1
|
Gupta G, Sailwal M, Shukla P. Sustainable Nanotechnology Based Techniques for Mitigating the Pollutants from Pulp and Paper Industry. ACS OMEGA 2024; 9:47904-47919. [PMID: 39676985 PMCID: PMC11635472 DOI: 10.1021/acsomega.4c06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Paper mills inevitably produce various pollutants, including chlorolignin, chlorophenols, chloroguaiacol, furan, cyanide, and heavy metals. These pollutants cause significant threats to aquatic and terrestrial life. The pulp and paper industries are looking for eco-friendly solutions for the disposal of effluents during paper processing. Moreover, environmental management practices are a key concern that may be addressed by removing these effluents using suitable bioremediation techniques. Therefore, we have discussed several eco-friendly nanotechnology based sustainable bioremediation technologies like the use of nanoparticles, nanomaterials, nanocomposites, nanoadsorbents, and several advanced methods such as electrocoagulation and photocatalysis, which may be utilized for the elimination of hazardous pollutants from paper industry effluents. This review finally includes critical insight into the potential use of the above-mentioned nanotechnology based interventions for mitigation of contaminants from the paper industry. Nevertheless, there are a few limitations and challenges toward implementation of such technologies, which are also discussed in this review.
Collapse
Affiliation(s)
- Guddu
Kumar Gupta
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Megha Sailwal
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein
Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
3
|
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3106. [PMID: 34835870 PMCID: PMC8623625 DOI: 10.3390/nano11113106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
The development of functional nanomaterials exhibiting cost-effectiveness, biocompatibility and biodegradability in the form of nanoadditives, nanofertilizers, nanosensors, nanopesticides and herbicides, etc., has attracted considerable attention in the field of agriculture. Such nanomaterials have demonstrated the ability to increase crop production, enable the efficient and targeted delivery of agrochemicals and nutrients, enhance plant resistance to various stress factors and act as nanosensors for the detection of various pollutants, plant diseases and insufficient plant nutrition. Among others, functional magnetic nanomaterials based on iron, iron oxide, cobalt, cobalt and nickel ferrite nanoparticles, etc., are currently being investigated in agricultural applications due to their unique and tunable magnetic properties, the existing versatility with regard to their (bio)functionalization, and in some cases, their inherent ability to increase crop yield. This review article provides an up-to-date appraisal of functionalized magnetic nanomaterials being explored in the agricultural sector.
Collapse
Affiliation(s)
- Alexandros Spanos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Kyriakos Athanasiou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus;
| | - Andreas Ioannou
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Limassol 3036, Cyprus; (A.S.); (A.I.); (V.F.)
| | | |
Collapse
|
4
|
Michailidou G, Koumentakou I, Liakos EV, Lazaridou M, Lambropoulou DA, Bikiaris DN, Kyzas GZ. Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers (Basel) 2021; 13:polym13183137. [PMID: 34578037 PMCID: PMC8473260 DOI: 10.3390/polym13183137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The compound of chitin is the second most important and abundant natural biopolymer in the world. The main extraction and exploitation sources of this natural polysaccharide polymer are mainly crustaceans species, such as shrimps and crabs. Chitosan (CS) (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) can be derived from chitin and can be mentioned as a compound that has high value-added applications due to its wide variety of uses, including pharmaceutical, biomedical, and cosmetics applications, food etc. Furthermore, chitosan is a biopolymer that can be used for adsorption applications because it contains amino and hydroxyl groups in its chemical structure (molecules), resulting in possible interactions of adsorption between chitosan and pollutants (uranium, mercury, rare earth elements (REEs), phenols, etc.). However, adsorption is a very effective, fast, simple, and low-cost process. This review article places emphasis on recent demonstrated research papers (2014–2020) where the chemical modifications of CS are explained briefly (grafting, cross-linking etc.) for the uptake of uranium, mercury, and REEs in synthesized aqueous solutions. Finally, figures and tables from selected synthetic routes of CS are presented and the effects of pH and the best mathematical fitting of isotherm and kinetic equations are discussed. In addition, the adsorption mechanisms are discussed.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Efstathios V. Liakos
