1
|
Zavala-Zapata V, Ramírez-Barrón SN, Sánchez-Borja M, Aguirre-Uribe LA, Delgado-Ortiz JC, Sánchez-Peña SR, Mayo-Hernández J, García-López JI, Vargas-Tovar JA, Hernández-Juárez A. Insecticide Efficacy of Green Synthesis Silver Nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae). INSECTS 2024; 15:469. [PMID: 39057202 PMCID: PMC11277115 DOI: 10.3390/insects15070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of Liberibacter asiaticus Jagoueix et al. and Liberibacter americanus Teixeira et al., causal agents of the critical yellow dragon disease or Huanglongbing (HLB), which affects citrus production worldwide. Recently, green synthetic nanoparticles have emerged as a potential alternative to control of agricultural insect pests. The insecticide effect of silver nanoparticles (AgNPs) on 2nd instar nymphs of D. citri under laboratory and greenhouse conditions was evaluated. Mortality was recorded 24, 48, and 72 h after application on D. citri nymphs under both laboratory and greenhouse conditions. The laboratory results showed that AgNPs caused 97.84 and 100% mortality at 32 and 64 ppm, respectively, 72 h after treatment. In the greenhouse, AgNPs caused 78.69 and 80.14% mortality using 64 and 128 ppm 72 h after application. This research is the first to evaluate the green synthesis AgNPs on D. citri and are a promising strategy to control the pest.
Collapse
Affiliation(s)
- Vidal Zavala-Zapata
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Sonia N. Ramírez-Barrón
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Maricarmen Sánchez-Borja
- Insectos Benéficos del Norte, Carretera Inter Ejidal, Camino Ejidal Libertad s/n, Ciudad Victoria 87260, Mexico;
| | - Luis A. Aguirre-Uribe
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Juan Carlos Delgado-Ortiz
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
- Investigador por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México 03940, Mexico
| | - Sergio R. Sánchez-Peña
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Juan Mayo-Hernández
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| | - Josué I. García-López
- Departamento de Fitomejoramiento, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico;
| | - Jesus A. Vargas-Tovar
- Tecnológico Nacional de México, Campus Instituto Tecnológico de Cd. Victoria, Boulevard Emilio Portes Gil 1301, Ciudad Victoria 87010, Mexico;
| | - Agustín Hernández-Juárez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Mexico; (V.Z.-Z.); (L.A.A.-U.); (J.C.D.-O.); (S.R.S.-P.); (J.M.-H.)
| |
Collapse
|
2
|
Santás-Miguel V, Arias-Estévez M, Rodríguez-Seijo A, Arenas-Lago D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122222. [PMID: 37482337 DOI: 10.1016/j.envpol.2023.122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Agricultural nanotechnology has become a powerful tool to help crops and improve agricultural production in the context of a growing world population. However, its application can have some problems with the development of harvests, especially during germination. This review evaluates nanoparticles with essential (Cu, Fe, Ni and Zn) and non-essential (Ag and Ti) elements on plant germination. In general, the effect of nanoparticles depends on several factors (dose, treatment time, application method, type of nanoparticle and plant). In addition, pH and ionic strength are relevant when applying nanoparticles to the soil. In the case of essential element nanoparticles, Fe nanoparticles show better results in improving nutrient uptake, improving germination, and the possibility of magnetic properties could favor their use in the removal of pollutants. In the case of Cu and Zn nanoparticles, they can be beneficial at low concentrations, while their excess presents toxicity and negatively affects germination. About nanoparticles of non-essential elements, both Ti and Ag nanoparticles can be helpful for nutrient uptake. However, their potential effects depend highly on the crop type, particle size and concentration. Overall, nanotechnology in agriculture is still in its early stages of development, and more research is needed to understand potential environmental and public health impacts.
Collapse
Affiliation(s)
- Vanesa Santás-Miguel
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain; Department of Biology, Microbial Ecology, Lund University, Ecology Building, Lund, SE-223 62, Sweden.
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Andrés Rodríguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| | - Daniel Arenas-Lago
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola. Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004, Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain.
