1
|
Marcos JL, Olivares-Barraza R, Ceballo K, Wastavino M, Ortiz V, Riquelme J, Martínez-Pinto J, Muñoz P, Cruz G, Sotomayor-Zárate R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int J Mol Sci 2023; 24:ijms24021468. [PMID: 36674982 PMCID: PMC9866213 DOI: 10.3390/ijms24021468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity-induced neuroinflammation is a chronic aseptic central nervous system inflammation that presents systemic characteristics associated with increased pro-inflammatory cytokines such as interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) and the presence of microglia and reactive astrogliosis as well as the activation of the NLRP3 inflammasome. The obesity pandemic is associated with lifestyle changes, including an excessive intake of obesogenic foods and decreased physical activity. Brain areas such as the lateral hypothalamus (LH), lateral septum (LS), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been implicated in the homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. In this context, a chronic lipid intake triggers neuroinflammation in several brain regions such as the hypothalamus, hippocampus, and amygdala. This review aims to present the background defining the significant impact of neuroinflammation and how this, when induced by an obesogenic diet, can affect feeding control, triggering metabolic and neurological alterations.
Collapse
Affiliation(s)
- José Luis Marcos
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar 2572007, Chile
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Rossy Olivares-Barraza
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Melisa Wastavino
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Víctor Ortiz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Julio Riquelme
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Muñoz
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: ; Tel.: +56-32-2508050
| |
Collapse
|
2
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|
3
|
Li Y, Zhang T, Guo C, Geng M, Gai S, Qi W, Li Z, Song Y, Luo X, Zhang T, Wang N. Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathog Dis 2020; 78:5804729. [PMID: 32166323 DOI: 10.1093/femspd/ftaa016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucosal barriers help the body resist many intestinal inflammatory diseases, such as inflammatory bowel disease (IBD). In this study, we identified a novel bacterium promoting the repair of intestinal mucosa and investigated the potential mechanisms underlying its activity. Culture supernatant of Bacillus subtilis RZ001 upregulated the expression of mucin 2 (MUC2) and tight junction (TJ) proteins in HT-29 cells in vitro. Oral administration of B. subtilis RZ001 may have significantly reduced symptoms such as the dextran sulfate sodium (DSS)-induced decrease in body weight, shortening of colon length and overproduction of proinflammatory factors. The number of goblet cells and levels of MUC2 and TJ proteins were significantly increased in adult mice fed with B. subtilis RZ001. B. subtilis RZ001 cells upregulated the levels of MUC2 in the intestinal organoids. Furthermore, culture supernatant of B. subtilis RZ001 could suppress the Notch signalling pathway and activate the expression of atonal homolog 1 (Atoh1). The transcription factor Atoh1 is required for intestinal secretory cell differentiation and activates transcription of MUC2 via binding to E-boxes on the MUC2 promoter. Taken together, B. subtilis strain RZ001 has the potential for treating IBD. The present study is helpful to elucidate the mechanisms of B. subtilis action.
Collapse
Affiliation(s)
- Yanru Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tengxun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Congcong Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Meng Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Sailun Gai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| |
Collapse
|
4
|
Stein C, Burtey S, Mancini J, Pelletier M, Sallée M, Brunet P, Berbis P, Grob JJ, Honoré S, Gaudy C, Jourde-Chiche N. Acute kidney injury in patients treated with anti-programmed death receptor-1 for advanced melanoma: a real-life study in a single-centre cohort. Nephrol Dial Transplant 2020; 36:1664-1674. [PMID: 32941608 DOI: 10.1093/ndt/gfaa137] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Immune checkpoints inhibitors have transformed the prognosis of advanced melanoma but are associated with immune-related adverse events (irAEs). We evaluated the incidence, risk factors and causes of acute kidney injury (AKI) in a monocentric real-life cohort of patients treated with anti-programmed death receptor-1 (anti-PD1) antibodies for advanced melanoma. METHODS Retrospective collection of medical charts and comprehensive analysis of lab results from patients treated with nivolumab or pembrolizumab for advanced melanoma between 2014 and 2018 was carried out. AKI was defined by Kidney Disease Improving Global Outcomes criteria, and causes were determined by chart review. Overall survival, survival without AKI and impact of AKI on survival were analysed. Risk factors for death and for AKI were identified. RESULTS Two hundred and thirty-nine patients were included. Forty-one (17%) had at least one episode of AKI. Independent risk factors for AKI were treatment with renin-angiotensin-aldosterone system inhibitors (RAASi), pre-existing chronic kidney disease (CKD) and cumulated doses of anti-PD1. The main cause of AKI was prerenal, and only eight patients (3.3%) developed acute interstitial nephritis; 8% of patients developed CKD. The median overall survival was 13.4 months and was not affected by AKI. In multivariate analysis, the overall mortality was lower in overweight and obese patients and higher in patients treated with proton-pump inhibitors (PPI) or corticosteroids. CONCLUSIONS AKI is common in patients treated with anti-PD1 for advanced melanoma but is mostly prerenal and favoured by the use of RAASi; renal irAE is rare. PPI and corticosteroids were associated with poor survival in this population, while overweight/obesity was protective.