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| |
Collapse
|
5
|
Gayathri R, Gopinath KP, Kumar PS. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. CHEMOSPHERE 2021; 262:128031. [PMID: 33182077 DOI: 10.1016/j.chemosphere.2020.128031] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In this research, raw jujube seeds (RJS) treated with sulphuric acid followed by ultrasonic treatment such as ultrasonic assisted jujube seeds (UAJS) based biochar have been experimented as a viable material for treating Zn(II) and Pb(II) contaminated water. The adsorption ability of UAJS was compared with RJS through Langmuir adsorption capacity. The produced adsorbents were analysed by using BET surface area and thermogravimetric analyses. The removal kinetics, isotherms and thermodynamic behaviours of metal ions adsorption by UAJS were studied. Adsorption equilibrium data were analysed using various equilibrium models and Freundlich isotherm was appropriate towards explain the adsorption characteristics. UAJS Langmuir capacity of 221.1 mg/g and 119.8 mg/g were obtained for Zn(II) ions and Pb(II) ions, respectively. The results observed that UAJS holds higher capacity as compared with RJS. The pseudo-first order model was relevant to address adsorption behaviour. The mechanism on the separation of metal ions by UAJS was tested using diffusion and Boyd models. The mechanism outcomes observed that the internal and external diffusion controlled the separation process. The thermodynamic results explain the separation process was viable, exothermic and natural. The electroplating industrial wastewater was also treated with UAJS biochar to remove the metal ions such as copper, nickel, chromium and zinc ions from wastewater. Desorption process showed that 0.1 N HCl provide the good results as compared with other desorbing agents. The adsorbent property is not lost till the maximum of 5 adsorption/desorption cycles. The produced UAJS can be a better adsorbent for treating the heavy metal polluted wastewater.
Collapse
Affiliation(s)
- R Gayathri
- Tamilnadu Pollution Control Board, Guindy, Chennai, 600032, India; Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
6
|
Rotake DR, Kumar A, Darji AD, Singh J. Highly selective sensor for the detection of Hg 2+ ions using homocysteine functionalised quartz crystal microbalance with cross-linked pyridinedicarboxylic acid. IET Nanobiotechnol 2020; 14:563-573. [PMID: 33010131 PMCID: PMC8676536 DOI: 10.1049/iet-nbt.2020.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/23/2023] Open
Abstract
This study reports an insightful portable vector network analyser (VNA)-based measurement technique for quick and selective detection of Hg2+ ions in nanomolar (nM) range using homocysteine (HCys)-functionalised quartz-crystal-microbalance (QCM) with cross-linked-pyridinedicarboxylic acid (PDCA). The excessive exposure to mercury can cause damage to many human organs, such as the brain, lungs, stomach, and kidneys, etc. Hence, the authors have proposed a portable experimental platform capable of achieving the detection in 20-30 min with a limit of detection (LOD) 0.1 ppb (0.498 nM) and a better dynamic range (0.498 nM-6.74 mM), which perfectly describes its excellent performance over other reported techniques. The detection time for various laboratory-based techniques is generally 12-24 h. The proposed method used the benefits of thin-film, nanoparticles (NPs), and QCM-based technology to overcome the limitation of NPs-based technique and have LOD of 0.1 ppb (0.1 μg/l) for selective Hg2+ ions detection which is many times less than the World Health Organization limit of 6 μg/l. The main advantage of the proposed QCM-based platform is its portability, excellent repeatability, millilitre sample volume requirement, and easy process flow, which makes it suitable as an early warning system for selective detection of mercury ions without any costly measuring instruments.
Collapse
Affiliation(s)
- Dinesh Ramkrushna Rotake
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India.
| | - Ajay Kumar
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| | - Anand D Darji
- Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Jitendra Singh
- Smart Sensors Area, CSIR-Central Electronics Engineering Research Institute, Pilani-333031, Rajasthan, India
| |
Collapse
|
7
|
Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01821-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Renita AA, Kumar PS, Jabasingh SA. Redemption of acid fuchsin dye from wastewater using de-oiled biomass: Kinetics and isotherm analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|