1
|
Du J, Morales A, Kosta P, Martinez-Navarrete G, Warren DJ, Fernandez E, Bouteiller JMC, McCreery DC, Lazzi G. Toward Safety Protocols for Peripheral Nerve Stimulation (PNS): A Computational and Experimental Approach. Bioelectromagnetics 2025; 46:e22533. [PMID: 39817565 PMCID: PMC11891759 DOI: 10.1002/bem.22533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation. We collected high-resolution images of control and stimulated rat sciatic nerve samples at varying stimulation intensities and performed high-resolution image segmentation. These segmented images were used to train machine learning tools for the automatic classification of morphological properties of control and stimulated PNS nerves. Concurrently, we utilized our quasi-static Admittance Method-NEURON (AM-NEURON) computational platform to create realistic nerve models and calculate induced currents and charges, both critical elements of nerve safety criteria. These steps culminate in a cellular-level correlation between morphological changes and electrical stimulation parameters. This correlation informs the determination of thresholds of electrical parameters that are found to be associated with damage, such as maximum cell charge density. The proposed methodology and resulting criteria combine experimental findings with computational modeling to generate a safety threshold curve that captures the relationship between stimulation current and the potential for axonal damage. Although focused on a specific exposure condition, the approach presented here marks a step towards developing context-specific safety criteria in PNS neurostimulation, encouraging similar analyses across varied neurostimulation scenarios. Bioelectromagnetics.
Collapse
Affiliation(s)
- Jinze Du
- Department of Electrical Engineering and ITEMS, University of Southern California, Los Angeles, California, USA
| | - Andres Morales
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Pragya Kosta
- Institue of Technology and Medical Systems, University of Southern California, Los Angeles, California, USA
| | - Gema Martinez-Navarrete
- Institute of Bioengineering, Elche and CIBER-BBN, University Miguel Hernandez, Orihuela, Comunidad Valenciana, Spain
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Eduardo Fernandez
- Institute of Bioengineering, Elche and CIBER-BBN, University Miguel Hernandez, Orihuela, Comunidad Valenciana, Spain
| | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Institue of Technology and Medical Systems, University of Southern California, Los Angeles, California, USA
| | | | - Gianluca Lazzi
- Department of Electrical Engineering and ITEMS, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Deapartment of Ophthalmology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Gonzalez Calle A, Paknahad J, Pollalis D, Kosta P, Thomas B, Tew BY, Salhia B, Louie S, Lazzi G, Humayun M. An extraocular electrical stimulation approach to slow down the progression of retinal degeneration in an animal model. Sci Rep 2023; 13:15924. [PMID: 37741821 PMCID: PMC10517961 DOI: 10.1038/s41598-023-40547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/12/2023] [Indexed: 09/25/2023] Open
Abstract
Retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) are characterized by unrelenting neuronal death. However, electrical stimulation has been shown to induce neuroprotective changes in the retina capable of slowing down the progression of retinal blindness. In this work, a multi-scale computational model and modeling platform were used to design electrical stimulation strategies to better target the bipolar cells (BCs), that along with photoreceptors are affected at the early stage of retinal degenerative diseases. Our computational findings revealed that biphasic stimulus pulses of long pulse duration could decrease the activation threshold of BCs, and the differential stimulus threshold between ganglion cells (RGCs) and BCs, offering the potential of targeting the BCs during the early phase of degeneration. In vivo experiments were performed to evaluate the electrode placement and parameters found to target bipolar cells and evaluate the safety and efficacy of the treatment. Results indicate that the proposed transcorneal Electrical Stimulation (TES) strategy can attenuate retinal degeneration in a Royal College of Surgeon (RCS) rodent model, offering the potential to translate this work to clinical practice.
