1
|
Chattaraj A, Selvam TP. Radiation-induced DNA damage by proton, helium and carbon ions in human fibroblast cell: Geant4-DNA and MCDS-based study. Biomed Phys Eng Express 2024; 10:045059. [PMID: 38870909 DOI: 10.1088/2057-1976/ad57ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Background. Radiation-induced DNA damages such as Single Strand Break (SSB), Double Strand Break (DSB) and Complex DSB (cDSB) are critical aspects of radiobiology with implications in radiotherapy and radiation protection applications.Materials and Methods. This study presents a thorough investigation into the effects of protons (0.1-100 MeV/u), helium ions (0.13-100 MeV/u) and carbon ions (0.5-480 MeV/u) on DNA of human fibroblast cells using Geant4-DNA track structure code coupled with DBSCAN algorithm and Monte Carlo Damage Simulations (MCDS) code. Geant4-DNA-based simulations consider 1μm × 1μm × 0.5μm water box as the target to calculate energy deposition on event-by-event basis and the three-dimensional coordinates of the interaction location, and then DBSCAN algorithm is used to calculate yields of SSB, DSB and cDSB in human fibroblast cell. The study investigated the influence of Linear Energy Transfer (LET) of protons, helium ions and carbon ions on the yields of DNA damages. Influence of cellular oxygenation on DNA damage patterns is investigated using MCDS code.Results. The study shows that DSB and SSB yields are influenced by the LET of the particles, with distinct trends observed for different particles. The cellular oxygenation is a key factor, with anoxic cells exhibiting reduced SSB and DSB yields, underscoring the intricate relationship between cellular oxygen levels and DNA damage. The study introduced DSB/SSB ratio as an informative metric for evaluating the severity of radiation-induced DNA damage, particularly in higher LET regions.Conclusions. The study highlights the importance of considering particle type, LET, and cellular oxygenation in assessing the biological effects of ionizing radiation.
Collapse
Affiliation(s)
- Arghya Chattaraj
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Bian J, Duran J, Shin WG, Ramos-Méndez J, Sankey JC, Childress L, Seuntjens J, Enger SA. GEANT4-DNA simulation of temperature-dependent and pH-dependent yields of chemical radiolytic species. Phys Med Biol 2023; 68:10.1088/1361-6560/acd90d. [PMID: 37230081 PMCID: PMC11556437 DOI: 10.1088/1361-6560/acd90d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/25/2023] [Indexed: 05/27/2023]
Abstract
Objective.GEANT4-DNA can simulate radiation chemical yield (G-value) for radiolytic species such as the hydrated electron (eaq-) with the independent reaction times (IRT) method, however, only at room temperature and neutral pH. This work aims to modify the GEANT4-DNA source code to enable the calculation ofG-values for radiolytic species at different temperatures and pH values.Approach.In the GEANT4-DNA source code, values of chemical parameters such as reaction rate constant, diffusion coefficient, Onsager radius, and water density were replaced by corresponding temperature-dependent polynomials. The initial concentration of hydrogen ion (H+)/hydronium ion (H3O+) was scaled for a desired pH using the relationship pH = -log10[H+]. To validate our modifications, two sets of simulations were performed. (A) A water cube with 1.0 km sides and a pH of 7 was irradiated with an isotropic electron source of 1 MeV. The end time was 1μs. The temperatures varied from 25 °C to 150 °C. (B) The same setup as (A) was used, however, the temperature was set to 25 °C while the pH varied from 5 to 9. The results were compared with published experimental and simulated work.Main results.The IRT method in GEANT4-DNA was successfully modified to simulateG-values for radiolytic species at different temperatures and pH values. Our temperature-dependent results agreed with experimental data within 0.64%-9.79%, and with simulated data within 3.52%-12.47%. The pH-dependent results agreed well with experimental data within 0.52% to 3.19% except at a pH of 5 (15.99%) and with simulated data within 4.40%-5.53%. The uncertainties were below ±0.20%. Overall our results agreed better with experimental than simulation data.Significance.Modifications in the GEANT4-DNA code enabled the calculation ofG-values for radiolytic species at different temperatures and pH values.
Collapse
Affiliation(s)
- Jingyi Bian
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Juan Duran
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Wook-Geun Shin
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA-02114, United States of America
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, CA, United States of America
| | - Jack C Sankey
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Lilian Childress
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Baiocco G, Bartzsch S, Conte V, Friedrich T, Jakob B, Tartas A, Villagrasa C, Prise KM. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:545-559. [PMID: 36220965 PMCID: PMC9630194 DOI: 10.1007/s00411-022-00989-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.
