC G1J 2G3, Canada
| | | | | |
Collapse
|
27
|
Mao RR, Tian M, Yang YX, Zhou QX, Xu L, Cao J. Effects of pentylenetetrazol-induced brief convulsive seizures on spatial memory and fear memory. Epilepsy Behav 2009; 15:441-4. [PMID: 19570727 DOI: 10.1016/j.yebeh.2009.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 05/27/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that in the pentylenetetrazol (PTZ) kindling model, recurrent seizures either impair or have no effect on learning and memory. However, the effects of brief seizures on learning and memory remain unknown. Here, we found that a single injection of a convulsive dose of PTZ (50 mg/kg, ip) induced brief seizures in Sprague-Dawley rats. Administration of PTZ before training impaired the acquisition of spatial memory in the Morris water maze (MWM) and fear memory in contextual fear conditioning. However, the administration of PTZ immediately after training did not affect memory consolidation in either task. These findings suggest that brief seizures have different effects on acquisition and consolidation of spatial and fear memory.
Collapse
Affiliation(s)
- Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms and Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Cunha AOS, Mortari MR, Liberato JL, dos Santos WF. Neuroprotective effects of diazepam, carbamazepine, phenytoin and ketamine after pilocarpine-induced status epilepticus. Basic Clin Pharmacol Toxicol 2009; 104:470-7. [PMID: 19371260 DOI: 10.1111/j.1742-7843.2009.00403.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/microl, 1 microl) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Collapse
|
29
|
Isobolographic characterization of interactions of retigabine with carbamazepine, lamotrigine, and valproate in the mouse maximal electroshock-induced seizure model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 379:163-79. [DOI: 10.1007/s00210-008-0349-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
30
|
|
31
|
Gibbs SA, Scantlebury MH, Awad P, Lema P, Essouma JB, Parent M, Descarries L, Carmant L. Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion. Neurobiol Dis 2008; 32:176-82. [PMID: 18678257 DOI: 10.1016/j.nbd.2008.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 12/15/2022] Open
Abstract
In rats subjected to a focal cortical lesion soon after birth, hyperthermia at P10 induces a prolonged epileptic seizure, often followed by temporal lobe epilepsy in the adult. To determine whether brain damage and notably hippocampal atrophy occur early on in this model, whole brain as well as hemispheric, cortical, subcortical and hippocampal volumes was measured in non-lesioned and lesioned rat pups, 2 days (P12) and 12 days (P22) after the hyperthermic seizure. All pups with a cortical lesion showed reductions in whole brain and in ipsilateral hemispheric, cortical and hippocampal volumes at P12, which persisted at P22 in pups having also sustained a prolonged hyperthermic seizure at P10. Limiting the duration of the seizure with Diazepam prevented the hippocampal atrophy. Thus, a prolonged hyperthermic seizure in immature brain with a subtle neocortical lesion impairs normal brain development, and the duration of the seizure appears to be a key factor in generating hippocampal atrophy.
Collapse
Affiliation(s)
- Steve A Gibbs
- Sainte-Justine Hospital Research Centre, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Borges K, Gearing M, Rittling S, Sorensen ES, Kotloski R, Denhardt DT, Dingledine R. Characterization of osteopontin expression and function after status epilepticus. Epilepsia 2008; 49:1675-85. [PMID: 18522644 DOI: 10.1111/j.1528-1167.2008.01613.