1
|
Khandjian EW, Moss T, Rose TM, Robert C, Davidovic L. The fragile X proteins' enigma: to be or not to be nucleolar. Front Cell Dev Biol 2024; 12:1448209. [PMID: 39156973 PMCID: PMC11327008 DOI: 10.3389/fcell.2024.1448209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Edouard W. Khandjian
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, et Centre de Recherche Cervo, Québec, QC, Canada
| | - Tom Moss
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, et Centre de Recherche sur le Cancer, Axe Oncologie, Centre de Recherche du CHUQ, Université Laval, Québec, QC, Canada
| | - Timothy M. Rose
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Laetitia Davidovic
- Centre National de la Recherche Scientifique UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Inserm U1318, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
2
|
Leboucher A, Pisani DF, Martinez-Gili L, Chilloux J, Bermudez-Martin P, Van Dijck A, Ganief T, Macek B, Becker JAJ, Le Merrer J, Kooy RF, Amri EZ, Khandjian EW, Dumas ME, Davidovic L. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol Metab 2019; 21:22-35. [PMID: 30686771 PMCID: PMC6407369 DOI: 10.1016/j.molmet.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. Methods Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased β-adrenergic-driven lipolysis and lipid utilization. Results Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. Conclusions Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism. Loss of the translational regulator FMRP impacts glucose and lipid homeostasis in mouse and human. FMR1-deficiency modifies blood metabolic markers. Loss of FMRP enhances the insulin response and lipolysis. Loss of FMRP exaggerates hepatic protein synthesis. FMRP controls the translation of key hepatic proteins involved in lipid metabolism.
Collapse
Affiliation(s)
- Antoine Leboucher
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Laura Martinez-Gili
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Julien Chilloux
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Patricia Bermudez-Martin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | | | | | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Inserm, Université François Rabelais, IFCE, 37380, Nouzilly, France
| | - R Frank Kooy
- Department of Medical Genetics, University and University Hospital of Antwerp, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Edouard W Khandjian
- Centre de Recherche CERVO, Institut en Santé Mentale de Québec, PQ, Canada; Département de Psychiatrie et des Neurosciences, Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | - Marc-Emmanuel Dumas
- Division of Integrative Systems Medicine and Digestive Diseases, Department of Surgery and Cancer, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Laetitia Davidovic
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
3
|
Leboucher A, Bermudez-Martin P, Mouska X, Amri EZ, Pisani DF, Davidovic L. Fmr1-Deficiency Impacts Body Composition, Skeleton, and Bone Microstructure in a Mouse Model of Fragile X Syndrome. Front Endocrinol (Lausanne) 2019; 10:678. [PMID: 31632352 PMCID: PMC6783488 DOI: 10.3389/fendo.2019.00678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with intellectual disability, hyperactivity, and autism. FXS is due to the silencing of the X-linked FMR1 gene. Murine models of FXS, knock-out (KO) for the murine homolog Fmr1, have been generated, exhibiting CNS-related behavioral, and neuronal anomalies reminiscent of the human phenotypes. As a reflection of the almost ubiquitous expression of the FMR1 gene, FXS is also accompanied by physical abnormalities. This suggests that the FMR1-deficiency could impact skeletal ontogenesis. In the present study, we highlight that Fmr1-KO mice display changes in body composition with an increase in body weight, likely due to both increase of skeleton length and muscular mass along with reduced visceral adiposity. We also show that, while Fmr1-deficiency has no overt impact on cortical bone mineral density (BMD), cortical thickness was increased, and cortical eccentricity was decreased in the femurs from Fmr1-KO mice as compared to controls. Also, trabecular pore volume was reduced and trabecular thickness distribution was shifted toward higher ranges in Fmr1-KO femurs. Finally, we show that Fmr1-KO mice display increased physical activity. Although the precise molecular signaling mechanism that produces these skeletal and bone microstructure changes remains to be determined, our study warrants further investigation on the impact of FMR1-deficiency on whole-body composition, as well as skeletal and bone architecture.
Collapse
Affiliation(s)
| | | | - Xavier Mouska
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | | | - Laetitia Davidovic
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
- *Correspondence: Laetitia Davidovic
| |
Collapse
|
4
|
McCoy M, Poliquin-Duchesneau D, Corbin F. Molecular dynamics of FMRP and other RNA-binding proteins in MEG-01 differentiation: the role of mRNP complexes in non-neuronal development. Biochem Cell Biol 2016; 94:597-608. [DOI: 10.1139/bcb-2015-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically differentiating cells are formed with the aid of RNA-binding proteins (RBPs), which can bind, stabilize, regulate, and transport target mRNAs. The loss of RBPs in neurons may lead to severe neurodevelopmental diseases such as the Fragile X Syndrome with the absence of the Fragile X Mental Retardation Protein (FMRP). Because the latter is ubiquitous and shares many similarities with other RBPs involved in the development of peripheral cells, we suggest that FMRP would have a role in the differentiation of all tissues where it is expressed. A MEG-01 differentiation model was, therefore, established to study the global developmental functions of FMRP. PMA induction of MEG-01 cells causes important morphological changes driven by cytoskeletal dynamics. Cytoskeleton change and colocalization analyses were performed by confocal microscopy and sucrose gradient fractionation. Total cellular protein content and de novo synthesis were also analyzed. Microtubular transport mediates the displacement of FMRP and other RBP-containing mRNP complexes towards regions of the cell in development. De novo protein synthesis decreases significantly upon differentiation and total protein content composition is altered. Because those results are comparable with those obtained in neurons, the absence of FMRP would have significant consequences in cells everywhere in the body. The latter should be further investigated to give a better understanding of the systemic implications of imbalances of FMRP and other functionally similar RBPs.
Collapse
Affiliation(s)
- M. McCoy
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - D. Poliquin-Duchesneau
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - F. Corbin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Hamdan FF, Gauthier J, Rouleau GA, Michaud JL. [De novo mutations in SYNGAP1 associated with non-syndromic mental retardation]. Med Sci (Paris) 2010; 26:133-5. [PMID: 20188038 DOI: 10.1051/medsci/2010262133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fadi F Hamdan
- Centre d'excellence en neuromique de l'Université de Montréal, Centre de recherche, Montréal, H3T 1C5 Canada
| | | | | | | |
Collapse
|