Collapse
Affiliation(s)
- Giorgio Baiocco
- Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
| | - Stefan Bartzsch
- Institute for Radiation Medicine, Helmholtz Centre Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Valeria Conte
- Istituto Nazionale Di Fisica Nucleare INFN, Laboratori Nazionali Di Legnaro, Legnaro, Italy
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Adrianna Tartas
- Biomedical Physics Division, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | - Carmen Villagrasa
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Niklas M, Schlegel J, Liew H, Zimmermann F, Rein K, Walsh DW, Dzyubachyk O, Holland-Letz T, Rahmanian S, Greilich S, Runz A, Jäkel O, Debus J, Abdollahi A. Biosensor for deconvolution of individual cell fate in response to ion beam irradiation. CELL REPORTS METHODS 2022; 2:100169. [PMID: 35474967 PMCID: PMC9017136 DOI: 10.1016/j.crmeth.2022.100169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Clonogenic survival assay constitutes the gold standard method for quantifying radiobiological effects. However, it neglects cellular radiation response variability and heterogeneous energy deposition by ion beams on the microscopic scale. We introduce "Cell-Fit-HD4D" a biosensor that enables a deconvolution of individual cell fate in response to the microscopic energy deposition as visualized by optical microscopy. Cell-Fit-HD4D enables single-cell dosimetry in clinically relevant complex radiation fields by correlating microscopic beam parameters with biological endpoints. Decrypting the ion beam's energy deposition and molecular effects at the single-cell level has the potential to improve our understanding of radiobiological dose concepts as well as radiobiological study approaches in general.
Collapse
Affiliation(s)
- Martin Niklas
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Julian Schlegel
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Hans Liew
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Ferdinand Zimmermann
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Katrin Rein
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Dietrich W.M. Walsh
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
| | - Oleh Dzyubachyk
- Department of Radiology and Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Shirin Rahmanian
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Steffen Greilich
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Armin Runz
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oliver Jäkel
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology and Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases, German Cancer Consortium, Heidelberg Institute of Radiation Oncology and National Center for Radiation Oncology, 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
5
|
Montgomery L, Lund CM, Landry A, Kildea J. Towards the characterization of neutron carcinogenesis through direct action simulations of clustered DNA damage. Phys Med Biol 2021; 66. [PMID: 34555818 DOI: 10.1088/1361-6560/ac2998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Neutron exposure poses a unique radiation protection concern because neutrons have a large, energy-dependent relative biological effectiveness (RBE) for stochastic effects. Recent computational studies on the microdosimetric properties of neutron dose deposition have implicated clustered DNA damage as a likely contributor to this marked energy dependence. So far, publications have focused solely on neutron RBE for inducing clusters of DNA damage containing two or more DNA double strand breaks (DSBs). In this study, we have conducted a novel assessment of neutron RBE for inducing all types of clustered DNA damage that contain two or more lesions, stratified by whether the clusters contain DSBs (complex DSB clusters) or not (non-DSB clusters). This assessment was conducted for eighteen initial neutron energies between 1 eV and 10 MeV as well as a reference radiation of 250 keV x-rays. We also examined the energy dependence of cluster length and cluster complexity because these factors are believed to impact the DNA repair process. To carry out our investigation, we developed a user-friendly TOPAS-nBio application that includes a custom nuclear DNA model and a novel algorithm for recording clustered DNA damage. We found that neutron RBE for inducing complex DSB clusters exhibited similar energy dependence to the canonical neutron RBE for stochastic radiobiological effects, at multiple depths in human tissue. Qualitatively similar results were obtained for non-DSB clusters, although the quantitative agreement was lower. Additionally we identified a significant neutron energy dependence in the average length and complexity of clustered lesions. These results support the idea that many types of clustered DNA damage contribute to the energy dependence of neutron RBE for stochastic radiobiological effects and imply that the size and constituent lesions of individual clusters should be taken into account when modeling DNA repair. Our results were qualitatively consistent for (i) multiple radiation doses (including a low-dose 0.1 Gy irradiation), (ii) variations in the maximal lesion separation distance used to define a cluster, and (iii) two distinct collections of physics models used to govern particle transport. Our complete TOPAS-nBio application has been released under an open-source license to enable others to independently validate our work and to expand upon it.