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Osteopontin is a cytokine found in many tissues and plays a role in tissue injury and repair. This study had two goals: to characterize osteopontin expression after status epilepticus (SE), and to test the hypotheses that osteopontin affects the susceptibility to seizures or alters cell death and inflammation after SE. METHODS Pilocarpine was used to induce SE in OPN(-/-) and OPN(+/+) mice to compare seizure susceptibility, neuropathological markers including real time PCR for inflammatory genes, and osteopontin immunohistochemistry. The effect of added osteopontin on excitotoxicity by N-methyl-d-aspartate in neuronal cultures of ONP(-/-) mice was determined. RESULTS Neurons undergoing degeneration showed osteopontin immunoreactivity 2-3 days after SE. After 10 to 31 days degenerating axons in the thalamus were osteopontin-positive. The susceptibility to seizures of OPN(-/-) and OPN(+/+) mice in the pilocarpine, fluorothyl, and maximal electroshock models was similar. There were no significant differences in the extent of neuronal damage after pilocarpine-induced SE, the expression of several neuropathological markers or the RNA levels of selected inflammatory genes. Recombinant and natural bovine osteopontin did not affect the extent of NMDA-induced cell death in OPN(-/-) mouse neuronal cultures. CONCLUSION We demonstrated that osteopontin is up-regulated in response to SE in distinct temporal sequences in the hippocampus, specifically in degenerating neurons and axons. However, osteopontin did not appear to regulate neurodegeneration or inflammation within the first 3 days after SE.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmaceutical Sciences, Texas Tech Health Sciences Center, Amarillo, Texas 79106, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Xu S, Pang Q, Liu Y, Shang W, Zhai G, Ge M. Neuronal apoptosis in the resected sclerotic hippocampus in patients with mesial temporal lobe epilepsy. J Clin Neurosci 2007; 14:835-40. [PMID: 17660056 DOI: 10.1016/j.jocn.2006.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 08/23/2006] [Accepted: 08/26/2006] [Indexed: 01/06/2023]
Abstract
To further confirm at the molecular level that neuronal apoptosis occurs in mesial temporal sclerosis (MTS), the main substrate of mesial temporal lobe epilepsy (MTLE), 24 resected sclerotic hippocampi from 24 patients with drug-resistant MTLE associated with MTS were studied microscopically, electronmicroscopically and immunohistochemically, with detection of expression of apoptosis-associated genes including bcl-2, p53, bax, fas and caspase-3. Early apoptosis changes were found morphologically in hippocampi from three patients with MTLE using transmission electron microscopy. Positive immunostained neurons for bcl-2, p53, fas and caspase-3 were found in the sclerotic hippocampi of 19/24, 14/24, 22/24 and 20/24 patients respectively, which was statistically different from controls. Correlative analysis showed the expression of p53, fas and caspase-3 were positively correlated with seizure frequency. Apoptosis may contribute to MTS, and seizures may induce apoptosis, and thus contribute to neuronal loss in MTS.
Collapse
Affiliation(s)
- Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital of Shandong University, Jinan, 250021, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Cunha AOS, Mortari MR, Carolino ROG, Coutinho-Netto J, Dos Santos WF. Glutamate binding is altered in hippocampus and cortex of Wistar rats after pilocarpine-induced Status Epilepticus. Neurosci Lett 2007; 424:51-4. [PMID: 17709190 DOI: 10.1016/j.neulet.2007.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 06/25/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Several evidences have pointed to biochemical alterations in some brain structures after experimental Status Epilepticus (SE). Thus, the effects of pilocarpine-induced SE on the glutamate binding in the hippocampus and cortex of Wistar rats were evaluated. Groups of animals were submitted to a 3h SE induced by intrahippocampal microinjection of pilocarpine, which was interrupted by the administration of sodium thiopental. Two weeks later the animals were sacrificed and had their cerebral cortices and hippocampi removed in order to perform the binding experiments. The results show that the pilocarpine-induced SE provoked an increase in 2.5-fold in the B(max) values for glutamate binding in the cortex, but not in the hippocampus. Moreover, we observed a 4-fold increase for the Kd values in the hippocampus and a 2-fold increase in the cortex. These findings might indicate that the epileptogenesis involves alterations in the glutamate receptors that are not restricted to the limbic system. Moreover, changes in these receptors are not exclusively of number, but rather involve the affinity for their ligands.