Collapse
Affiliation(s)
- Claire Stein
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Stéphane Burtey
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France.,Aix-Marseille University, INSERM 1263, INRAE 1260, Centre de recherche en CardioVasculaire et Nutrition, Marseille, France
| | - Julien Mancini
- Assistance Publique-Hôpitaux de Marseille, Santé Publique, Hôpital de la Timone, Marseille, France
| | - Marion Pelletier
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France
| | - Marion Sallée
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France.,Aix-Marseille University, INSERM 1263, INRAE 1260, Centre de recherche en CardioVasculaire et Nutrition, Marseille, France
| | - Philippe Brunet
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France.,Aix-Marseille University, INSERM 1263, INRAE 1260, Centre de recherche en CardioVasculaire et Nutrition, Marseille, France
| | - Philippe Berbis
- Assistance Publique-Hôpitaux de Marseille, Centre de Dermatologie et de Vénéréologie, Hôpital Nord, Marseille, France
| | - Jean Jacques Grob
- Assistance Publique-Hôpitaux de Marseille, Centre de Dermatologie et de Vénéréologie et Cancérologie Cutanée, Hôpital de la Timone, Marseille, France
| | - Stéphane Honoré
- Assistance Publique-Hôpitaux de Marseille, Onco-Pharmacie, Hôpital de la Timone, Marseille, France
| | - Caroline Gaudy
- Assistance Publique-Hôpitaux de Marseille, Centre de Dermatologie et de Vénéréologie et Cancérologie Cutanée, Hôpital de la Timone, Marseille, France
| | - Noémie Jourde-Chiche
- Assistance Publique-Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Marseille, France.,Aix-Marseille University, INSERM 1263, INRAE 1260, Centre de recherche en CardioVasculaire et Nutrition, Marseille, France
| |
Collapse
|
5
|
Bian X, Yang L, Wu W, Lv L, Jiang X, Wang Q, Wu J, Li Y, Ye J, Fang D, Shi D, Wang K, Wang Q, Lu Y, Xie J, Xia J, Li L. Pediococcus pentosaceus LI05 alleviates DSS-induced colitis by modulating immunological profiles, the gut microbiota and short-chain fatty acid levels in a mouse model. Microb Biotechnol 2020; 13:1228-1244. [PMID: 32363766 PMCID: PMC7264873 DOI: 10.1111/1751-7915.13583] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is considered a key factor in pathogenesis and progression of inflammatory bowel disease (IBD). The bacterium Pediococcus pentosaceus LI05 alleviated host inflammation by maintaining the gut epithelial integrity, modulating the host immunity, gut microbiota and metabolism, but its effect on IBD remains unclear. The present study aimed to investigate the role and mechanisms of P. pentosaceus LI05. Mice were administered P. pentosaceus LI05 or phosphate-buffered saline once daily by oral gavage for 14 days, and colitis was induced by providing mice 2% DSS-containing drinking water for 7 days. P. pentosaceus LI05 ameliorated colitis in mice and reduced the body weight loss, disease activity index (DAI) scores, colon length shortening, intestinal permeability and the proinflammatory cytokine levels. Furthermore, a significantly altered gut microbiota composition with increased diversity and short-chain fatty acid (SCFA) production was observed in mice treated with P. pentosaceus LI05. Several genera, including Akkermansia and Faecalibacterium, were differentially enriched in the P. pentosaceus LI05-treated mice and were negatively correlated with colitis indices and positively correlated with gut barrier markers and SCFA levels. The P. pentosaceus LI05 treatment alleviated intestinal inflammation by maintaining the intestinal epithelial integrity and modulating the immunological profiles, gut microbiome and metabolite composition. Based on our findings, P. pentosaceus LI05 might be applied as potential preparation to ameliorate colitis.