Collapse
Affiliation(s)
- Logan Montgomery
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| | | | - Anthony Landry
- Prince Edward Island Cancer Treatment Centre, Charlottetown, PE, C1A8T5, Canada.,Department of Radiation Oncology, Dalhousie University, Halifax, NS, B3H4RZ, Canada
| | - John Kildea
- Medical Physics Unit, McGill University, Montreal, QC, H4A3J1, Canada
| |
Collapse
|
6
|
Jia C, Wang Q, Yao X, Yang J. The Role of DNA Damage Induced by Low/High Dose Ionizing Radiation in Cell Carcinogenesis. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Nikolova E, Tonev D, Zhelev N, Neychev V. Prospects for Radiopharmaceuticals as Effective and Safe Therapeutics in Oncology and Challenges of Tumor Resistance to Radiotherapy. Dose Response 2021; 19:1559325821993665. [PMID: 33716590 PMCID: PMC7923993 DOI: 10.1177/1559325821993665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/26/2022] Open
Abstract
The rapid advances in nuclear medicine have resulted in significant advantages for the field of oncology. The focus is on the application of radiopharmaceuticals as therapeuticals. In addition, the latest developments in cell biology (the understanding of the cell structure, function, metabolism, genetics, signaling, transformation) have given a strong scientific boost to radiation oncology. In this regard, the article discusses what is soon going to be a new jump in radiation oncology based on the already accumulated considerable knowledge at the cellular level about the mechanisms of cell transformation and tumor progression, cell response to radiation, cell resistance to apoptosis and radiation and cell radio-sensitivity. The mechanisms of resistance of tumor cells to radiation and the genetically determined individual sensitivity to radiation in patients (which creates the risk of radiation-induced acute and late side effects) are the 2 major challenges to overcome in modern nuclear medicine. The paper focuses on these problems and makes a detailed summary of the significance of the differences in the ionizing properties of radiopharmaceuticals and the principle of their application in radiation oncology that will shed additional light on how to make the anti-cancer radiotherapies more efficient and safe, giving some ideas for optimizations.
Collapse
Affiliation(s)
- Ekaterina Nikolova
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitar Tonev
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.,Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Vladimir Neychev
- University of Central Florida, College of Medicine, Orlando, FL, USA
| |
Collapse
|
8
|
Rabus H, Baek WY, Dangendorf V, Giesen U, Hilgers G, Nettelbeck H. PROPOSAL FOR A EUROPEAN METROLOGY NETWORK ON BIOLOGICAL IONISING RADIATION EFFECTS. RADIATION PROTECTION DOSIMETRY 2019; 186:143-147. [PMID: 30809673 DOI: 10.1093/rpd/ncz011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Progress in the field of ionising radiation (IR) metrology achieved in the BioQuaRT project raised the question to what extent radiobiological investigations would benefit from metrological support of the applied methodologies. A panel of experts from the medical field, fundamental research and radiation protection attended a workshop at Physikalisch-Technische Bundesanstalt to consult on metrology needs related to biological radiation effects. The panel identified a number of metrological needs including the further development of experimental and computational techniques for micro- and nanodosimetry, together with the determination of related fundamental material properties and the establishment of rigorous uncertainty budgets. In addition to this, a call to develop a metrology support for assisting quality assurance of radiobiology experiments was expressed. Conclusions from the workshop were presented at several international conferences for further discussion with the scientific community and stakeholder groups that led to an initiative within the metrology community to establish a European Metrology Network on biological effects of IR.
Collapse
Affiliation(s)
- H Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - W Y Baek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - V Dangendorf
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - U Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - G Hilgers
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - H Nettelbeck
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
9
|
Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations. Int J Mol Sci 2019; 20:ijms20246204. [PMID: 31835321 PMCID: PMC6940891 DOI: 10.3390/ijms20246204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
The objective of this work was to study the differences in terms of early biological effects that might exist between different X-rays energies by using a mechanistic approach. To this end, radiobiological experiments exposing cell monolayers to three X-ray energies were performed in order to assess the yields of early DNA damage, in particular of double-strand breaks (DSBs). The simulation of these irradiations was set in order to understand the differences in the obtained experimental results. Hence, simulated results in terms of microdosimetric spectra and early DSB induction were analyzed and compared to the experimental data. Human umbilical vein endothelial cells (HUVECs) were irradiated with 40, 220 kVp, and 4 MV X-rays. The Geant4 Monte Carlo simulation toolkit and its extension Geant4-DNA were used for the simulations. Microdosimetric calculations aiming to determine possible differences in the variability of the energy absorbed by the irradiated cell population for those photon spectra were performed on 10,000 endothelial cell nuclei representing a cell monolayer. Nanodosimetric simulations were also carried out using a computation chain that allowed the simulation of physical, physico-chemical, and chemical stages on a single realistic endothelial cell nucleus model including both heterochromatin and euchromatin. DNA damage was scored in terms of yields of prompt DSBs per Gray (Gy) and per giga (109) base pair (Gbp) and DSB complexity was derived in order to be compared to experimental data expressed as numbers of histone variant H2AX (γ-H2AX) foci per cell. The calculated microdosimetric spread in the irradiated cell population was similar when comparing between 40 and 220 kVp X-rays and higher when comparing with 4 MV X-rays. Simulated yields of induced DSB/Gy/Gbp were found to be equivalent to those for 40 and 220 kVp but larger than those for 4 MV, resulting in a relative biological effectiveness (RBE) of 1.3. Additionally, DSB complexity was similar between the considered photon spectra. Simulated results were in good agreement with experimental data obtained by IRSN (Institut de radioprotection et de sûreté nucléaire) radiobiologists. Despite differences in photon energy, few differences were observed when comparing between 40 and 220 kVp X-rays in microdosimetric and nanodosimetric calculations. Nevertheless, variations were observed when comparing between 40/220 kVp and 4 MV X-rays. Thanks to the simulation results, these variations were able to be explained by the differences in the production of secondary electrons with energies below 10 keV.