Collapse
Affiliation(s)
- Alexandra Olimpio Siqueira Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, Faculty of Philosophy, Sciences and Literature, University of São Paulo, Brazil
| | | | | | | | | |
Collapse
|
35
|
Dorandeu F, Baille V, Mikler J, Testylier G, Lallement G, Sawyer T, Carpentier P. Protective effects of S+ ketamine and atropine against lethality and brain damage during soman-induced status epilepticus in guinea-pigs. Toxicology 2007; 234:185-93. [PMID: 17408839 DOI: 10.1016/j.tox.2007.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/21/2007] [Accepted: 02/21/2007] [Indexed: 11/16/2022]
Abstract
Soman poisoning is known to induce full-blown tonic-clonic seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Previous studies in guinea-pigs have shown that racemic ketamine (KET), with atropine sulfate (AS), is very effective in preventing death, stopping seizures and protecting sensitive brain areas when given up to 1h after a supra-lethal challenge of soman. The active ketamine isomer, S(+) ketamine (S-KET), is more potent than the racemic mixture and it also induces less side-effects. To confirm the efficacy of KET and to evaluate the potential of S-KET for delayed medical treatment of soman-induced SE, we studied different S-KET dose regimens using the same paradigm used with KET. Guinea-pigs received pyridostigmine (26 microg/kg, IM) 30min before soman (62 microg/kg, 2 LD(50), IM), followed by therapy consisting of atropine methyl nitrate (AMN) (4 mg/kg, IM) 1min following soman exposure. S-KET, with AS (10mg/kg), was then administered IM at different times after the onset of seizures, starting at 1h post-soman exposure. The protective efficacy of S-KET proved to be comparable to KET against lethality and SRBD, but at doses two to three times lower. As with KET, delaying treatment by 2h post-poisoning greatly reduced efficacy. Conditions that may have led to an increased S-KET brain concentration (increased doses or number of injections, adjunct treatment with the oxime HI-6) did not prove to be beneficial. In summary, these observations confirm that ketamine, either racemic or S-KET, in association with AS and possibly other drugs, could be highly effective in the delayed treatment of severe soman intoxication.
Collapse
Affiliation(s)
- Frederic Dorandeu
- Département de Toxicologie/CRSSA, 24 avenue des Maquis du Grésivaudan, La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tokuhara D, Sakuma S, Hattori H, Matsuoka O, Yamano T. Kainic acid dose affects delayed cell death mechanism after status epilepticus. Brain Dev 2007; 29:2-8. [PMID: 16790331 DOI: 10.1016/j.braindev.2006.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/12/2006] [Accepted: 05/08/2006] [Indexed: 01/05/2023]
Abstract
Kainic acid (KA)-induced status epilepticus (SE) produces hippocampal neuronal death, which varies from necrosis to apoptosis or programmed cell death (PCD). We examined whether the type of neuronal death was dependent on KA dose. Adult rats were induced SE by intraperitoneal injection of KA at 9 mg/kg (K9) or 12 mg/kg (K12). Hippocampal neuronal death was assessed by TUNEL staining, electron microscopy, and Western blotting of caspase-3 on days 1, 3 and 7 after SE induction. K12 rats showed higher a mortality rate and shorter latency to the onset of SE when compared with K9 rats. In both groups, acidophilic and pyknotic neurons were evident in CA1 at 24h after SE and neuronal loss developed from day 3. The degenerated neurons became TUNEL-positive on days 3 and 7 in K9 rats but not in K12 rats. Caspase-3 activation was detected on days 3 and 7 in K9 rats but was undetectable in K12 rats. Ultrastructural study revealed shrunken neurons exhibiting pyknotic nuclei containing small and dispersed chromatin clumps 24h after SE in CA1. No cells exhibited apoptosis. On days 3 and 7, the degenerated neurons were necrotic with high electron density and small chromatin clumps. There were no ultrastructural differences between the K9 and K12 groups. These results revealed that differences in KA dose affected the delayed cell death (3 and 7 days after SE); however, no effect was seen on the early cell death (24h after SE). Moderate-dose KA induced necrosis, while low-dose KA induced PCD.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Retigabine is a novel antiseizure drug that acts through potassium channels and has activity in a broad range of animal models of epilepsy. It is also effective in several preclinical pain models. The drug has been extensively studied in phase I and II studies, with very promising results. The maximal tolerated dose for most patients is 1,200 mg/day. Adverse effects have been largely CNS-related and mild; most have occurred during the titration periods in the various studies. At present, retigabine is in two pivotal phase III studies.
