1
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
2
|
Leroux É, Brosseau C, Angers B, Angers A, Breton S. [Mitochondrial DNA methylation: Controversies, issues and perspectives]. Med Sci (Paris) 2021; 37:258-264. [PMID: 33739273 DOI: 10.1051/medsci/2021011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that has been largely probed regarding eukaryotic nuclear genome and bacteria, and its role is especially crucial in the regulation of gene expression. In mammals, it is almost exclusively acting on a cytosine preceding a guanine (CpG), whereas it presents itself mainly in a non-CpG context in bacteria's DNA. Conversely to nuclear and bacterial genomes, the existence of methylation in the mitochondrial genome is still widely debated. This controversy has been attributed to structural differences between the nuclear and mitochondrial genomes, and to the techniques used to study methylation of cytosines, which were rather optimized for the study of nuclear DNA. However, novel studies suggest that cytosine methylation is truly existing in mitochondria, and that it is mostly found in a non-CpG context, just like in their evolutionary relative, the bacteria.
Collapse
Affiliation(s)
- Émélie Leroux
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Cindy Brosseau
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Bernard Angers
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Annie Angers
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Campus MIL, Faculté des Arts et des Sciences, CP 6128, Succursale Centre-Ville, Montréal QC, H3C 3J7, Canada
| |
Collapse
|
3
|
Nikbakht Dastjerdi M, Azarnezhad A, Hashemibeni B, Salehi M, Kazemi M, Babazadeh Z. An Effective Concentration of 5-Aza-CdR to Induce Cell Death and Apoptosis in Human Pancreatic Cancer Cell Line through Reactivating RASSF1A and Up-Regulation of Bax Genes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:533-540. [PMID: 30214106 PMCID: PMC6123548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Promoter hyper-methylation of tumor suppressor genes is a common event that occurs in cancer. As methylation is a reversible modification, agents capable of reversing an abnormal methylation status should help to combat cancer. 5-Aza-CdR is a DNA methyl-transferase inhibitor. The present study aimed to evaluate the effect of 5-Aza-CdR on the proliferation of human pancreatic cancer cell line (PANC-1) and the expression of RASSF1A and Bax genes. METHODS PANC-1 cells were cultured and treated with 5 and 10 µM/L of 5-Aza-CdR for 24, 48, 72, and 96 hours and the percentages of cell viability and apoptosis were measured by MTT and flow cytometry. RASSF1A gene promoter methylation was assessed by methyl-specific primer-PCR (MSP-PCR) and the expression of RASSF1A and Bax genes was measured using quantitative real-time PCR (qPCR). All quantitative data are presented as mean±SD (standard deviation). The one-way analysis of variance (ANOVA) with the LSD post hoc test was performed for statistical analysis using the SPSS software package, version 16.0. RESULTS 3-[4,5-dimethythiaziazol-2yl]-2,5-diphenyl tetrazoliumbr omide (MTT) assay revealed that 5-Aza-CdR significantly inhibit the growth and proliferation of PANC-1. The flow cytometry results showed over 40% and 70% of early and late apoptotic cells after treatment with 5 and 10 µm/L of 5-Aza-CdR, respectively. MSP-PCR data indicated that the treatment of cells with 10 µm/L 5-Aza-CdR resulted in partial demethylation of RASSF1A gene promoter. qPCR results showed significant re-expression of RASSF1A and up-regulation of Bax genes after 96 hours treatment of cells with 10 µm/L 5-Aza-CdR versus control cells (P<0.01). CONCLUSION The result demonstrated that 5 and 10 µM of 5-Aza-CdR induce cell death and apoptosis by epigenetic reactivation of RASSF1A and up-regulation of Bax genes.