Collapse
|
10
|
Barbieri S, Babini G, Morini J, Friedland W, Buonanno M, Grilj V, Brenner DJ, Ottolenghi A, Baiocco G. Predicting DNA damage foci and their experimental readout with 2D microscopy: a unified approach applied to photon and neutron exposures. Sci Rep 2019; 9:14019. [PMID: 31570741 PMCID: PMC6769049 DOI: 10.1038/s41598-019-50408-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
The consideration of how a given technique affects results of experimental measurements is a must to achieve correct data interpretation. This might be challenging when it comes to measurements on biological systems, where it is unrealistic to have full control (e.g. through a software replica) of all steps in the measurement chain. In this work we address how the effectiveness of different radiation qualities in inducing biological damage can be assessed measuring DNA damage foci yields, only provided that artefacts related to the scoring technique are adequately considered. To this aim, we developed a unified stochastic modelling approach that, starting from radiation tracks, predicts both the induction, spatial distribution and complexity of DNA damage, and the experimental readout of foci when immunocytochemistry coupled to 2D fluorescence microscopy is used. The approach is used to interpret γ-H2AX data for photon and neutron exposures. When foci are reconstructed in the whole cell nucleus, we obtain information on damage characteristics "behind" experimental observations, as the average damage content of a focus. We reproduce how the detection technique affects experimental findings, e.g. contributing to the saturation of foci yields scored at 30 minutes after exposure with increasing dose and to the lack of dose dependence for yields at 24 hours.
Collapse
Affiliation(s)
| | | | - Jacopo Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - Veljko Grilj
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | | | | |
Collapse
|
11
|
Baek WY, Dangendorf V, Giesen U, Hilgers G, Nettelbeck H, Rabus H. PROSPECTS FOR METROLOGY RELATED TO BIOLOGICAL RADIATION EFFECTS OF ION BEAMS. RADIATION PROTECTION DOSIMETRY 2019; 183:131-135. [PMID: 30561691 DOI: 10.1093/rpd/ncy273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
In recent years, several approaches have been proposed to provide an understanding of the enhanced relative biological effectiveness of ion beams based on multi-scale models of their radiation effects. Among these, the BioQuaRT project was the only one which focused on developing metrology for a multi-scale characterization of particle track structure. The progress made within the BioQuaRT project has motivated the formation of a department 'Radiation Effects' at PTB dedicated to metrological research on ionizing radiation effects. This paper gives an overview of the department's present research directions and shortly discusses ideas for the future development of metrology related to biological effects of ion beams that are based on a stakeholder consultation.
Collapse
Affiliation(s)
- Woon Yong Baek
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Volker Dangendorf
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ulrich Giesen
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Gerhard Hilgers
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Heidi Nettelbeck
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Hans Rabus
- Department of Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| |
Collapse
|
12
|
Baiocco G, Babini G, Barbieri S, Morini J, Friedland W, Villagrasa C, Rabus H, Ottolenghi A. WHAT ROLES FOR TRACK-STRUCTURE AND MICRODOSIMETRY IN THE ERA OF -omics AND SYSTEMS BIOLOGY? RADIATION PROTECTION DOSIMETRY 2019; 183:22-25. [PMID: 30535167 PMCID: PMC6525334 DOI: 10.1093/rpd/ncy221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ionizing radiation is a peculiar perturbation when it comes to damage to biological systems: it proceeds through discrete energy depositions, over a short temporal scale and a spatial scale critical for subcellular targets as DNA, whose damage complexity determines the outcome of the exposure. This lies at the basis of the success of track structure (and nanodosimetry) and microdosimetry in radiation biology. However, such reductionist approaches cannot account for the complex network of interactions regulating the overall response of the system to radiation, particularly when effects are manifest at the supracellular level and involve long times. Systems radiation biology is increasingly gaining ground, but the gap between reductionist and holistic approaches is becoming larger. This paper presents considerations on what roles track structure and microdosimetry can have in the attempt to fill this gap, and on how they can be further exploited to interpret radiobiological data and inform systemic approaches.