Collapse
Affiliation(s)
- Roger J Porter
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
38
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
39
|
Abstract
During the past several years, there has been increasing interest in the role of the blood-brain barrier (BBB) in epilepsy. Advances in neuroradiology have enhanced our ability to image and study the human cerebrovasculature, and further developments in the research of metabolic deficiencies linked to seizure disorders (e.g., GLUT1 deficiency), neuroinflammation, and multiple drug resistance to antiepileptic drugs (AEDs) have amplified the significance of the BBB's relationship to epilepsy. Prior to 1986, BBB research in epilepsy focused on three main areas: ultrastructural studies, brain glucose availability and transport, and clinical uses of AEDs. However, contrast-based imaging techniques and medical procedures such as BBB disruption provided a framework that demonstrated that the BBB could be reversibly disrupted by pathologic or iatrogenic manipulations, with important implications in terms of CNS drug delivery to "multiple drug resistant" brain. This concept of BBB breakdown for therapeutic purposes has also unveiled a previously unrecognized role for BBB failure as a possible etiologic mechanism in epileptogenesis. Finally, a growing body of evidence has shown that inflammatory mechanisms may participate in the pathological changes observed in epileptic brain, with increasing awareness that blood-borne cells or signals may participate in epileptogenesis by virtue of a leaky BBB. In this article we will review the relationships between BBB function and epilepsy. In particular, we will illustrate consensus and divergence between clinical reality and animal studies.
Collapse
Affiliation(s)
- Emily Oby
- Cleveland Clinic Foundation, Department of Neurological Surgery, Cerebrovascular Research, Ohio 44195, USA
| | | |
Collapse
|
40
|
Willis CL, Ray DE, Marshall H, Elliot G, Evans JG, Kind CN. Basal forebrain cholinergic lesions reduce heat shock protein 72 response but not pathology induced by the NMDA antagonist MK-801 in the rat cingulate cortex. Neurosci Lett 2006; 407:112-7. [PMID: 16962237 DOI: 10.1016/j.neulet.2006.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/01/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) antagonists, in addition to their neuroprotective potential, possess neurotoxic properties and induce seizures and psychosis. MK-801 induces cytoplasmic vacuoles and heat shock protein in pyramidal neurones in the rodent posterior cingulate and retrosplenial cortex. The mechanism of this neurotoxicity is unclear, involving many neurotransmitter systems. The aim of this study was to investigate the role of cholinergic pathways from the nucleus basalis of Meynert in mediating MK-801-induced neurotoxicity. Cholinergic projections from the nucleus basalis of Meynert were lesioned by focal injection of 192-IgG-saporin (80 ng), which after 7 days reduced the number of cholinergic cell bodies by 70% in the lesioned nucleus compared to the uninjected nucleus. Following a unilateral cholinergic lesion, MK-801 (5 mg/kg s.c.) induced expression of hsp72 mRNA (6 h) and HSP72 protein immunoreactivity (24 h) was reduced by 42 and 60%, respectively in the ipsilateral compared to the contralateral posterior cingulate. Despite this apparent protective effect, the unilateral cholinergic lesion did not affect the degree of neuronal vacuolation (6 h), necrosis (24 h) or the large and prolonged increase in cerebral blood flow which occurred over the first 9h following MK-801 administration. These results demonstrate that cholinergic neurones in the nucleus basalis of Meynert play an important role in the heat shock response to NMDA antagonist-induced neurotoxicity but also reveal an unexpected divergence between the heat shock response and the pathophysiological response. This suggests that other cholinergic pathways or non-cholinergic mechanisms are responsible for the pathological changes induced by MK-801.
Collapse
Affiliation(s)
- Colin L Willis
- MRC Applied Neuroscience Group, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Garrido Sanabria ER, Castañeda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 2006; 142:871-83. [PMID: 16934946 DOI: 10.1016/j.neuroscience.2006.06.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/21/2022]
Abstract
The septal region of the basal forebrain plays a critical role modulating hippocampal excitability and functional states. Septal circuits may also play a role in controlling abnormal hippocampal hyperexcitability in epilepsy. Both lateral and medial septal neurons are targets of hippocampal axons. Since the hippocampus is an important epileptogenic area in temporal lobe epilepsy, we hypothesize that excessive excitatory output will promote sustained neurodegeneration of septal region neurons. Pilocarpine-induced status epilepticus (SE) was chosen as a model to generate chronic epileptic animals. To determine whether septal neuronal populations are affected by hippocampal seizures, immunohistochemical assays were performed in brain sections obtained from age-matched control, latent period (7 days post-SE) and chronically epileptic (more than one month post-SE survival) rats. An anti-NeuN (neuronal nuclei) antibody was used to study total neuronal numbers. Anti-ChAT (choline acetyltransferase), anti-GAD (glutamic acid decarboxylase) isoenzymes (65 and 67), and anti-glutamate antibodies were used to reveal cholinergic, GABAergic and glutamatergic neurons, respectively. Our results revealed a significant atrophy of medial and lateral septal areas in all chronically epileptic rats. Overall neuronal density in the septum (medial and lateral septum), assessed by NeuN immunoreactivity, was significantly reduced by approximately 40% in chronically epileptic rats. The lessening of neuronal numbers in both regions was mainly due to the loss of GABAergic neurons (80-97% reduction in medial and lateral septum). In contrast, populations of cholinergic and glutamatergic neurons were spared. Overall, these data indicate that septal GABAergic neurons are selectively vulnerable to hippocampal hyperexcitability, and suggest that the processing of information in septohippocampal networks may be altered in chronic epilepsy.