Collapse
Affiliation(s)
- Mehdi Nikbakht Dastjerdi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran;
,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| | - Batool Hashemibeni
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mansour Salehi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Mohammad Kazemi
- Department of Molecular Biology, Isfahan University of Medical Science, Iran;
| | - Zahra Babazadeh
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
,Department of Anatomical Sciences, Faculty of Medicine, Babol University of MedicalSciences, Babol, Iran
| |
Collapse
|
4
|
Naciri I, Roussel-Gervais A, Defossez PA, Kirsh O. [Unexpected roles for a methyl-binding protein in cancer]. Med Sci (Paris) 2017; 33:714-716. [PMID: 28945554 DOI: 10.1051/medsci/20173308009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ikrame Naciri
- Équipe « Dynamique de la méthylation de l'ADN des génomes eucaryotes », Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris Diderot, université Sorbonne Paris Cité (USPC), 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Audrey Roussel-Gervais
- Équipe « Dynamique de la méthylation de l'ADN des génomes eucaryotes », Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris Diderot, université Sorbonne Paris Cité (USPC), 35, rue Hélène Brion, 75205 Paris Cedex 13, France - Département de pathologie et immunologie, centre médical universitaire, université de Genève, Genève, Suisse
| | - Pierre-Antoine Defossez
- Équipe « Dynamique de la méthylation de l'ADN des génomes eucaryotes », Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris Diderot, université Sorbonne Paris Cité (USPC), 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Olivier Kirsh
- Équipe « Dynamique de la méthylation de l'ADN des génomes eucaryotes », Centre épigénétique et destin cellulaire, UMR7216 CNRS, université Paris Diderot, université Sorbonne Paris Cité (USPC), 35, rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
5
|
Semik E, Ząbek T, Gurgul A, Fornal A, Szmatoła T, Pawlina K, Wnuk M, Klukowska-Rötzler J, Koch C, Mählmann K, Bugno-Poniewierska M. Comparative analysis of DNA methylation patterns of equine sarcoid and healthy skin samples. Vet Comp Oncol 2017; 16:37-46. [DOI: 10.1111/vco.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Affiliation(s)
- E. Semik
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - T. Ząbek
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A. Gurgul
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - A. Fornal
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - T. Szmatoła
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - K. Pawlina
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| | - M. Wnuk
- Department of Genetics, Centre of Applied Biotechnology and Basic Sciences; University of Rzeszow; Rzeszow Poland
| | - J. Klukowska-Rötzler
- Division of Pedriatric Hematology/Oncology, Department of Clinical Research; University of Bern; Bern Switzerland
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
| | - C. Koch
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
| | - K. Mählmann
- Swiss Institute of Equine Medicine ISME, Department of Clinical Veterinary Medicine, Vetsuisse Faculty; University of Bern and Agroscope; Bern Switzerland
- Equine Clinic, General Surgery and Radiology; Freie Universität Berlin; Berlin Germany
| | - M. Bugno-Poniewierska
- Department of Animal Genomics and Molecular Biology; National Research Institute of Animal Production; Balice Poland
| |
Collapse
|
6
|
Delpu Y, Hanoun N, Lulka H, Sicard F, Selves J, Buscail L, Torrisani J, Cordelier P. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr Genomics 2011; 12:15-24. [PMID: 21886451 PMCID: PMC3129039 DOI: 10.2174/138920211794520132] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/10/2010] [Accepted: 12/10/2010] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.
Collapse
Affiliation(s)
- Yannick Delpu
- Inserm UMR 1037- University of Toulouse III, Cancer Research Center of Toulouse (CRCT), BP 84225, CHU Rangeuil, Toulouse 31432, Cedex 4, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
[Epigenetic perturbations and cancer: innovative therapeutic strategies against cancer]. Bull Cancer 2010; 97:1265-74. [PMID: 21047719 DOI: 10.1684/bdc.2010.1204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A complex system of molecular milestones ensures labelling of the genome, driving its organization and functions. These milestones correspond to particular marks associated to active and repressed genes, as well as to non-coding regions or those containing repetitive sequences. Most of these marks are chemical modifications of DNA, corresponding to cytosine methylation, or various posttranslational modifications of histones, the proteins which package the genome. These chemical modifications of DNA or histones are reversible and are catalysed and removed by enzymatic activities associated with factors ensuring critical cellular functions. Indeed, these enzymes are directly connected with signalling pathways, sensing extra- and intracellular environments. Altogether these mechanisms globally control the expression status of genes in each cell, meaning that certain genes are kept active, while most of the genome remains silent. Subtle metabolic changes or intra and extracellular modifications, by altering the marking associated to genes, can have long-term consequences on their expression status. Genes coding for essential regulators of cellular proliferation and differentiation could be among these genes, such as tumor suppressor genes for instance. Hence the knowledge of all these so-called "epigenetic" mechanisms will shed new light on the environmental impact on the control of gene expression and associated diseases, including malignant transformation. The understanding of these mechanisms will also pave the way for innovative therapeutic strategies to fight cancer. This review is aiming to give an overview to the reader of the relevance of epigenetic mechanisms for the understanding and treatment of cancer.
Collapse
|
9
|
Rousseaux S, Reynoird N, Gaucher J, Khochbin S. L’intrusion des régulateurs de l’épigénome mâle dans les cellules somatiques cancéreuses. Med Sci (Paris) 2008; 24:735-41. [DOI: 10.1051/medsci/20082489735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
|
11
|
Rocha W, Verreault A. Vers une thérapie « épigénétique » du cancer ? Med Sci (Paris) 2008; 24:671. [DOI: 10.1051/medsci/20082489671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|