1
|
Chang LJ, Chen TH. NSP16 2'-O-MTase in Coronavirus Pathogenesis: Possible Prevention and Treatments Strategies. Viruses 2021; 13:v13040538. [PMID: 33804957 PMCID: PMC8063928 DOI: 10.3390/v13040538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Several life-threatening viruses have recently appeared, including the coronavirus, infecting a variety of human and animal hosts and causing a range of diseases like human upper respiratory tract infections. They not only cause serious human and animal deaths, but also cause serious public health problems worldwide. Currently, seven species are known to infect humans, namely SARS-CoV-2, MERS-CoV, SARS-CoV, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. The coronavirus nonstructural protein 16 (NSP16) structure is similar to the 5′-end capping system of mRNA used by eukaryotic hosts and plays a vital role in evading host immunity response and protects the nascent viral mRNA from degradation. NSP16 is also well-conserved among related coronaviruses and requires its binding partner NSP10 to activate its enzymatic activity. With the continued threat of viral emergence highlighted by human coronaviruses and SARS-CoV-2, mutant strains continue to appear, affecting the highly conserved NSP16: this provides a possible therapeutic approach applicable to any novel coronavirus. To this end, current information on the 2′-O-MTase activity mechanism, the differences between NSP16 and NSP10 in human coronaviruses, and the current potential prevention and treatment strategies related to NSP16 are summarized in this review.
Collapse
Affiliation(s)
- Li-Jen Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Correspondence: ; Tel.: +886-5276-5041
| |
Collapse
|
2
|
Sharma K, Morla S, Goyal A, Kumar S. Computational guided drug repurposing for targeting 2'-O-ribose methyltransferase of SARS-CoV-2. Life Sci 2020; 259:118169. [PMID: 32738360 PMCID: PMC7387922 DOI: 10.1016/j.lfs.2020.118169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 01/20/2023]
Abstract
Aims The recent outbreak of pandemic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led the world towards a global health emergency. Currently, no proper medicine or effective treatment strategies are available; therefore, repurposing of FDA approved drugs may play an important role in overcoming the situation. Materials and methods The SARS-CoV-2 genome encodes for 2-O-methyltransferase (2′OMTase), which plays a key role in methylation of viral RNA for evading host immune system. In the present study, the protein sequence of 2′OMTase of SARS-CoV-2 was analyzed, and its structure was modeled by a comparative modeling approach and validated. The library of 3000 drugs was screened against the active site of 2′OMTase followed by re-docking analysis. The apo and ligand-bound 2′OMTase were further validated and analyzed by using molecular dynamics simulation. Key findings The modeled structure displayed the conserved characteristic fold of class I MTase family. The quality assessment analysis by SAVES server reveals that the modeled structure follows protein folding rules and of excellent quality. The docking analysis displayed that the active site of 2′OMTase accommodates an array of drugs, which includes alkaloids, antivirals, cardiac glycosides, anticancer, steroids, and other drugs. The redocking and MD simulation analysis of the best 5 FDA approved drugs reveals that these drugs form a stable conformation with the 2′OMTase. Significance The results suggested that these drugs may be used as potential inhibitors for 2′OMTase for combating the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kedar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Wiersum G, Kim Y, Jedrzejczak R, Maltseva NI, Endres M, Jaroszewski L, Godzik A, Joachimiak A, Satchell KJF. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.17.047498. [PMID: 32511376 PMCID: PMC7263505 DOI: 10.1101/2020.04.17.047498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 is a member of the coronaviridae family and is the etiological agent of the respiratory Coronavirus Disease 2019. The virus has spread rapidly around the world resulting in over two million cases and nearly 150,000 deaths as of April 17, 2020. Since no treatments or vaccines are available to treat COVID-19 and SARS-CoV-2, respiratory complications derived from the infections have overwhelmed healthcare systems around the world. This virus is related to SARS-CoV-1, the virus that caused the 2002-2004 outbreak of Severe Acute Respiratory Syndrome. In January 2020, the Center for Structural Genomics of Infectious Diseases implemented a structural genomics pipeline to solve the structures of proteins essential for coronavirus replication-transcription. Here we show the first structure of the SARS-CoV-2 nsp10-nsp16 2'-O-methyltransferase complex with S-adenosylmethionine at a resolution of 1.80 Å. This heterodimer complex is essential for capping viral mRNA transcripts for efficient translation and to evade immune surveillance.
Collapse
Affiliation(s)
- Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole L. Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Kiryukhina
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Grant Wiersum
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Michael Endres
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Lukasz Jaroszewski
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Adam Godzik
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Identification and Characterization of a Ribose 2'-O-Methyltransferase Encoded by the Ronivirus Branch of Nidovirales. J Virol 2016; 90:6675-6685. [PMID: 27170751 DOI: 10.1128/jvi.00658-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The order Nidovirales currently comprises four virus families: Arteriviridae, Coronaviridae (divided into the subfamilies Coronavirinae and Torovirinae), Roniviridae, and the recently recognized Mesoniviridae RNA cap formation and methylation have been best studied for coronaviruses, with emphasis on the identification and characterization of two virus-encoded methyltransferases (MTases) involved in RNA capping, a guanine-N7-MTase and a ribose-2'-O-MTase. Although bioinformatics analyses suggest that these MTases may also be encoded by other nidoviruses with large genomes, such as toroviruses and roniviruses, no experimental evidence has been reported thus far. In this study, we show that a ronivirus, gill-associated virus (GAV), encodes the 2'-O-MTase activity, although we could not detect 2'-O-MTase activity for the homologous protein of a torovirus, equine torovirus, which is more closely related to coronaviruses. Like the coronavirus 2'-O-MTase, the roniviral 2'-O-MTase harbors a catalytic K-D-K-E tetrad that is conserved among 2'-O-MTases and can target only the N7-methylated cap structure of adenylate-primed RNA substrates. However, in contrast with the coronavirus protein, roniviral 2'-O-MTase does not require a protein cofactor for stimulation of its activity and differs in its preference for several biochemical parameters, such as reaction temperature and pH. Furthermore, the ronivirus 2'-O-MTase can be targeted by MTase inhibitors. These results extend our current understanding of nidovirus RNA cap formation and methylation beyond the coronavirus family. IMPORTANCE Methylation of the 5'-cap structure of viral RNAs plays important roles in genome replication and evasion of innate recognition of viral RNAs by cellular sensors. It is known that coronavirus nsp14 acts as an N7-(guanine)-methyltransferase (MTase) and nsp16 as a 2'-O-MTase, which are involved in the modification of RNA cap structure. However, these enzymatic activities have not been shown for any other nidoviruses beyond coronaviruses in the order Nidovirales In this study, we identified a 2'-O-methyltransferase encoded by ronivirus that shows common and unique features in comparison with that of coronaviruses. Ronivirus 2'-O-MTase does not need a protein cofactor for MTase activity, whereas coronavirus nsp16 needs the stimulating factor nsp10 for its full activity. The conserved K-D-K-E catalytic tetrad is identified in ronivirus 2'-O-MTase. These results extend our understanding of nidovirus RNA capping and methylation beyond coronaviruses and also strengthen the evolutionary and functional links between roniviruses and coronaviruses.
Collapse
|
5
|
Abstract
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.
Collapse
Affiliation(s)
- Qian Cong
- a Departments of Biophysics and Biochemistry ; University of Texas Southwestern Medical Center at Dallas ; Dallas , TX USA
| | | | | |
Collapse
|