Collapse
Affiliation(s)
- E R Garrido Sanabria
- Department of Biological Sciences, University of Texas at Brownsville/Texas Southmost College, 80 Fort Brown, Brownsville, TX 78520, USA
| | | | | | | | | | | |
Collapse
|
42
|
Boscia F, Annunziato L, Taglialatela M. Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 2006; 51:283-94. [PMID: 16697426 DOI: 10.1016/j.neuropharm.2006.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/07/2006] [Accepted: 03/18/2006] [Indexed: 11/29/2022]
Abstract
Retigabine and flupirtine are two structurally related molecules provided of anticonvulsant and analgesic actions. The present study has investigated the neuroprotective potential, as well as the possible underlying molecular mechanisms, exerted by retigabine and flupirtine in rat organotypic hippocampal slice cultures (OHSCs) exposed to N-methyl-D-aspartate (NMDA), oxygen and glucose deprivation followed by reoxygenation (OGD), or serum withdrawal (SW). Region-specific vulnerability of hippocampal subfields occurred with each of these injury models. Specifically, CA1 was the most susceptible region to both NMDA and OGD-induced neurodegeneration, whereas selective cell death in the dentate gyrus (DG) occurred upon OHSCs exposure to SW. The NMDA antagonist MK-801 (10-30 microM), despite blocking NMDA- and OGD-induced cell death, failed to prevent SW-induced neurodegeneration. Interestingly, retigabine (0.01-10 microM) and flupirtine (0.01-10 microM) dose-dependently prevented DG neuronal death induced by SW, with IC50 s of 0.4 microM and 0.7 microM, respectively. By contrast, retigabine and flupirtine (each at 10 microM) were less effective in counteracting NMDA- or OGD-induced toxicity in the CA1 region. Both retigabine and flupirtine (0.1-10 microM) reduced SW-induced ROS production in the DG with IC50 s of approximately 1 microM. This suggested that antioxidant actions of these compounds participated in OHSC neuroprotection during SW. By contrast, activation of KCNQ K+ channels seemed not to be involved in retigabine-induced OHSCs neuroprotection during SW, since linopirdine (20 microM) and XE-991 (10 microM), two KCNQ blockers, failed to reverse retigabine-induced neuronal rescue.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
43
|
Mora G, Tapia R. Effects of retigabine on the neurodegeneration and extracellular glutamate changes induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 2006; 30:1557-65. [PMID: 16362775 DOI: 10.1007/s11064-005-8834-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 01/21/2023]
Abstract
We have previously shown that microdialysis perfusion of the K+ channel blocker 4-aminopyridine (4-AP) in rat hippocampus induces convulsions and neurodegeneration, due to the stimulation of glutamate release from synaptic terminals. Retigabine is an opener of the KCNQ2/Q3-type K+ channel that possesses antiepileptic action and may be neuroprotective, and we have therefore studied its effect on the hyperexcitation, the neuronal damage and the changes in extracellular glutamate induced by 4-AP. Retigabine and 4-AP were co-administered by microdialysis in the hippocampus of anesthetized rats, with simultaneous recording of the EEG, and the extracellular concentration of glutamate was measured in the microdialysis fractions. In 70-80% of the rats tested retigabine reduced the 4-AP-induced stimulation of glutamate release and prevented the neuronal damage observed at 24 h in the CA1 hippocampal region. However, retigabine did not block the EEG epileptic discharges and their duration was reduced in only 20-25% of the tested animals. We conclude that the neuroprotective action of retigabine is probably due to the blockade of the 4-AP-induced stimulation of glutamate release. This inhibition, however, was not sufficient to block the epileptic activity.