Collapse
Affiliation(s)
- G Baiocco
- Physics Department, University of Pavia, Pavia, Italy
- Corresponding author:
| | - G Babini
- Physics Department, University of Pavia, Pavia, Italy
| | - S Barbieri
- Physics Department, University of Pavia, Pavia, Italy
| | - J Morini
- Physics Department, University of Pavia, Pavia, Italy
| | - W Friedland
- Institute of Radiation Protection, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - C Villagrasa
- Institut de Radioprotection et Sûreté nucléaire (IRSN), Fontenay aux Roses Cedex, France
| | - H Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - A Ottolenghi
- Physics Department, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Gonon G, Villagrasa C, Voisin P, Meylan S, Bueno M, Benadjaoud MA, Tang N, Langner F, Rabus H, Barquinero JF, Giesen U, Gruel G. From Energy Deposition of Ionizing Radiation to Cell Damage Signaling: Benchmarking Simulations by Measured Yields of Initial DNA Damage after Ion Microbeam Irradiation. Radiat Res 2019; 191:566-584. [PMID: 31021733 DOI: 10.1667/rr15312.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·µm-1 at the cells' center position, or to protons (19 keV·µm-1). Statistical evaluation of nuclear foci formation (53BP1/γ-H2AX), observed using immunofluorescence and related to a particle traversal, was undertaken in a large population of cell nuclei. The biological results were adjusted to consider the factors that drive the experimental uncertainties, then challenged with results using Geant4-DNA code modeling of the ionizing particle interactions on a virtual phantom of the cell nucleus with the same mean geometry and DNA density as the cells used in our experiments. Both results showed an increase of relative frequencies of foci (or simulated DNA damage) in cell nuclei as a function of increasing LET of the traversing particles, reaching a quasi-plateau when the LET exceeded 80-90 keV·µm-1. For the LET of an alpha particle ranging from 80-90 to 170 keV·µm-1, 10-30% of the particle hits did not lead to DNA damage inducing 53BP1 or γ-H2AX foci formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohamed Amine Benadjaoud
- c Radiobiology and Regenerative Medicine Research Service, Direction of Human Health, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Frank Langner
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Hans Rabus
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | | | - Ulrich Giesen
- d Department 6.5 Radiation Effects, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Gaëtan Gruel
- a Radiobiology of Accidental Exposure Laboratory
| |
Collapse
|
14
|
Tang N, Bueno M, Meylan S, Incerti S, Tran HN, Vaurijoux A, Gruel G, Villagrasa C. Influence of chromatin compaction on simulated early radiation-induced DNA damage using Geant4-DNA. Med Phys 2019; 46:1501-1511. [DOI: 10.1002/mp.13405] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- N. Tang
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - M. Bueno
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - S. Meylan
- SymAlgo Technologies; 75 rue Léon Frot 75011 Paris France
| | - S. Incerti
- Université de Bordeaux CNRS/IN2P3 Centre d'Etudes Nucléaires de Bordeaux; Gradignan CENBG; chemin du solarium, BP120 33175 Gradignan France
| | - H. N. Tran
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - A. Vaurijoux
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - G. Gruel
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| | - C. Villagrasa
- IRSN; Institut de Radioprotection et de Sûreté Nucléaire; BP17 92262 Fontenay aux Roses France
| |
Collapse
|
15
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019; 9:6845-6858. [PMID: 35518487 PMCID: PMC9061037 DOI: 10.1039/c8ra10168j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Relative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect. Relative Biological Effectiveness (RBE) is a controversial and important topic in proton therapy. This work uses Monte Carlo simulations of DNA damage for protons and photons to probe this phenomenon, providing a plausible mechanistic understanding.![]()
Collapse
Affiliation(s)
- N. T. Henthorn
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - J. W. Warmenhoven
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. Sotiropoulos
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. H. Aitkenhead
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - E. A. K. Smith
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - S. P. Ingram
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. F. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. L. Chadwick
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. G. Burnet
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - R. I. Mackay
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - K. J. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. J. Merchant
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| |
Collapse
|