1
|
Hassanpour S, Naghsh N, Yazdanpanahi N, Talebian N. Effect of zinc oxide nanocomposite and ginger extract on lipid profile, glucose, pancreatic tissue and expression of Gpx1 and Tnf-α genes in diabetic rat model. Mol Biol Rep 2023; 51:11. [PMID: 38085359 DOI: 10.1007/s11033-023-08963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Diabetes is a life-threatening health condition that requires expensive treatment and places a significant financial burden on society. Consequently, this study aimed to explore the potential of low and high concentrations of ginger extract, ZnO-NPs, and a combination of both to help manage diabetes and reduce high levels of lipids in diabetic rats. METHODS AND RESULTS The research focused on agglomerated nanoparticles under 100 nm, specifically ZnO nanoparticles. The size of the nanoparticles was determined using X-ray diffraction analysis and scanning electron microscopy analysis, with a monodisperse particle size distribution of 20 to 48 nm and an average size of 38 nm, as shown by dynamic light scattering. Fourier transform infrared spectroscopy revealed the presence of typical peaks of ginger extract and ZnO-NPs in the nanocomposite structure. The pancreatic tissue histopathological study indicated that a concentration of 10 mg/kg of the composite had the most significant antidiabetic effect compared to other treatments. Lower concentrations could significantly reduce and balance fasting blood sugar and triglycerides levels while also increasing the high-density lipoproteins levels. However, all treatments induced a significant decrease in total cholesterol and low-density lipoproteins levels. Only metformin and ZnO-NPs in lower concentrations could decrease very low-density lipoproteins levels. The molecular technique showed that a low concentration of the composite led to the most significant decrease in Tnf-α gene expression compared to the diabetic group. The expression of the glutathione peroxidase 1 (Gpx1) gene in treated groups had no significant difference with the level of Gpx1 expression in the control rats. CONCLUSIONS In general, this study demonstrated that lower concentrations of the treatments, especially composite, were more effective for treating diabetic rats due to reduced pancreatic tissue damage.
Collapse
Affiliation(s)
- Shahram Hassanpour
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nooshin Naghsh
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Nasrin Yazdanpanahi
- Department of Biotechnology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Talebian
- Department of Chemistry, Science faculty, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran
- Razi Chemistry Research Center, Islamic Azad University, Shahreza, Isfahan, Iran
| |
Collapse
|
2
|
Moustafa EM, Moawed FSM, Elmaghraby DF. Luteolin/ZnO nanoparticles attenuate neuroinflammation associated with diabetes via regulating MicroRNA-124 by targeting C/EBPA. ENVIRONMENTAL TOXICOLOGY 2023; 38:2691-2704. [PMID: 37483155 DOI: 10.1002/tox.23903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The most prevalent brain-specific microRNA, MicroRNA-124, exhibits anti-inflammatory properties. Luteolin nano-formulation with Zn oxide in the form of L/ZnO NPs may boost anti-diabetic properties; however, its beneficial effect on miRNAs is yet unknown in diabetes. The effectiveness of L/ZnONPs supplements in preventing diabetic neurodegeneration by modulating inflammatory responses in a diabetic model was investigated. METHODS A diabetic rat model was induced by a high-fat diet and streptozotocin (30 mg/kg I.P.). Plasma glucose, insulin, and HOMR-IR levels, as well as cytokines, lipid peroxidation, GSH/GSSG, and glucose transporter 1, were determined along with the tight junction proteins occludin (OCLN) and zona occludens 1 (ZO-1). Moreover, the expressions of brain CCAAT/enhancer-binding protein (C/EBPA mRNA), miR-124, glial fibrillary acidic protein (GFAP), and NF-kBp65 were measured alongside the histological investigation. RESULTS The results revealed that L/ZnO NPs were able to diminish lipid peroxidation, increase the activity of antioxidant enzymes, and reduce inflammation under oxidative stress. Consequently, it was able to reduce hyperglycemia, elevate insulin levels, and improve insulin resistance. Besides, L/ZnO NPs upregulate miR-124, reduce C/EBPA mRNA, increase BCl-2, and inhibit apoptosis. The results indicate that diabetes raises BBB permeability via tight junction protein decline, which is restored following L/ZnO NPs treatment. Luteolin/ZnO NPs regulate miR-124 and microglia polarization by targeting C/EBPA and are expected to alleviate inflammatory injury via modulation of the redox-sensitive signal transduction pathways. Luteolin/ZnO NPs have a novel target for the protection of the BBB and the prevention of neurological complications in diabetes.
Collapse
Affiliation(s)
- Enas M Moustafa
- Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Dina F Elmaghraby
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
4
|
Mariadoss AVA, Sivakumar AS, Lee CH, Kim SJ. Diabetes mellitus and diabetic foot ulcer: Etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed Pharmacother 2022; 151:113134. [PMID: 35617802 DOI: 10.1016/j.biopha.2022.113134] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus (DM) is a collection of metabolic and pathophysiological disorders manifested with high glucose levels in the blood due to the inability of β-pancreatic cells to secrete an adequate amount of insulin or insensitivity of insulin towards receptor to oxidize blood glucose. Nevertheless, the preceding definition is only applicable to people who do not have inherited or metabolic disorders. Suppose a person who has been diagnosed with Type 1 or Type 2DM sustains an injury and the treatment of the damage is complicated and prolonged. In that case, the injury is referred to as a diabetic foot ulcer (DFU). In the presence of many proliferating macrophages in the injury site for an extended period causes the damage to worsen and become a diabetic wound. In this review, the scientific information and therapeutic management of DM/DFU with nanomedicine, and other related data were collected (Web of Science and PubMed) from January 2000 to January 2022. Most of the articles revealed that standard drugs are usually prescribed along with hypoglycaemic medications. Conversely, such drugs stabilize the glucose transporters and homeostasis for a limited period, resulting in side effects such as kidney damage/failure, absorption/gastrointestinal problems, and hypoglycemic issues. In this paper, we review the current basic and clinical evidence about the potential of medicinal plants, gene therapy, chemical/green synthesized nanoparticles to improving the metabolic profile, and facilitating the DM and DFU associated complications. Preclinical studies also reported lower plasma glucose with molecular targets in DM and DFU. Research is underway to explore chemical/green synthesized nanoparticle-based medications to avoid such side effects. Hence, the present review is intended to address the current challenges, recently recognized factors responsible for DM and DFU, their pathophysiology, insulin receptors associated with DM, medications in trend, and related complications.
Collapse
Affiliation(s)
- Arokia Vijaya Anand Mariadoss
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Allur Subramaniyan Sivakumar
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea.
| |
Collapse
|