Collapse
Affiliation(s)
- Gabriela Mora
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, México, D. F., México
| | | |
Collapse
|
44
|
Jupp B, Williams JP, Tesiram YA, Vosmansky M, O'Brien TJ. MRI compatible electrodes for the induction of amygdala kindling in rats. J Neurosci Methods 2006; 155:72-6. [PMID: 16466802 DOI: 10.1016/j.jneumeth.2005.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/18/2005] [Accepted: 12/22/2005] [Indexed: 11/22/2022]
Abstract
The rat electrical kindling model has been widely utilized in epilepsy research. This study aimed to identify the optimum "MRI compatible" bipolar stimulating and recording electrodes to enable serial MRI acquisition in this model. Two types of custom-made electrodes (gold and carbon) were compared with commercial platinum-iridium alloy electrodes for suitability based on size, effect on image quality and kindling induction. The custom-made gold electrodes, based on these parameters, were found to be most suitable. These electrodes enable the study of epileptogenesis utilizing MRI in this model of temporal lobe epilepsy (TLE).
Collapse
Affiliation(s)
- Bianca Jupp
- The Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, Vic. 3050, Australia
| | | | | | | | | |
Collapse
|
45
|
Jupp B, Williams JP, Tesiram YA, Vosmansky M, O'Brien TJ. Hippocampal T2 Signal Change during Amygdala Kindling Epileptogenesis. Epilepsia 2006; 47:41-6. [PMID: 16417530 DOI: 10.1111/j.1528-1167.2006.00368.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The rat electrical amygdala kindling model is one of the most widely studied animal models of temporal lobe epilepsy (TLE); however, the processes underlying epileptogenesis in this model remain incompletely understood. Magnetic resonance imaging (MRI) is a powerful method to investigate epileptogenesis, allowing serial imaging of associated structural and functional changes in vivo. Here we report on the results of serial MRI acquisitions during epileptogenesis in this model. METHODS Serial T2-weighted MR images were acquired before, during, and after the induction of kindling, to investigate the development and progression of imaging abnormalities. RESULTS T2-weighted acquisitions demonstrated the development of regions of increased signal in the rostral ipsilateral regions of CA1 and dentate gyrus in kindled (five of seven) but not in control rats (p < 0.05). Quantification of the T2 signal demonstrated a significant increase in kindled animals when compared with controls, 2 weeks after kindling ceased, in the ipsilateral hippocampus and the hippocampal sub regions of CA1 and the dentate gyrus (p < 0.05). No significant difference was observed in hippocampal volumes between kindled or control animals at any of the times. CONCLUSIONS The results of this study validate a method for acquiring serial MRI during amygdala kindling and demonstrate the induction of T2 signal abnormalities in focal regions of the hippocampus. These regions may be important sites for the neurobiologic changes that contribute to epileptogenesis in this model.
