1
|
Zhao D, Yu S, Zang W, Ge J, Du R. Exopolysaccharide-selenium composite nanoparticle: Characterization, antioxidant properties and selenium release kinetics in simulated gastrointestinal conditions. Int J Biol Macromol 2025; 304:140809. [PMID: 39924015 DOI: 10.1016/j.ijbiomac.2025.140809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
An exopolysaccharide-selenium nanoparticles (EPS-SeNPs) was successfully synthesized by conjugating with Weissella confusa EPS through the reduction of SeO32-. The EPS-SeNPs composite was comprehensively characterized. These analyses confirmed that the EPS-SeNPs composite had an amorphous nature and a uniform size distribution of around 100 nm. The OH groups in EPS interacted with SeNPs, replacing intermolecular interactions in native EPS, which resulted in the stable dispersion of SeNPs within the EPS network. Furthermore, compared to native EPS, EPS-SeNPs with varying Se/EPS ratios demonstrated enhanced radical scavenging capabilities against ABTS, DPPH, superoxide anion radical (O2-), H2O2, and hydroxyl group radicals (OH·). This suggests that the conjugation of SeNP improved the antioxidant properties of EPS. Furthermore, the investigation delved into the dynamics and mechanism of selenium liberation from EPS-SeNPs under simulated gastric (SGF) and intestinal fluids (SIF). The EPS-SeNPs experienced a decrease in particle size from 223.03 ± 1.67 nm to 98.40 ± 5.57 nm. The release kinetics of selenium in SIF followed a conventional Fickian diffusion pattern. Notably, EPS-SeNPs demonstrated significant Se release following SIF digestion while exhibiting minimal release after SGF digestion, indicating their potential use as a controlled-release selenium-enriched supplement for addressing selenium deficiency.
Collapse
Affiliation(s)
- Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shan Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenjiang Zang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| |
Collapse
|
2
|
Elmizadeh A, Goli SAH, Mohammadifar MA. Characterization of pectin-zein nanoparticles encapsulating tanshinone: Antioxidant activity, controlled release properties, physicochemical stability to environmental stresses. Food Chem 2024; 460:140613. [PMID: 39067391 DOI: 10.1016/j.foodchem.2024.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Tanshinone compounds, natural antioxidants found in the roots of Salvia subg Perovskia plants, offer various health benefits and can serve as natural food additives, replacing synthetic antioxidants. In this study, the nanoparticles were created using the antisolvent method, which were then evaluated for their antioxidant and antibacterial properties, as well as their ability to release tanshinone and withstand environmental stress. The results of the study demonstrated a significant improvement in the antioxidant capabilities of tanshinone with the nanoparticle coating. The T/Z/P NPs exhibited enhanced tanshinone release under simulated gastrointestinal conditions compared to T/Z nanoparticles. These nanoparticles displayed remarkable stability against fluctuations in environmental pH and thermal conditions. The study also revealed that the critical flocculation concentration of the system was 0.5 M of salt. Furthermore, the T/Z/P NPs showed good stability during storage at 4°C for 30 days, making them an excellent candidate for use in various food products.
Collapse
Affiliation(s)
- Ameneh Elmizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
4
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
5
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wang D, Zhang Z, Zhao L, Yang L, Lou C. Recent advances in natural polysaccharides against hepatocellular carcinoma: A review. Int J Biol Macromol 2023; 253:126766. [PMID: 37689300 DOI: 10.1016/j.ijbiomac.2023.126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system that poses a serious threat to human life and health. Chemotherapeutic drugs commonly used in the clinic have limited efficacy and heavy adverse effects. Therefore, it is imperative to find effective and safe alternatives, and natural polysaccharides (NPs) fit the bill. This paper summarizes in detail the anti-HCC activity of NPs in vitro, animal and clinical trials. Furthermore, the addition of NPs can reduce the deleterious effects of chemotherapeutic drugs such as immunotoxicity, bone marrow suppression, oxidative stress, etc. The potential mechanisms are related to induction of apoptosis and cell cycle arrest, block of angiogenesis, invasion and metastasis, stimulation of immune activity and targeting of MircoRNA. And on this basis, we further elucidate that the anti-HCC activity may be related to the monosaccharide composition, molecular weight (Mw), conformational features and structural modifications of NPs. In addition, due to its good physicochemical properties, it is widely used as a drug carrier in the delivery of chemotherapeutic drugs and small molecule components. This review provides a favorable theoretical basis for the application of the anti-HCC activity of NPs.
