1
|
Impaired Bile Acid Synthesis in a Taurine-Deficient Cat Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:195-203. [DOI: 10.1007/978-3-030-93337-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
|
3
|
Peng H, Zhu QS, Zhong S, Levy D. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport. PLoS One 2015; 10:e0125318. [PMID: 25992604 PMCID: PMC4439041 DOI: 10.1371/journal.pone.0125318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.
Collapse
Affiliation(s)
- Hui Peng
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Qin-shi Zhu
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Shuping Zhong
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
| | - Daniel Levy
- University of Southern California, Keck School of Medicine, Department of Biochemistry and Molecular Biology, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Chong CPK, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely AS, Clayton PT. Bile acid-CoA ligase deficiency--a new inborn error of bile acid metabolism. J Inherit Metab Dis 2012; 35:521-30. [PMID: 22089923 DOI: 10.1007/s10545-011-9416-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 09/30/2011] [Accepted: 10/26/2011] [Indexed: 12/28/2022]
Abstract
Born at 27 weeks gestation, a child of consanguineous parents of Pakistani origin required prolonged parenteral nutrition. She developed jaundice, with extensive fibrosis and architectural distortion at liver biopsy; jaundice resolved with supportive care. Serum γ-glutamyl transpeptidase values were within normal ranges. The bile acids in her plasma and urine were >85% unconjugated (non-amidated). Two genes encoding bile-acid amidation enzymes were sequenced. No mutations were found in BAAT, encoding bile acid-CoA : aminoacid N-acyl transferase. The patient was homozygous for the missense mutation c.1012C > T in SLC27A5, predicted to alter a highly conserved amino-acid residue (p.H338Y) in bile acid-CoA ligase (BACL). She also was homozygous for the missense mutation c.1772A > G in ABCB11, predicted to alter a highly conserved amino-acid residue (p.N591S) in bile salt export pump (BSEP). BACL is essential for reconjugation of bile acids deconjugated by gut bacteria, and BSEP is essential for hepatocyte-canaliculus export of conjugated bile acids. A female sibling born at term had the same bile-acid phenotype and SLC27A5 genotype, without clinical liver disease. She was heterozygous for the c.1772A > G ABCB11 mutation. This is the first report of a mutation in SLC27A5. The amidation defect may have contributed to cholestatic liver disease in the setting of prematurity, parenteral nutrition, and homozygosity for an ABCB11 mutation.
Collapse
Affiliation(s)
- Catherine P K Chong
- Clinical & Molecular Genetics Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Stapelbroek JM, van Erpecum KJ, Klomp LWJ, Houwen RHJ. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol 2010; 52:258-71. [PMID: 20034695 DOI: 10.1016/j.jhep.2009.11.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bile formation at the canalicular membrane is a delicate process. This is illustrated by inherited liver diseases due to mutations in ATP8B1, ABCB11, ABCB4, ABCC2 and ABCG5/8, all encoding hepatocanalicular transporters. Effective treatment of these canalicular transport defects is a clinical and scientific challenge that is still ongoing. Current evidence indicates that ursodeoxycholic acid (UDCA) can be effective in selected patients with PFIC3 (ABCB4 deficiency), while rifampicin reduces pruritus in patients with PFIC1 (ATP8B1 deficiency) and PFIC2 (ABCB11 deficiency), and might abort cholestatic episodes in BRIC (mild ATP8B1 or ABCB11 deficiency). Cholestyramine is essential in the treatment of sitosterolemia (ABCG5/8 deficiency). Most patients with PFIC1 and PFIC2 will benefit from partial biliary drainage. Nevertheless liver transplantation is needed in a substantial proportion of these patients, as it is in PFIC3 patients. New developments in the treatment of canalicular transport defects by using nuclear receptors as a target, enhancing the expression of the mutated transporter protein by employing chaperones, or by mutation specific therapy show substantial promise. This review will focus on the therapy that is currently available as well as on those developments that are likely to influence clinical practice in the near future.
Collapse
Affiliation(s)
- Janneke M Stapelbroek
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
6
|
Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 2009; 4:1. [PMID: 19133130 PMCID: PMC2647530 DOI: 10.1186/1750-1172-4-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/08/2009] [Indexed: 12/13/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) refers to heterogeneous group of autosomal recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. The exact prevalence remains unknown, but the estimated incidence varies between 1/50,000 and 1/100,000 births. Three types of PFIC have been identified and related to mutations in hepatocellular transport system genes involved in bile formation. PFIC1 and PFIC2 usually appear in the first months of life, whereas onset of PFIC3 may also occur later in infancy, in childhood or even during young adulthood. Main clinical manifestations include cholestasis, pruritus and jaundice. PFIC patients usually develop fibrosis and end-stage liver disease before adulthood. Serum gamma-glutamyltransferase (GGT) activity is normal in PFIC1 and PFIC2 patients, but is elevated in PFIC3 patients. Both PFIC1 and PFIC2 are caused by impaired bile salt secretion due respectively to defects in ATP8B1 encoding the FIC1 protein, and in ABCB11 encoding the bile salt export pump protein (BSEP). Defects in ABCB4, encoding the multi-drug resistant 3 protein (MDR3), impair biliary phospholipid secretion resulting in PFIC3. Diagnosis is based on clinical manifestations, liver ultrasonography, cholangiography and liver histology, as well as on specific tests for excluding other causes of childhood cholestasis. MDR3 and BSEP liver immunostaining, and analysis of biliary lipid composition should help to select PFIC candidates in whom genotyping could be proposed to confirm the diagnosis. Antenatal diagnosis can be proposed for affected families in which a mutation has been identified. Ursodeoxycholic acid (UDCA) therapy should be initiated in all patients to prevent liver damage. In some PFIC1 or PFIC2 patients, biliary diversion can also relieve pruritus and slow disease progression. However, most PFIC patients are ultimately candidates for liver transplantation. Monitoring of hepatocellular carcinoma, especially in PFIC2 patients, should be offered from the first year of life. Hepatocyte transplantation, gene therapy or specific targeted pharmacotherapy may represent alternative treatments in the future.