Collapse
Affiliation(s)
- Alejandra Gonzalez Calle
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
| | - Javad Paknahad
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Technology and Medical Systems Innovation, Los Angeles, CA, 90033, USA
| | - Dimitrios Pollalis
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pragya Kosta
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Technology and Medical Systems Innovation, Los Angeles, CA, 90033, USA
| | - Biju Thomas
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ben Yi Tew
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bodour Salhia
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stan Louie
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gianluca Lazzi
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Technology and Medical Systems Innovation, Los Angeles, CA, 90033, USA
| | - Mark Humayun
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Italiano ML, Guo T, Lovell NH, Tsai D. Improving the spatial resolution of artificial vision using midget retinal ganglion cell populations modelled at the human fovea. J Neural Eng 2022; 19. [PMID: 35609556 DOI: 10.1088/1741-2552/ac72c2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Retinal prostheses seek to create artificial vision by stimulating surviving retinal neurons of patients with profound vision impairment. Notwithstanding tremendous research efforts, the performance of all implants tested to date has remained rudimentary, incapable of overcoming the threshold for legal blindness. To maximize the perceptual efficacy of retinal prostheses, a device must be capable of controlling retinal neurons with greater spatiotemporal precision. Most studies of retinal stimulation were derived from either non-primate species or the peripheral primate retina. We investigated if artificial stimulation could leverage the high spatial resolution afforded by the neural substrates at the primate fovea and surrounding regions to achieve improved percept qualities. APPROACH We began by developing a new computational model capable of generating anatomically accurate retinal ganglion cell (RGC) populations within the human central retina. Next, multiple RGC populations across the central retina were stimulated in-silico to compare clinical and recently proposed neurostimulation configurations based on their ability to improve perceptual efficacy and reduce activation thresholds. MAIN RESULTS Our model uniquely upholds eccentricity-dependent characteristics such as RGC density and dendritic field diameter, whilst incorporating anatomically accurate features such as axon projection and three-dimensional RGC layering, features often forgone in favor of reduced computational complexity. Following epiretinal stimulation, the RGCs in our model produced response patterns in shapes akin to the complex percepts reported in clinical trials. Our results also demonstrated that even within the neuron-dense central retina, epiretinal stimulation using a multi-return hexapolar electrode arrangement could reliably achieve spatially focused RGC activation and could achieve single-cell excitation in 74% of all tested locations. SIGNIFICANCE This study establishes an anatomically accurate three-dimensional model of the human central retina and demonstrates the potential for an epiretinal hexapolar configuration to achieve consistent, spatially confined retinal responses, even within the neuron-dense foveal region. Our results promote the prospect and optimization of higher spatial resolution in future epiretinal implants.
Collapse
Affiliation(s)
- Michael Lewis Italiano
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| | - David Tsai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Sydney, New South Wales, 2052, AUSTRALIA
| |
Collapse
|
4
|
Paknahad J, Humayun M, Lazzi G. Selective Activation of Retinal Ganglion Cell Subtypes Through Targeted Electrical Stimulation Parameters. IEEE Trans Neural Syst Rehabil Eng 2022; 30:350-359. [PMID: 35130164 PMCID: PMC8904155 DOI: 10.1109/tnsre.2022.3149967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To restore vision to the low vision, epiretinal implants have been developed to electrically stimulate the healthy retinal ganglion cells (RGCs) in the degenerate retina. Given the diversity of retinal ganglion cells as well as the difference in their visual function, selective activation of RGCs subtypes can significantly improve the quality of the restored vision. Our recent results demonstrated that with the proper modulation of the current amplitude, small D1-bistratified cells with the contribution to blue/yellow color opponent pathway can be selectively activated at high frequency (200 Hz). The computational results correlated with the clinical findings revealing the blue sensation of 5/7 subjects with epiretinal implants at high frequency. Here we further explored the impacts of alterations in pulse duration and interphase gap on the response of RGCs at high frequency. We used the developed RGCs, A2-monostratified and D1-bistratified, and examined their response to a range of pulse durations (0.1−1.2 ms) and interphase gaps (0−1 ms). We found that the use of short pulse durations with no interphase gap at high frequency increases the differential response of RGCs, offering better opportunities for selective activation of D1 cells. The presence of the interphase gap has shown to reduce the overall differential response of RGCs. We also explored how the low density of calcium channels enhances the responsiveness of RGCs at high frequency.