Collapse
Affiliation(s)
- Dazhen Wang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Zhengfeng Zhang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Lu Zhao
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Liu Yang
- Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - ChangJie Lou
- Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
7
|
Wu X, Yang Y. Research progress on drug delivery systems for curcumin in the treatment of gastrointestinal tumors. World J Gastrointest Oncol 2023; 15:1342-1348. [PMID: 37663948 PMCID: PMC10473931 DOI: 10.4251/wjgo.v15.i8.1342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Curcumin is a natural compound with a diketone structure, which can control the growth, metastasis, recurrence, neovascularization, invasion, and drug resistance of gastrointestinal tumors by inhibiting nuclear factor κB, overexpression of tumor cells, vascular endothelial growth factor, etc. However, due to the low bioavailability of curcumin formulation, it did not fully exert its pharmacological effects, and its application and development in the treatment of various malignant tumors are still limited. This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities, and improve their bioavailability and clinical value.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yang Yang
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
8
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
9
|
Chen Y, Jiang Y, Wen L, Yang B. Interaction between ultrasound-modified pectin and icaritin. Food Chem 2023; 426:136618. [PMID: 37354572 DOI: 10.1016/j.foodchem.2023.136618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Pectin can improve the bioaccessibility of icaritin as a nanocarrier, and ultrasound can modify the pectin structure. However, the interaction between ultrasound-modified pectin (UMP) and icaritin remains unclearly. In this work, the effects of UMP on the physiochemical properties of icaritin/pectin micelles (IPMs) were investigated. The IPMs prepared with UMP (UMP-IPMs) showed lower encapsulation efficiencies and loading capacities, comparing with native IPMs. UMP-IPMs had smaller particle sizes (325-399 nm) than native IPMs (551 nm). The Mw, viscosity, G' and G" of pectin were determined. NMR spectra indicated that the repeating unit in pectins remained consistently before and after ultrasound treatment, and 7-OH of icaritin was involved in hydrogen bond formation with pectin. The larger chemical shift movement of 6-H and 7-OH for U3-IPMs than P0-IPMs suggested that stronger hydrogen bond interaction between icaritin and pectin. UMP-IPMs exhibited stronger anti-proliferation activities against HepG2 cells than native IPMs.