Collapse
Affiliation(s)
- Anne Davit-Spraul
- Biochemistry, Bicêtre Hospital, University of Paris-sud XI, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | |
Collapse
|
7
|
Knisely AS. Progressive familial intrahepatic cholestasis: an update. Pediatr Dev Pathol 2004; 7:309-14. [PMID: 15383927 DOI: 10.1007/s10024-003-0625-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 07/14/2003] [Indexed: 10/26/2022]
Affiliation(s)
- A S Knisely
- Institute of Liver Studies, King's College Hospital, Denmark Hill, SE5 9RS, London, UK.
| |
Collapse
|
8
|
Morton DH, Morton CS, Strauss KA, Robinson DL, Puffenberger EG, Hendrickson C, Kelley RI. Pediatric medicine and the genetic disorders of the Amish and Mennonite people of Pennsylvania. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2003; 121C:5-17. [PMID: 12888982 DOI: 10.1002/ajmg.c.20002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Clinic for Special Children in Lancaster County, Pennsylvania, is a community-supported, nonprofit pediatric medical practice for Amish and Mennonite children who have genetic disorders. Over a 14-year period, 1988-2002, we have encountered 39 heritable disorders among the Amish and 23 among the Mennonites. We emphasize early recognition and long-term medical care of children with genetic conditions. In the clinic laboratory we perform amino acid analyses by high-performance liquid chromatography (HPLC), organic acid analyses by gas chromatography/mass spectrometry (GC/MS), and molecular diagnoses and carrier tests by polymerase chain reaction (PCR) amplification and sequencing or restriction digestion. Regional hospitals and midwives routinely send whole-blood filter paper neonatal screens for tandem mass spectrometry and other modern analytical methods to detect 14 of the metabolic disorders found in these populations as part of the NeoGen Inc. Supplemental Newborn Screening Program (Pittsburgh, PA). Medical care based on disease pathophysiology reduces morbidity, mortality, and costs for the majority of disorders. Among our patients who are homozygous for the same mutation, differences in disease severity are not unusual. Clinical problems typically arise from the interaction of the underlying genetic disorder with common infections, malnutrition, injuries, and immune dysfunction that act through classical pathophysiological disease mechanisms to influence the natural history of disease.
Collapse
Affiliation(s)
- D Holmes Morton
- Clinic for Special Children, 535 Bunker Hill Road, Strasburg, PA 17579, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Carlton VEH, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 2003; 34:91-6. [PMID: 12704386 DOI: 10.1038/ng1147] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 03/28/2003] [Indexed: 12/12/2022]
Abstract
Familial hypercholanemia (FHC) is characterized by elevated serum bile acid concentrations, itching, and fat malabsorption. We show here that FHC in Amish individuals is associated with mutations in tight junction protein 2 (encoded by TJP2, also known as ZO-2) and bile acid Coenzyme A: amino acid N-acyltransferase (encoded by BAAT). The mutation of TJP2, which occurs in the first PDZ domain, reduces domain stability and ligand binding in vitro. We noted a morphological change in hepatic tight junctions. The mutation of BAAT, a bile acid-conjugating enzyme, abrogates enzyme activity; serum of individuals homozygous with respect to this mutation contains only unconjugated bile acids. Mutations in both TJP2 and BAAT may disrupt bile acid transport and circulation. Inheritance seems to be oligogenic, with genotype at BAAT modifying penetrance in individuals homozygous with respect to the mutation in TJP2.
Collapse
Affiliation(s)
- Victoria E H Carlton
- Liver Center Laboratory and Department of Medicine, San Francisco General Hospital, University of California San Francisco, California 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
At present, specific evidence regarding the molecular mechanisms of neonatal cholestasis is limited. The recent explosion in the understanding of the molecular physiology of bile formation has been fueled by the discovery of several genes that are involved in familial cholestasis. The ever-growing understanding of the functional immaturity of the neonatal liver is sure to be enhanced by the study of the ontogeny of important hepatobiliary transporters as they are discovered. The understanding of the functional differences between the immature and mature liver is key to the understanding of neonatal cholestasis.
Collapse
Affiliation(s)
- Karan McBride Emerick
- Division of Gastroenterology, Hepatology and Nutrition, Children's Memorial Hospital, Northwestern University Medical School, Chicago, Illinois, USA.
| | | |
Collapse
|
11
|
Abstract
New insights into the regulation of hepatobiliary transport proteins have provided the basis for a better understanding of the pathogenesis of cholestatic liver diseases. Mutations of transporter genes can cause hereditary cholestatic syndromes, the study of which has shed much light on the basic mechanisms of bile secretion and cholestasis. Important new studies have been published about the pathogenesis, clinical features, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, and drug-induced cholestasis.
Collapse
Affiliation(s)
- M Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl Franzens University School of Medicine, Graz, Austria
| | | |
Collapse
|
12
|
Trauner M, Fickert P, Zollner G. Abnormal hepatic sinusoidal bile acid transport: new insights into the pathogenesis of cholestasis? Gastroenterology 2001; 120:321-3. [PMID: 11246511 DOI: 10.1053/gast.2001.21380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|