Collapse
Affiliation(s)
- Bianca Jupp
- The Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Ayala GX, Tapia R. LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005; 22:3067-76. [PMID: 16367773 DOI: 10.1111/j.1460-9568.2005.04509.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrahippocampal perfusion of 4-aminopyridine (4-AP) in the rat produces immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors by endogenous glutamate released from nerve endings. With the same time course, 4-AP also induces the expression of the cell stress marker heat shock protein 70 (HSP70) in the contralateral non-damaged hippocampus. We have used this experimental model to study the mechanisms of the delayed neuronal stress and death. The NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801), administered intraperitoneally 30 or 60 but not 120 min after 4-AP perfusion, when animals show intense electroencephalography epileptiform activity, prevented the delayed neurodegeneration whereas the seizures continued for about 3 h as in the control animals. With an identical time window, MK-801 treatment also modified the pattern of HSP70 expression; the protein was expressed in the protected perfused hippocampus but no longer in the undamaged contralateral hippocampus. The possible role of Ca2+ in the delayed cell death and HSP70 expression was also studied by coperfusing the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) with 4-AP. This treatment resulted in protective and HSP70 effects very similar to those of MK-801. These results suggest that the seizures are not linked to neurodegeneration and that NMDA receptors need to be continuously overactivated by endogenous glutamate for at least 60 min in order to induce delayed neuronal stress and death, which are dependent on Ca2+ entry through the NMDA receptor channel.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, DF, México
| | | |
Collapse
|
47
|
Abstract
Epilepsy is a common, chronic neurologic disorder characterized by recurrent unprovoked seizures. Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Such brain injury may contribute to epileptogenesis, impairments in cognitive function or the epilepsy phenotype. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Here, the authors review the clinical and experimental evidence for apoptotic cell death pathway function in the wake of seizure activity. We summarize work showing intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathway function after seizures, activation of the caspase and Bcl-2 families of cell death modulators and the acute and chronic neuropathologic impact of intervening in these molecular cascades. Finally, we describe evolving data on nonlethal roles for these proteins in neuronal restructuring and cell excitability that have implications for shaping the epilepsy phenotype. This review highlights the work to date on apoptosis pathway signaling during seizure-induced neuronal death and epileptogenesis, and speculates on how emerging roles in brain remodeling and excitability have enriched the number of therapeutic strategies for protection against seizure-damage and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | |
Collapse
|
48
|
Tilelli CQ, Del Vecchio F, Fernandes A, Garcia-Cairasco N. Different types of status epilepticus lead to different levels of brain damage in rats. Epilepsy Behav 2005; 7:401-10. [PMID: 16140590 DOI: 10.1016/j.yebeh.2005.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 06/08/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
We investigated a possible correlation between behavior during status epilepticus (SE) and underlying brain damage. Adult rats were electrically stimulated in the left amygdala to induce SE, which was stopped 2 hours later. We observed two different types of SE: (1) typical SE (TSE), with facial automatisms, neck and forelimb myoclonus, rearing and falling, and tonic-clonic seizures; (2) ambulatory SE (ASE), with facial automatisms, neck myoclonus, and concomitant ambulatory behavior. TSE was behaviorally more severe than ASE (P<0.05). Histology revealed neuronal loss in several brain areas. There was a positive correlation between SE type and amount of injured areas 24 hours and 14 days after SE (P<0.01). The areas more affected were piriform cortex and hippocampal formation. We suggest quality of seizures during SE may be considered in further SE studies, as our results indicate its influence on the severity of brain damage following this paradigm.
Collapse
Affiliation(s)
- Cristiane Queixa Tilelli
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
49
|
Longo B, Vezzani A, Mello LE. Growth-associated Protein 43 Expression in Hippocampal Molecular Layer of Chronic Epileptic Rats Treated with Cycloheximide. Epilepsia 2005; 46 Suppl 5:125-8. [PMID: 15987266 DOI: 10.1111/j.1528-1167.2005.01019.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE GAP43 has been thought to be linked with mossy fiber sprouting (MFS) in various experimental models of epilepsy. To investigate how GAP43 expression (GAP43-ir) correlates with MFS, we assessed the intensity (densitometry) and extension (width) of GAP43-ir in the inner molecular layer of the dentate gyrus (IML) of rats subject to status epilepticus induced by pilocarpine (Pilo), previously injected or not with cycloheximide (CHX), which has been shown to inhibit MFS. METHODS CHX was injected before the Pilo injection in adult Wistar rats. The Pilo group was injected with the same drugs, except for CHX. Animals were killed between 30 and 60 days later, and brain sections were processed for GAP43 immunohistochemistry. RESULTS Densitometry showed no significant difference regarding GAP43-ir in the IML between Pilo, CHX+Pilo, and control groups. However, the results of the width of the GAP43-ir band in the IML showed that CHX+Pilo and control animals had a significantly larger band (p = 0.03) as compared with that in the Pilo group. CONCLUSIONS Our current finding that animals in the CHX+Pilo group have a GAP43-ir band in the IML, similar to that of controls, reinforces prior data on the blockade of MFS in these animals. The change in GAP43-ir present in Pilo-treated animals was a thinning of the band to a very narrow layer just above the granule cell layer that is likely to be associated with the loss of hilar cell projections that express GAP-43.
Collapse
Affiliation(s)
- Beatriz Longo
- Department of Physiology, UNIFESP/EPM, São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|