Collapse
|
5
|
Paknahad J, Kosta P, Bouteiller JMC, Humayun MS, Lazzi G. Mechanisms underlying activation of retinal bipolar cells through targeted electrical stimulation: a computational study. J Neural Eng 2021; 18. [PMID: 34826830 DOI: 10.1088/1741-2552/ac3dd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
Objective. Retinal implants have been developed to electrically stimulate healthy retinal neurons in the progressively degenerated retina. Several stimulation approaches have been proposed to improve the visual percept induced in patients with retinal prostheses. We introduce a computational model capable of simulating the effects of electrical stimulation on retinal neurons. Leveraging this computational platform, we delve into the underlying mechanisms influencing the sensitivity of retinal neurons' response to various stimulus waveforms.Approach. We implemented a model of spiking bipolar cells (BCs) in the magnocellular pathway of the primate retina, diffuse BC subtypes (DB4), and utilized our multiscale admittance method (AM)-NEURON computational platform to characterize the response of BCs to epiretinal electrical stimulation with monophasic, symmetric, and asymmetric biphasic pulses.Main results. Our investigations yielded four notable results: (a) the latency of BCs increases as stimulation pulse duration lengthens; conversely, this latency decreases as the current amplitude increases. (b) Stimulation with a long anodic-first symmetric biphasic pulse (duration > 8 ms) results in a significant decrease in spiking threshold compared to stimulation with similar cathodic-first pulses (from 98.2 to 57.5µA). (c) The hyperpolarization-activated cyclic nucleotide-gated channel was a prominent contributor to the reduced threshold of BCs in response to long anodic-first stimulus pulses. (d) Finally, extending the study to asymmetric waveforms, our results predict a lower BCs threshold using asymmetric long anodic-first pulses compared to that of asymmetric short cathodic-first stimulation.Significance. This study predicts the effects of several stimulation parameters on spiking BCs response to electrical stimulation. Of importance, our findings shed light on mechanisms underlying the experimental observations from the literature, thus highlighting the capability of the methodology to predict and guide the development of electrical stimulation protocols to generate a desired biological response, thereby constituting an ideal testbed for the development of electroceutical devices.
Collapse
Affiliation(s)
- Javad Paknahad
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America.,Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Pragya Kosta
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America.,Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States of America
| | - Gianluca Lazzi
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, United States of America.,Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America.,Department of Ophthalmology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Kosta P, Iseri E, Loizos K, Paknahad J, Pfeiffer RL, Sigulinsky CL, Anderson JR, Jones BW, Lazzi G. Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina. Exp Eye Res 2021; 207:108554. [PMID: 33794197 DOI: 10.1016/j.exer.2021.108554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022]
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other retinal neurons, creating functional alterations and extensive remodeling of retinal networks. Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using implanted electrodes. Although these devices restore partial vision, the quality of restored vision is limited. Further knowledge about the precise changes in degenerated retina as the disease progresses is essential to understand how current flows in retinas undergoing degenerative disease and to improve the performance of retinal prostheses. We developed computational models that describe current flow from rod photoreceptors to rod bipolar cells (RodBCs) in the healthy and early-stage degenerated retina. Morphologically accurate models of retinal cells with their synapses are constructed based on retinal connectome datasets, created using serial section transmission electron microscopy (TEM) images of 70 nm-thick slices of either healthy (RC1) or early-stage degenerated (RPC1) rabbit retina. The passive membrane and active ion currents of each cell are implemented using conductance-based models in the Neuron simulation environment. In response to photocurrent input at rod photoreceptors, the simulated membrane potential at RodBCs in early degenerate tissue is approximately 10-20 mV lower than that of RodBCs of that observed in wild type retina. Results presented here suggest that although RodBCs in RPC1 show early, altered morphology compared to RC1, the lower membrane potential is primarily a consequence of reduced rod photoreceptor input to RodBCs in the degenerated retina. Frequency response and step input analyses suggest that individual cell responses of RodBCs in either healthy or early-degenerated retina, prior to substantial photoreceptor cell loss, do not differ significantly.