Collapse
Affiliation(s)
- Yipeng Chen
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingrong Wen
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bao Yang
- State Key Laboratory of Plant Diversity and Prominent Crops, Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
11
|
Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
12
|
Rosales TKO, Pedrosa LDF, Nascimento KR, Fioroto AM, Toniazzo T, Tadini CC, Purgatto E, Hassimotto NMA, Fabi JP. Nano-encapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
14
|
Kedir WM, Deresa EM, Diriba TF. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites. Heliyon 2022; 8:e10654. [PMID: 36164543 PMCID: PMC9508417 DOI: 10.1016/j.heliyon.2022.e10654] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 10/27/2022] Open
Abstract
Due to their natural availability, biocompatibility, biodegradability, nontoxicity, flexibility, as well as improved structural and functional characteristics, pectin and pectin-based nanocomposites have become an interesting area of numerous researchers. Pectin is a polysaccharide that comes from plants and is used in a variety of products. The significance of pectin polysaccharide and its modified nanocomposites in a number of applications has been shown in numerous reviews. On their uses in pharmaceutical and medication delivery, there are, however, few review publications. The majority of papers on pectin polysaccharide do not structure their explanations of drug distribution and medicinal application. The biological application of pectin nanocomposite is also explained in this review, along with a recent publication. As a result, the goal of this review was in-depth analysis to summarize biological application of pectin and its modified nanocomposites. Due to their exceptional physicochemical and biological characteristics, pectin and its nanocomposites are remarkable materials for medicinal applications. In addition to enhancing the immune system, controlling blood cholesterol, and other things, they have been shown to have anticancer, antidiabetic, antioxidant, anti-inflammatory, immunomodulatory, and antibacterial properties. Because of their biocompatibility and properties that allow for regulated release, they have also received a lot of interest as drug carriers in targeted drug delivery systems. They have been used to administer medications to treat cancer, inflammation, pain, Alzheimer's, bacteria, and relax muscles. This review found that pectin and its derivatives have better drug delivery efficiency and are viable candidates for a wide range of medicinal applications. It has been advised to conduct further research on the subject of toxicity in order to produce commercial formulations that can serve as both therapeutic agents and drug carriers.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia
| | - Ebisa Mirete Deresa
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Tamiru Fayisa Diriba
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
15
|
Capping Agents for Selenium Nanoparticles in Biomedical Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Tan J, Tang H, Xu Q, Zheng Y, Su D, He S, Zeng Q, Yuan Y. The Formation of Egg White
Polypeptide‐Selenium
complex particles: Mechanism, Stability and Functional Properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jin‐Chao Tan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Hong‐Yan Tang
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Qing‐Ling Xu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Ying‐Min Zheng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Dong‐Xiao Su
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Shan He
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Qing‐Zhu Zeng
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 PR China
| |
Collapse
|
17
|
Platelet Lysate as a Promising Medium for Nanocarriers in the Management and Treatment of Ocular Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021; 8:783831. [PMID: 34926557 PMCID: PMC8671830 DOI: 10.3389/fnut.2021.783831] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, owing to well-controlled release, enhanced distribution and increased permeability, nanocarriers used for alternative drug and food-delivery strategies have received increasingly attentions. Nanocarriers have attracted a large amount of interest as potential carriers of various bioactive molecules for multiple applications. Drug and food-based delivery via polymeric-based nanocarriers and lipid-based nanocarriers has been widely investigated. Nanocarriers, especially liposomes, are more and more widely used in the area of novel nano-pharmaceutical or food-based design. Herein, we aimed to discuss the recent advancement of different surface-engineered nanocarriers type, along with cutting-edge applications for food and nanomedicine and highlight the alternative of phytochemical as nanocarrier. Additionally, safety concern of nanocarriers was also highlighted.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Jampilek J, Kralova K. Potential of Nanonutraceuticals in Increasing Immunity. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2224. [PMID: 33182343 PMCID: PMC7695278 DOI: 10.3390/nano10112224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are defined as foods or their extracts that have a demonstrably positive effect on human health. According to the decision of the European Food Safety Authority, this positive effect, the so-called health claim, must be clearly demonstrated best by performed tests. Nutraceuticals include dietary supplements and functional foods. These special foods thus affect human health and can positively affect the immune system and strengthen it even in these turbulent times, when the human population is exposed to the COVID-19 pandemic. Many of these special foods are supplemented with nanoparticles of active substances or processed into nanoformulations. The benefits of nanoparticles in this case include enhanced bioavailability, controlled release, and increased stability. Lipid-based delivery systems and the encapsulation of nutraceuticals are mainly used for the enrichment of food products with these health-promoting compounds. This contribution summarizes the current state of the research and development of effective nanonutraceuticals influencing the body's immune responses, such as vitamins (C, D, E, B12, folic acid), minerals (Zn, Fe, Se), antioxidants (carotenoids, coenzyme Q10, polyphenols, curcumin), omega-3 fatty acids, and probiotics.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|