Collapse
Affiliation(s)
- Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesThe First Affiliated HospitalZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| |
Collapse
|
6
|
Terciolo C, Dapoigny M, Andre F. Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin Exp Gastroenterol 2019; 12:67-82. [PMID: 30804678 PMCID: PMC6375115 DOI: 10.2147/ceg.s181590] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier defects lead to "leaky gut syndrome", defined as an increase in intestinal permeability that allows the passage of luminal content into intestinal tissue and the bloodstream. Such a compromised intestinal barrier is the main factor underlying the pathogenesis of inflammatory bowel disease, but also commonly occurs in various systemic diseases such as viral infections and metabolic syndrome. The non-pathogenic yeast Saccharomyces boulardii CNCM I-745 has demonstrated its effectiveness as a probiotic in the prevention and treatment of antibiotic-associated, infectious and functional diarrhea. Via multiple mechanisms of action implicated in intestinal barrier function, S. boulardii has beneficial effects on altered intestinal microbiota and epithelial barrier defects in different pathologies. The well-studied probiotic yeast S. boulardii plays a crucial role in the preservation and/or restoration of intestinal barrier function in multiple disorders. This could be of major interest in diseases characterized by alterations in intestinal barrier function.
Collapse
Affiliation(s)
- Chloe Terciolo
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, F-31027 Toulouse, France,
- Aix-Marseille Université, INSERM, UMR 911, CRO2, Marseille, France,
| | - Michel Dapoigny
- Médecine Digestive, CHU Estaing, CHU Clermont-Ferrand, Université Clermont Auvergne, INSERM UMR 1107, Neuro-Dol, Clermont-Ferrand, France
| | - Frederic Andre
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc scientifique et technologique de Luminy, Marseille, France
| |
Collapse
|
7
|
|
8
|
Burcelin R, Nicolas S, Blasco-Baque V. Microbiotes et maladies métaboliques. Med Sci (Paris) 2016; 32:952-960. [DOI: 10.1051/medsci/20163211010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Barbotin AL, Giacobini P, Prévot V. [Maternal obesity alters social brain programming by altering gut microbiota in progeny]. Med Sci (Paris) 2016; 32:930-932. [PMID: 28008831 DOI: 10.1051/medsci/20163211006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023] Open
Affiliation(s)
- Anne-Laure Barbotin
- Unité Inserm U1172, laboratoire du développement et plasticité du cerveau neuroendocrine, centre de recherche Jean-Pierre Aubert, 1, place de Verdun, 59045 Lille, France - Institut de Biologie de la Reproduction-Spermiologie-CECOS, CHU de Lille, avenue Eugène Avinée, 59037 Lille, France
| | - Paolo Giacobini
- Unité Inserm U1172, laboratoire du développement et plasticité du cerveau neuroendocrine, centre de recherche Jean-Pierre Aubert, 1, place de Verdun, 59045 Lille, France
| | - Vincent Prévot
- Unité Inserm U1172, laboratoire du développement et plasticité du cerveau neuroendocrine, centre de recherche Jean-Pierre Aubert, 1, place de Verdun, 59045 Lille, France
| |
Collapse
|
10
|
Zhang HL, Li WS, Xu DN, Zheng WW, Liu Y, Chen J, Qiu ZB, Dorfman RG, Zhang J, Liu J. Mucosa-reparing and microbiota-balancing therapeutic effect of Bacillus subtilis alleviates dextrate sulfate sodium-induced ulcerative colitis in mice. Exp Ther Med 2016; 12:2554-2562. [PMID: 27698758 PMCID: PMC5038491 DOI: 10.3892/etm.2016.3686] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota composition of patients with ulcerative colitis (UC) is markedly altered compared with healthy individuals. There is mounting evidence that probiotic therapy alleviates disease severity in animal models and patients with inflammatory bowel disease (IBD). Bacillus subtilisis, as a probiotic, has also demonstrated a protective effect in IBD. However, the therapeutic mechanism of its action has yet to be elucidated. In the present study, a dextrose sulfate sodium (DSS)-induced UC mouse model was used to investigate the role of B. subtilis in the restoration of gut flora and determine its effective dose. Mucosal damage was assessed by performing alcian blue staining, cytokine levels were analyzed by ELISA and microbiota composition was investigated using 454 pyrosequencing to target hypervariable regions V3-V4 of the bacterial 16S ribosomal RNA gene. The results demonstrated that a higher dose B. subtilisis administration ameliorated DSS-induced dysbiosis and gut inflammation by balancing beneficial and harmful bacteria and associated anti- and pro-inflammatory agents, thereby aiding intestinal mucosa recovery from DSS-induced injuries. These findings indicate that choosing the correct dose of B. subtilis is important for effective UC therapy. The present study also helped to elucidate the mechanisms of B. subtilis action and provided preclinical data for B. subtilis use in UC therapy.
Collapse
Affiliation(s)
- Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wen-Shuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Dian-Nan Xu
- Department of Immunology, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Wan-Wei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yi Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jian Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhi-Bing Qiu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Robert G Dorfman
- MD Candidate, Class of 2018, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China; Department of Immunology, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|