Collapse
Affiliation(s)
- Pragya Kosta
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Ege Iseri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kyle Loizos
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Javad Paknahad
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Paknahad J, Loizos K, Yue L, Humayun MS, Lazzi G. Color and cellular selectivity of retinal ganglion cell subtypes through frequency modulation of electrical stimulation. Sci Rep 2021; 11:5177. [PMID: 33664347 PMCID: PMC7933163 DOI: 10.1038/s41598-021-84437-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Epiretinal prostheses aim at electrically stimulating the inner most surviving retinal cells-retinal ganglion cells (RGCs)-to restore partial sight to the blind. Recent tests in patients with epiretinal implants have revealed that electrical stimulation of the retina results in the percept of color of the elicited phosphenes, which depends on the frequency of stimulation. This paper presents computational results that are predictive of this finding and further support our understanding of the mechanisms of color encoding in electrical stimulation of retina, which could prove pivotal for the design of advanced retinal prosthetics that elicit both percept and color. This provides, for the first time, a directly applicable "amplitude-frequency" stimulation strategy to "encode color" in future retinal prosthetics through a predictive computational tool to selectively target small bistratified cells, which have been shown to contribute to "blue-yellow" color opponency in the retinal circuitry. The presented results are validated with experimental data reported in the literature and correlated with findings in blind patients with a retinal prosthetic implant collected by our group.
Collapse
Affiliation(s)
- Javad Paknahad
- grid.42505.360000 0001 2156 6853Department of Electrical Engineering, University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Kyle Loizos
- grid.42505.360000 0001 2156 6853The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Lan Yue
- grid.42505.360000 0001 2156 6853Roski Eye Institute, University of Southern California, Los Angeles, CA USA
| | - Mark S. Humayun
- grid.42505.360000 0001 2156 6853Roski Eye Institute, University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853Departments of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Gianluca Lazzi
- grid.42505.360000 0001 2156 6853Department of Electrical Engineering, University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA USA ,grid.42505.360000 0001 2156 6853Departments of Ophthalmology and Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
8
|
Paknahad J, Loizos K, Humayun M, Lazzi G. Targeted Stimulation of Retinal Ganglion Cells in Epiretinal Prostheses: A Multiscale Computational Study. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2548-2556. [PMID: 32991284 PMCID: PMC7737501 DOI: 10.1109/tnsre.2020.3027560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Retinal prostheses aim at restoring partial sight to patients that are blind due to retinal degenerative diseases by electrically stimulating the surviving healthy retinal neurons. Ideally, the electrical stimulation of the retina is intended to induce localized, focused, percepts only; however, some epiretinal implant subjects have reported seeing elongated phosphenes in a single electrode stimulation due to the axonal activation of retinal ganglion cells (RGCs). This issue can be addressed by properly devising stimulation waveforms so that the possibility of inducing axonal activation of RGCs is minimized. While strategies to devise electrical stimulation waveforms to achieve a focal RGCs response have been reported in literature, the underlying mechanisms are not well understood. This article intends to address this gap; we developed morphologically and biophysically realistic computational models of two classified RGCs: D1-bistratified and A2-monostratified. Computational results suggest that the sodium channel band (SOCB) is less sensitive to modulations in stimulation parameters than the distal axon (DA), and DA stimulus threshold is less sensitive to physiological differences among RGCs. Therefore, over a range of RGCs distal axon diameters, short-pulse symmetric biphasic waveforms can enhance the stimulation threshold difference between the SOCB and the DA. Appropriately designed waveforms can avoid axonal activation of RGCs, implying a consequential reduction of undesired strikes in the visual field.
Collapse
|