| |
Collapse
|
3
|
Iqbal M, Raja NI, Ali A, Rashid H, Hussain M, Ejaz M, Iqbal R, Khan UA, Shaheen N, Rauf A, Satti SH, Saira H. Silver nanoparticles and silver salt (AgNO 3) elicits morphogenic and biochemical variations in callus cultures of sugarcane. IET Nanobiotechnol 2019; 13:896-904. [PMID: 31811757 PMCID: PMC8676125 DOI: 10.1049/iet-nbt.2018.5122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
The research work was arranged to check the role of AgNPs and silver ions on callus cells of sugarcane (Saccharum spp. cv CP-77,400). AgNPs were synthesized chemically and characterized by UV-Vis spectra, XRD and SEM. AgNPs and silver ions were applied in various concentrations (0, 20, 40, 60 ppm) to sugarcane calli and the induced stress was characterized by studying various morphological and biochemical parameters. AgNPs and silver ions treatments produced high levels of malondialdehyde, proline, proteins, TP and TF contents. Similarly, CAT, SOD and POX activity was also significant in both treatments. The lower concentration of AgNPs and silver ions (20 ppm) provided maximum intracellular GSH level. This work mainly showed effects of AgNPs and silver ions on sugarcane calli in terms of morphological aberrations and cell membrane damage due to severe oxidative stress and production of enhanced levels of enzymatic and non-enzymatic antioxidants as self-defence to tolerate oxidative stress by scavenging reactive oxygen species. These preliminary findings will provide the way to study ecotoxicity mechanism of the metal ions and NPs in medicine industry and in vitro toxicity research. Furthermore, silver ions alone and their chemically synthesised AgNPs can be used for various biomedical applications in future.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hamid Rashid
- Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Sahiwal, Pakistan
| | - Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Ejaz
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rashid Iqbal
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Umair A Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Najma Shaheen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Abdul Rauf
- Department of Biology, AIOU, Islamabad, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Hafiza Saira
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Hussain M, Iqbal Raja N, Mashwani ZUR, Iqbal M, Ejaz M, Aslam S. Green synthesis and evaluation of silver nanoparticles for antimicrobial and biochemical profiling in Kinnow ( Citrus reticulata L.) to enhance fruit quality and productivity under biotic stress. IET Nanobiotechnol 2019; 13:250-256. [PMID: 31053686 PMCID: PMC8675995 DOI: 10.1049/iet-nbt.2018.5049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 01/24/2023] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) by utilising plant extract is an emerging class of nanotechnology. It revolutionizes all the field of biological sciences by synthesizing chemical free AgNPs. In the present study, AgNPs were synthesised by utilising Moringa oleifera leaves as the main reducing and stabilising agent and characterised through UV-visible spectroscopy, zeta analyser, X-ray diffraction spectroscopy (XRD), energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). The different concentrations of biosynthesised AgNPs (10, 20, 30, and 40 ppm) were exogenously applied on the already infected plants (canker) of Citrus reticulata at different day intervals. The AgNPs at a concentration of 30 ppm was found to be most suitable concentration for creating the resistance against canker disease in Citrus reticulata. The enzymatic activities were also explored and it was found that 30 ppm concentration of biosynthesised AgNPs significantly reduced the biotic stress. Fruit quality and productivity parameters were also assessed and it was found that fruit quality and productivity were significant in response to 30 ppm concentration of biosynthesised AgNPs. The present work highlights the potent role of biosynthesised AgNPs, which can be used as biological control of citrus diseases and ultimately improving the quality and productivity of Citrus.
Collapse
Affiliation(s)
- Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ejaz
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Sumaira Aslam
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
5
|
Anum F, Raja NI, Hussain M, Iqbal M, Chaudhari SK, Ehsan M, Javaid U, Zafar NUA. Effect of green synthesised silver nanoparticles on morphogenic and biochemical variations in callus cultures of kinnow mandarin ( Citrus reticulata L.). IET Nanobiotechnol 2019; 13:541-545. [PMCID: PMC8676431 DOI: 10.1049/iet-nbt.2018.5276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/13/2019] [Accepted: 03/07/2019] [Indexed: 10/15/2023] Open
Abstract
Citrus reticulata is economically important tree fruit crop in Pakistan, fortified with various nutrients and minerals including Vitamin C and secondary metabolites. Nanotechnology is a twenty‐first century science and deals with production of minute particles termed as nanoparticles. In present study, silver nanoparticles (AgNPs) were synthesised through green method by utilising leaves of Olea europea as main reducing and capping agent. The synthesised AgNPs were characterised through UV visible spectroscopy, SEM, and energy dispersive X‐ray. Furthermore, different concentrations of AgNPs (10, 20, 30 ppm) in combination with Thidiazuron (0.5, 1.0 mg/l) were added onto MS medium to study development and secondary metabolites production in callus culture of C. reticulata . Callus induction percentage (96%) was more in 20 ppm AgNPs and 1 mg/l TDZ concentration. Moreover, high total phenolic, flavonoid contents, and antioxidant activity was observed in 20 ppm AgNPs combined with 0.5 and 1 mg/l TDZ. Enzymatic components (SOD, POD and CAT) were increased in MS medium augmented with 30 ppm AgNPs and TDZ. The total protein content (TPC) was significant in callus cultures treated with TDZ only. This study provides the first evidence of green synthesised AgNPs on callus culture developments and further quantification of biochemical profiling in C. reticula.
Collapse
Affiliation(s)
- Faiza Anum
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | - Naveed Iqbal Raja
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | - Mubashir Hussain
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | - Muhammad Iqbal
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | | | - Maria Ehsan
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | - Uneeza Javaid
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| | - Noor ul Ain Zafar
- Department of BotanyPMAS Arid Agriculture University RawalpindiPakistan
| |
Collapse
|
6
|
Budhani S, Egboluche NP, Arslan Z, Yu H, Deng H. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:330-355. [PMID: 31661365 PMCID: PMC7773158 DOI: 10.1080/10590501.2019.1676600] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (AgNP) exhibit size and concentration dependent toxicity to terrestrial plants, especially crops. AgNP exposure could decrease seed germination, inhibit seedling growth, affect mass and length of roots and shoots. The phytotoxic pathway has been partly understood. Silver (as element, ion or AgNP) accumulates in roots/leaves and triggers the defense mechanism at cellular and tissue levels, which alters metabolism, antioxidant activities and related proteomic expression. Botanical changes (either increase or decrease) in response to AgNP exposure include reactive oxygen species generation, superoxide dismutase activities, H2O2 level, total chlorophyll, proline, carotenoid, ascorbate and glutathione contents, etc. Such processes lead to abnormal morphological changes, suppression of photosynthesis and/or transpiration, and other symptoms. Although neutral or beneficial effects are also reported depending on plant species, adverse effects dominate in majority of the studies. More in depth research is needed to confidently draw any conclusions and to guide legislation and regulations.
Collapse
Affiliation(s)
- Shruti Budhani
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Nzube Prisca Egboluche
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Zikri Arslan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Hongtao Yu
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| | - Hua Deng
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, USA
| |
Collapse
|